JPS62202897A - Production of diamond - Google Patents
Production of diamondInfo
- Publication number
- JPS62202897A JPS62202897A JP4292286A JP4292286A JPS62202897A JP S62202897 A JPS62202897 A JP S62202897A JP 4292286 A JP4292286 A JP 4292286A JP 4292286 A JP4292286 A JP 4292286A JP S62202897 A JPS62202897 A JP S62202897A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- substrate
- reaction
- film
- deposited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 82
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000758 substrate Substances 0.000 claims abstract description 63
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 37
- 239000007789 gas Substances 0.000 abstract description 20
- 239000012495 reaction gas Substances 0.000 abstract description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052711 selenium Inorganic materials 0.000 abstract description 2
- 239000011669 selenium Substances 0.000 abstract description 2
- -1 methane Chemical class 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 34
- 238000005229 chemical vapour deposition Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000001947 vapour-phase growth Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はダイヤモンドの製造方法の改良に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) TECHNICAL FIELD The present invention relates to improvements in diamond manufacturing methods.
(従来の技術)
ダイヤモンドは、現在知られている物質の中では、硬度
、熱伝導率が最も大きく、また極めて高い弾性率、圧縮
強さ、電気絶縁性を備え、かつ透明で化学的にも安定な
物質である。したがって、その優れた特性を生かして、
治工具への耐摩耗コーティング、太陽電池の保!!膜、
光学レンズあるいは半導体部品の放熱板等への用途開発
が研究されている。しかしながら、天然のダイヤモンド
は産出量が少なく極めて高価であるため、工業用素材と
して利用するわけにはいかない。(Prior art) Diamond has the highest hardness and thermal conductivity among currently known substances, and also has extremely high modulus of elasticity, compressive strength, and electrical insulation, and is transparent and chemically resistant. It is a stable substance. Therefore, taking advantage of its excellent characteristics,
Wear-resistant coating on jigs and tools to protect solar cells! ! film,
Research is underway to develop applications for optical lenses and heat sinks for semiconductor components. However, natural diamonds are produced in small quantities and are extremely expensive, so they cannot be used as industrial materials.
そのため、人造ダイヤモンドの製造研究が盛んに行なわ
れているが、従来知られている高温・高圧下における方
法で製造された人造ダイヤモンドも高価であって、工業
用素材としての有用性には乏しい。しかも、これら天然
ダイヤモンド、人造ダイヤモンドはいずれも、一般には
塊状又は粒状の形状を有し、膜の製造は困難であるため
、ダイヤモンドが備える有用な特性を充分に活用できて
いない。For this reason, research on the production of artificial diamonds is actively being conducted, but artificial diamonds manufactured by conventional methods under high temperature and high pressure are also expensive and have little usefulness as industrial materials. Moreover, both natural diamonds and artificial diamonds generally have a lumpy or granular shape, and it is difficult to manufacture a film, so that the useful properties of diamond cannot be fully utilized.
このようなことから最近では、低温・低圧下でダイヤモ
ンドを気相成長法により製造する研究が活発に進められ
ている。For this reason, research has recently been actively conducted to produce diamonds by vapor phase growth at low temperatures and low pressures.
その主要な方法として、以下の3つの方法が知られてい
る。The following three methods are known as the main methods.
第1は、加熱した基体の表面にメタン、エチレン、アセ
チレン、アセトンのような有機化合物と水素との混合ガ
スを導入し、基体に近接した熱フィラメントの熱エネル
ギーで混合ガスを熱分解して活性種を生成させ、基体表
面にダイヤモンドを成長させるものである(特公昭59
−27753、朝日新聞1986年1月1日付朝刊)。The first method involves introducing a gas mixture of hydrogen and an organic compound such as methane, ethylene, acetylene, or acetone onto the surface of a heated substrate, and pyrolyzing and activating the mixed gas using the thermal energy of a hot filament close to the substrate. This method generates seeds and grows diamonds on the surface of the substrate (Special Publication No. 1983).
-27753, Asahi Shimbun morning edition, January 1, 1986).
第2は、第1の方法を改良したものであり、上記第1の
方法に加えて、基体と熱フィラメントとの間に、基体が
正電位、熱フィラメントが負電位になるような電圧を印
加して熱フィラメントから熱電子を放出させて基体上に
照射しながら、基体上にダイヤモンドを成長させるもの
である(A。The second method is an improvement on the first method, and in addition to the first method, a voltage is applied between the base and the hot filament so that the base has a positive potential and the hot filament has a negative potential. Thermionic electrons are emitted from a hot filament and irradiated onto the substrate while diamond is grown on the substrate (A).
Sawabe and T、 I nuzuka:
Appl、Phys、Lett、。Sawabe and T, I nuzuka:
Appl, Phys, Lett.
Vol、46 (1985)、l)、146〜147
) 。Vol, 46 (1985), l), 146-147
).
第3は、プラズマ中で原料の有機化合物ガスを分解して
活性種を生成させ、基体上にダイヤモンドを成長させる
ものである(特開昭58−135117、特開昭59−
3098等)。The third method is to decompose raw material organic compound gas in plasma to generate active species and grow diamond on a substrate (JP-A-58-135117, JP-A-59-
3098 etc.).
これらの方法はいずれも低温・低圧下で行なわれるため
、比較的小さな装置で実現でき、工業的には有利である
。Since all of these methods are carried out at low temperatures and low pressures, they can be realized with relatively small equipment and are industrially advantageous.
しかし、上記のいずれの方法でも成長初期に基体表面に
析出するダイヤモンド核の数密度が小さく、ダイヤモン
ド薄膜の形成、ダイヤモンドと基体との密着性、ダイヤ
モンド膜表面の平滑性、ダイヤモンド膜の成長速度等の
面において、必ずしも満足すべきものではなかった。こ
のため、例えばダイヤモンドの優れた硬度に着目して工
具表面にダイヤモンドをコーティングしてもダイヤモン
ドと基体との密着性が小さいためにダイヤモンドコーテ
ィングが剥離して工具寿命が短くなったり、摺動部材の
表面にダイヤモンドをコーティングして摺動特性を向上
させようとしてもダイヤモンドの平滑性が悪いために摺
動特性を向上させることができない等の問題があった。However, in any of the above methods, the number density of diamond nuclei precipitated on the substrate surface in the early stage of growth is small, resulting in problems such as formation of a diamond thin film, adhesion between diamond and substrate, smoothness of the diamond film surface, and growth rate of the diamond film. In this respect, it was not necessarily satisfactory. For this reason, for example, even if diamond is coated on the surface of a tool due to its excellent hardness, the adhesion between the diamond and the substrate is poor, resulting in the diamond coating peeling off and shortening the tool life, or causing damage to sliding parts. Even if an attempt was made to improve the sliding characteristics by coating the surface with diamond, there was a problem that the sliding characteristics could not be improved due to the poor smoothness of diamond.
(発明が解決しようとする問題点)
本発明は上記のような問題点を解消するためになされた
ものであり、低温・低圧下での気相成長法を用い、成長
初期において基体表面に析出するダイヤモンド核の数密
度を大きくし、ひいては基体との密着性、平滑性等が良
好なダイヤモンドや非常に薄いダイヤモンド薄膜を製造
し得る方法を提供することを目的とする。(Problems to be Solved by the Invention) The present invention was made to solve the above-mentioned problems, and uses a vapor phase growth method at low temperature and low pressure to prevent precipitation on the substrate surface during the initial stage of growth. It is an object of the present invention to provide a method that can increase the number density of diamond nuclei and produce diamond with good adhesion to a substrate, smoothness, etc., and a very thin diamond film.
(問題点を解決するための手段)
本発明のダイヤモンドの製造方法は、反応容器内に基体
を設置し、反応容器内に有機化合物を含有する反応ガス
を導入してこの反応ガスを分解することにより基体上に
ダイヤモンドを成長させるダイヤモンドの製造方法にお
いて、表面に金属を蒸着させた基体を用いることを特徴
とするものである。なお、本発明においてダイヤモンド
は、全体が完全にダイヤモンドで構成されている場合に
限らず、ダイヤモンドとともに黒鉛又は非晶質炭素等の
非ダイヤモンド成分が多少混在する場合や、炭素が主成
分で(若干水素を含んでもよい)本質的には非晶質(結
晶質を含んでもよい)II造であり透明で4000Hv
以上の硬度及び電気絶縁性を有するダイヤモンド状炭素
(diaa+ond−likeCarbon )を含む
ものとする。(Means for Solving the Problems) The diamond manufacturing method of the present invention includes installing a substrate in a reaction vessel, introducing a reaction gas containing an organic compound into the reaction vessel, and decomposing the reaction gas. A method for manufacturing diamond in which diamond is grown on a substrate by using a substrate having a metal vapor-deposited on the surface. In addition, in the present invention, diamond is not limited to cases where the entire structure is completely composed of diamond, but cases where non-diamond components such as graphite or amorphous carbon are mixed together with diamond, or where carbon is the main component (somewhat). (may contain hydrogen) is essentially amorphous (may contain crystalline) II structure, transparent and 4000Hv
It contains diamond-like carbon (diaa+ond-like carbon) having hardness and electrical insulation properties of the above.
本発明方法を実施するにあたっては、予め表面に金属を
蒸着した基体を作製し、これを反応容器中に設置した後
、例えば上述した3つの方法、すなわち化学気相成長法
、電子線照射化学気相成長法、プラズマ化学気相成長法
を適用すればよい。To carry out the method of the present invention, a substrate with a metal vapor-deposited on its surface is prepared in advance, and this is placed in a reaction vessel, and then one of the three methods described above, namely, chemical vapor deposition, electron beam irradiation, and chemical vapor deposition, is applied. A phase growth method or a plasma chemical vapor deposition method may be applied.
まず、基体を構成する基材の材料としては、各種の単体
金属、合金、セラミックス、ガラス又は複合材料が用い
られるが、特に限定されない。この基材の表面に蒸着さ
せる金aの種類も特に限定されない。なお、本発明にお
いて、金属は狭義の金属に限らず、金属シリコン、セレ
ン等の半金属も含むものとする。また、2種以上の金属
を蒸着させてもよい。基材の表面に金属を蒸着させて基
体を作製する方法としては、真空蒸着法、分子線エピタ
キシャル法、スパッタリング法、イオン化蒸着法、イオ
ンブレーティング法等の物理蒸着法や化学気相成長法(
CVD法) 、MOCVD法、プラズマ化学気相成長法
(プラズマCVD法)等の化学蒸着法を挙げることがで
きる。基材表面での金属の状態は、5000Å以下の径
の島状又は1m以下の膜厚の膜状又はこれらの混在した
ものであることが好ましい。これは、金属の状態が上記
の範囲をはずれると、後に形成されるダイヤモンドの核
の数密度が極端に小さくなるためである。First, the material of the base material constituting the base body is not particularly limited, although various single metals, alloys, ceramics, glass, or composite materials can be used. The type of gold a to be deposited on the surface of this base material is also not particularly limited. Note that in the present invention, metal is not limited to metal in the narrow sense, but also includes semimetals such as metal silicon and selenium. Furthermore, two or more types of metals may be deposited. Methods for producing a substrate by depositing metal on the surface of the substrate include physical vapor deposition methods such as vacuum evaporation method, molecular beam epitaxial method, sputtering method, ionization vapor deposition method, and ion blating method, and chemical vapor deposition method (
CVD method), MOCVD method, plasma chemical vapor deposition method (plasma CVD method), and other chemical vapor deposition methods. The metal on the surface of the base material is preferably in the form of an island with a diameter of 5000 Å or less, a film with a thickness of 1 m or less, or a mixture thereof. This is because if the state of the metal deviates from the above range, the number density of diamond nuclei that will be formed later becomes extremely small.
こうして得られた基体を上述した3つの気相成長法が行
われる反応゛容器内に設置する。そして、反応容器内に
反応ガスを導入した後、化学気相成長法、電子線照射化
学気相成長法又はプラズマ化学気相成長法により基体上
にダイヤモンドを成長させる。反応ガスとしては、ダイ
ヤモンド源として有機化合物を含有していることが必要
である。The substrate thus obtained is placed in a reaction vessel in which the three vapor phase growth methods described above are performed. After introducing a reactive gas into the reaction vessel, diamond is grown on the substrate by chemical vapor deposition, electron beam irradiation chemical vapor deposition, or plasma chemical vapor deposition. The reaction gas must contain an organic compound as a diamond source.
有機化合物としては、各気相成長法によりダイヤモンド
の構成元素である炭素を生じるものであればよいが、比
較的低分子数のものが好適で、具体的にはメタン、エタ
ン、プロパン、エチレン、アセチレン、ブタジェン、ベ
ンゼン等の炭化水素、アセトン、メタノール、エタノー
ル、アセトアルデヒドを挙げることができる。また、反
応ガスの中に水素を所定量混合すると、ダイヤモンドの
析出速度が大きくなるうえ、形成されるダイヤモンドの
特性が向上するので有効である。混入させる水素の適量
は他の反応条件によっても左右されるため、特に限定さ
れないが、例えば体積比で(有機化合物)/(水素)−
o、ooi〜1,0の範囲が好ましい。これは、励起し
て分解・生成した活性水素が、有機化合物の励起・分解
を促進したり、副生ずる黒鉛、非晶質炭素等の非ダイヤ
モンド成分と反応してこれらを除去することが推定され
るためである。The organic compound may be one that produces carbon, which is a constituent element of diamond, by various vapor phase growth methods, but those with a relatively low molecular number are preferable, and specifically, methane, ethane, propane, ethylene, Hydrocarbons such as acetylene, butadiene, and benzene, acetone, methanol, ethanol, and acetaldehyde can be mentioned. Furthermore, it is effective to mix a predetermined amount of hydrogen into the reaction gas because it increases the diamond precipitation rate and improves the properties of the diamond formed. The appropriate amount of hydrogen to be mixed is not particularly limited as it also depends on other reaction conditions, but for example, the volume ratio of (organic compound)/(hydrogen) -
The range of o,ooi to 1,0 is preferable. This is because the active hydrogen that is excited, decomposed, and generated promotes the excitation and decomposition of organic compounds, and is presumed to react with by-product non-diamond components such as graphite and amorphous carbon to remove them. This is for the purpose of
また、反応ガス中にホウ素、アルミニウム、ガリウム、
インジウムもしくはタリウムの単体もしくはその化合物
のうち少なくとも1種又は窒素、リン、ヒ素、アンチモ
ンもしくはビスマスの単体もしくはその化合物のうち少
なくとも1種を含有させれば半導体特性を有するダイヤ
モンドを製造することができる。In addition, boron, aluminum, gallium,
Diamond having semiconductor properties can be produced by containing at least one of indium or thallium or a compound thereof, or nitrogen, phosphorus, arsenic, antimony, or bismuth or a compound thereof.
なお、反応容器内のガス圧は反応ガスの構成によって異
なり、特に限定されるものではないが、例えば102〜
10’ Torrの範囲が好ましい。Note that the gas pressure inside the reaction container varies depending on the composition of the reaction gas, and is not particularly limited, but for example,
A range of 10' Torr is preferred.
また、基体自体は加熱してもしなくてもよいが、加熱す
るとダイヤモンドの成長速度も大きくなり、特性も良好
であるので有効である。特に、基体を400℃以上にす
ると、非ダイヤモンド成分が減少するほか、ダイヤモン
ドと基体との密着性も向上するので望ましい。Further, the substrate itself may or may not be heated, but heating is effective because it increases the growth rate of diamond and provides good properties. In particular, it is desirable to heat the substrate to 400° C. or higher because this not only reduces non-diamond components but also improves the adhesion between the diamond and the substrate.
(作用)
上記のような本発明方法によれば、反応ガス中の有機化
合物が分解して活性な化学種となり、これが基体表面に
順次析出してダイヤモンドが形成される際、基体上に予
め島状や膜状の金属が蒸着されているので、基体表面に
析出するダイヤモンドの核の数密度が増大する。これは
、基材表面に蒸着された金属に結晶欠陥や残留応力が生
じてダイヤモンド核の析出に有利に作用するためである
と推定される。この結果、膜状のダイヤモンドを従来よ
りも格段に速い成長速度で形成することができ、しかも
ダイヤモンドと基体との密着性、ダイヤモンドの表面の
平滑性も向上することができ、極めて薄いダイヤモンド
薄膜を得ることもできる。(Function) According to the method of the present invention as described above, when the organic compound in the reaction gas decomposes into active chemical species, which are sequentially deposited on the surface of the substrate to form diamond, islands are formed on the substrate in advance. Since the metal is deposited in the form of a shape or a film, the number density of diamond nuclei deposited on the surface of the substrate increases. It is presumed that this is because crystal defects and residual stress occur in the metal deposited on the surface of the base material, which favorably affects the precipitation of diamond nuclei. As a result, it is possible to form a diamond film at a much faster growth rate than before, and the adhesion between the diamond and the substrate and the smoothness of the diamond surface can also be improved, making it possible to form extremely thin diamond films. You can also get it.
(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
実施例1
まず、基材としてモリブデン板を用い、真空蒸着法によ
り基材表面に平均粒径200人の金を島状に形成して基
体を作製した。Example 1 First, a molybdenum plate was used as a base material, and gold with an average particle diameter of 200 was formed in the form of islands on the surface of the base material by vacuum evaporation to produce a base body.
そして、第1図に概略構成因で示す反応装置を用い、化
学気相成長法により前記基体上にダイヤモンドを成長さ
せた。第1図において、反応容器1の底面にはガス人口
2及びガス出口3が設けられている。反応容器1内の下
部には基体ホルダ4が設けられており、この基体ホルダ
4上に上記のようにして得られた基体5が保持され、基
体ホルダ4の下方には基体5加熱用の加熱源6が設けら
れている。更に、基体5上方には基体5に近接して反応
ガスを加熱する熱フィラメント7が設けられている。Diamond was then grown on the substrate by chemical vapor deposition using the reaction apparatus shown schematically in FIG. 1. In FIG. 1, a gas port 2 and a gas outlet 3 are provided at the bottom of a reaction vessel 1. A substrate holder 4 is provided at the lower part of the reaction vessel 1. The substrate 5 obtained as described above is held on this substrate holder 4, and a heating device for heating the substrate 5 is provided below the substrate holder 4. A source 6 is provided. Furthermore, a hot filament 7 is provided above the base body 5 in close proximity to the base body 5 to heat the reaction gas.
上記反応装置を用い、まず基体ホルダ4上に設置された
基体5を加熱源6で加熱して750℃に保持した。次に
、ガス人口2から反応容器1内にエチレンと水素との混
合ガス(体積比1:100)を40!d/winの流量
で導入し、ガス出口3から排気して反応容器1内を約4
0Torrに維持した。Using the above reaction apparatus, first, the substrate 5 placed on the substrate holder 4 was heated with the heat source 6 and maintained at 750°C. Next, from the gas population 2, 40! It is introduced at a flow rate of d/win, and is exhausted from the gas outlet 3 to make the inside of the reaction vessel 1 about 4.
It was maintained at 0 Torr.
次いで、熱フィラメント7を1900℃に昇温しで保持
した。Next, the temperature of the hot filament 7 was raised to 1900°C and maintained.
この状態を15分間続けたところ、7.5×108個/
α2の平均数密度のダイヤモンド核が形成されていた。When this state continued for 15 minutes, 7.5 x 108 pieces/
Diamond nuclei with an average number density of α2 were formed.
更に反応を続け、合計4時間の反応時間後には、平均膜
厚5uIItのダイヤモンド膜が得られた。The reaction was further continued, and after a total reaction time of 4 hours, a diamond film with an average thickness of 5 uIIt was obtained.
得られた膜について、膜表面の平滑性、基体への密着性
を測定・評価した。なお、膜表面の平滑性は、JIS
80601に規定する方法で最大高さくRwax)を
測定することで評価した。また、密着性は、押し込み法
を用い、基体に対する膜の付着力の大きさから評価した
(Thin SolidFilms、Vol、79 (
1981)、D、91)。Regarding the obtained film, the smoothness of the film surface and the adhesion to the substrate were measured and evaluated. In addition, the smoothness of the film surface is determined according to JIS
Evaluation was made by measuring the maximum height (Rwax) using the method specified in 80601. In addition, the adhesion was evaluated based on the adhesive force of the film to the substrate using the indentation method (Thin Solid Films, Vol. 79 (
1981), D, 91).
その結果、RIlla×は0.3譚であり、優れた表面
平滑性を示した。また、押し込み法による付着力も大き
な値を示した。As a result, RIlla× was 0.3 tan, indicating excellent surface smoothness. Furthermore, the adhesion force obtained by the indentation method also showed a large value.
比較例1としてモリブデン板からなる基材そのものを基
体として用い、上記と全く同様な条件でダイヤモンドを
製造した。この場合、15分後のダイヤモンド核の平均
数密度は6,3x10’個/aR2,4時間後の平均膜
厚は3−であった。また、RlaXは0.9−であり、
付着力も小さな値を示した。As Comparative Example 1, a diamond was produced under exactly the same conditions as above using the base material itself made of a molybdenum plate as the base body. In this case, the average number density of diamond nuclei after 15 minutes was 6.3 x 10' pieces/aR2, and the average film thickness after 4 hours was 3-. Moreover, RlaX is 0.9-,
The adhesion force also showed a small value.
更に、ダイヤモンドが粒状から連続膜に移行した直後の
平均膜厚は実施例1の方が比較例1よりも小さかった。Furthermore, the average film thickness immediately after the diamond transitioned from granular to continuous film was smaller in Example 1 than in Comparative Example 1.
実施例2
まず、基材としてシリコンウェハを用い、イオンブレー
ティング法により基材表面に平均膜厚0.2 、l1m
の金属シリコン膜を形成して基体を作製した。Example 2 First, a silicon wafer was used as a base material, and an average film thickness of 0.2 l1m was deposited on the surface of the base material by ion blating method.
A metal silicon film was formed to prepare a substrate.
そして、第2図に概略構成図で示す反応装置を用い、電
子線照射化学気相成長法により前記基体上にダイヤモン
ドを成長させた。なお、第2図中、第1図と同一の部材
には同一の番号を付して説明を省略する。第2図図示の
反応装置は、基体ホルダ4と熱フィラメント7との間に
基体ホルダ4が正電位となるように直流電源8が接続さ
れている以外は第1図図示の反応装置と同様な構成を有
している。Then, diamond was grown on the substrate by electron beam irradiation chemical vapor deposition using the reaction apparatus shown in the schematic diagram of FIG. 2. Note that in FIG. 2, the same members as in FIG. 1 are designated by the same numbers and their explanations will be omitted. The reaction apparatus shown in FIG. 2 is similar to the reaction apparatus shown in FIG. It has a structure.
上記反応装置を用い、まず基体ホルダ4上に設置された
上記のようにして得られた基体5を加熱源6で加熱して
550℃に保持した。次に、ガス人口2から反応容器1
内にエタンと水素との混合ガス(体積比1:50)を1
50ne/akinの流量で導入し、ガス出口3から排
気して反応容器1内を約30 T orrに維持した。Using the reaction apparatus described above, first, the substrate 5 obtained as described above placed on the substrate holder 4 was heated with a heat source 6 and maintained at 550°C. Next, from gas population 2 to reaction vessel 1
A mixed gas of ethane and hydrogen (volume ratio 1:50) was added to
The inside of the reaction vessel 1 was maintained at about 30 Torr by introducing the gas at a flow rate of 50 ne/akin and exhausting from the gas outlet 3.
次いで、熱フィラメント7を1950℃に昇温して保持
するとともに、直流電源8により基体ホルダ4−熱フイ
ラメント7間に150Vの電圧を印加した。この結果、
熱フィラメント7から基体5方向へ15mA/α2の電
流密度の熱電子線が照射された。Next, the temperature of the hot filament 7 was raised to 1950° C. and maintained therein, and a voltage of 150 V was applied between the substrate holder 4 and the hot filament 7 using the DC power supply 8 . As a result,
A thermoelectron beam with a current density of 15 mA/α2 was irradiated from the hot filament 7 in the direction of the substrate 5.
この状態を15分間続けたところ、7.1×103個1
0R2の平均数密度のダイヤモンド核が形成されていた
。また、4時間後には、平均膜厚10−のダイヤモンド
膜が得られた。When this state continued for 15 minutes, 7.1 x 103 pieces1
Diamond nuclei with an average number density of 0R2 were formed. Further, after 4 hours, a diamond film with an average thickness of 10 - was obtained.
得られた膜について、膜表面の平滑性、基体への密着性
を上記実施例1と同様に測定・評価したところ、Rwa
xは0.2譚であり、付着力も大きな値を示した。Regarding the obtained film, the smoothness of the film surface and the adhesion to the substrate were measured and evaluated in the same manner as in Example 1 above, and it was found that Rwa
x was 0.2 tan, and the adhesion force also showed a large value.
比較例2としてシリコンウェハ基材そのものを基体とし
て用い、上記と全く同様な条件でダイヤモンドを製造し
た。この場合、15分後のダイヤモンド核の平均数密度
は2.5X10S個/ cm 2.4時間後の平均膜厚
は8譚であった。また、Rmaxは0.7 譚であり、
付着力も小さな値を示した。As Comparative Example 2, diamond was produced under exactly the same conditions as above using the silicon wafer base material itself as the base. In this case, the average number density of diamond nuclei after 15 minutes was 2.5×10S/cm, and the average film thickness after 2.4 hours was 8 diamond nuclei. Also, Rmax is 0.7 tan,
The adhesion force also showed a small value.
更に、ダイヤモンドが粒状から連続膜に移行した直後の
平均膜厚は実施例2の方が比較例2よりも小さかった。Furthermore, the average film thickness immediately after the diamond transitioned from granular to continuous film was smaller in Example 2 than in Comparative Example 2.
実施例3
まず、基材として石英ガラスを用い、スパッタリング法
により基材表面に平均膜厚0.5譚のモリブデン膜を形
成して基体を作製した。Example 3 First, using quartz glass as a base material, a molybdenum film having an average thickness of 0.5 mm was formed on the surface of the base material by sputtering to produce a base body.
そして、第3図に概略構成図で示す反応装置を用い、マ
イクロ波プラズマ化学気相成長法により前記基体上にダ
イヤモンドを成長させた。なお、第3図中、第1図図示
の反応装置の部材と同一の機能を有する部材には同一の
番号を付して説明する。第3図において、反応容器1の
上面にはガス人口2が、底面にはガス出口3がそれぞれ
設けられている。また、反応容器1の中央部には基体ホ
ルダ4が設けられており、この基体ホルダ4上に上記の
ようにして得られた基体5が保持されている。更に、反
応容器1の側面には導波管9が設けられており、図示し
ないマイクロ波発振器で発生したマイクロ波を導波管9
を介して基体5の部分に導き、プラズマを発生させる構
成となっている。Diamond was then grown on the substrate by microwave plasma chemical vapor deposition using the reaction apparatus shown in the schematic diagram of FIG. 3. In FIG. 3, members having the same functions as the members of the reaction apparatus shown in FIG. 1 are given the same numbers and will be explained. In FIG. 3, a gas outlet 2 is provided on the top surface of the reaction vessel 1, and a gas outlet 3 is provided on the bottom surface. Further, a substrate holder 4 is provided in the center of the reaction vessel 1, and the substrate 5 obtained as described above is held on this substrate holder 4. Furthermore, a waveguide 9 is provided on the side surface of the reaction container 1, and microwaves generated by a microwave oscillator (not shown) are transmitted through the waveguide 9.
The plasma is guided to the base 5 through the plasma and generates plasma.
上記反応装置を用い、まずガス入口2から反応容器1内
にメタンと水素との混合ガス(体積比1:10)を10
0d/minの流量で導入し、カス出口3から排気して
反応容器1内を約3 Torrに維持した。次いで、2
450MHzのマイクロ波により基体5周辺にプラズマ
を発生させ、この状態を保持した。Using the above reaction apparatus, first, 100% of a mixed gas of methane and hydrogen (volume ratio 1:10) is introduced into the reaction vessel 1 from the gas inlet 2.
The inside of the reaction vessel 1 was maintained at about 3 Torr by introducing at a flow rate of 0 d/min and exhausting from the waste outlet 3. Then 2
Plasma was generated around the base 5 using microwaves of 450 MHz, and this state was maintained.
この状態を15分間続けたところ、1.8×107個/
Cl12の平均数密度のダイヤモンド核が形成されてい
た。また、4時間後には、平均膜厚3II!ILのダイ
ヤモンド膜が得られた。When this state continued for 15 minutes, 1.8 x 107 pieces/
Diamond nuclei with an average number density of Cl12 were formed. Also, after 4 hours, the average film thickness was 3II! An IL diamond film was obtained.
得られた膜について、膜表面の平滑性、基体への密着性
を上記実施例1と同様に測定・評価した。Regarding the obtained film, the smoothness of the film surface and the adhesion to the substrate were measured and evaluated in the same manner as in Example 1 above.
その結果、RlaXは1.0譚であり、付着力も比較的
大きな値を示した。As a result, RlaX was 1.0 tan, and the adhesion force also showed a relatively large value.
比較例3として石英ガラス基材そのものを基体として用
い、上記と全く同様な条件でダイヤモンドを製造した。As Comparative Example 3, diamond was produced using the quartz glass substrate itself as a substrate under exactly the same conditions as above.
この場合、15分後のダイヤモンド核の平均数密度は4
,6×106個/cm2.4時間後の平均膜厚は2.5
虜であった。また、RmaXは1,2譚であり、付着力
も比較的小さな値を示した。In this case, the average number density of diamond nuclei after 15 minutes is 4
, 6 x 106 pieces/cm Average film thickness after 2.4 hours is 2.5
I was captivated. Furthermore, RmaX was 1 and 2 tan, and the adhesion force also showed a relatively small value.
更に、ダイヤモンドが粒状から連続膜に移行した直後の
平均膜厚は実施例3の方が比較例3よりも小さかった。Furthermore, the average film thickness in Example 3 was smaller than in Comparative Example 3 immediately after the diamond transitioned from granular to continuous film.
なお、実施例3ではマイクロ波を利用したプラズマ化学
気相成長法について述べたが、高周波や直流グロー放電
等を利用した他のプラズマ化学気相成長法の場合も同様
の結果が得られる。In Example 3, a plasma chemical vapor deposition method using microwaves was described, but similar results can be obtained with other plasma chemical vapor deposition methods using high frequency waves, direct current glow discharge, or the like.
以上詳述した如く本発明方法によれば、基体表面に析出
するダイヤモンド核の数密度を増大させることができ、
その結果種々の特性が優れた薄膜状のダイヤモンドを迅
速に得ることができる等工業上極めて有用である。As detailed above, according to the method of the present invention, the number density of diamond nuclei precipitated on the substrate surface can be increased,
As a result, it is extremely useful industrially, as thin-film diamonds with excellent various properties can be obtained quickly.
第1図は本発明の実施例1で用いられたダイヤモンドを
形成するための反応装置の概略構成図、第2図は本発明
の実施例2で用いられたダイヤモンドを形成するための
反応装置の概略構成図、第3図は本発明の実施例3で用
いられたダイヤモンドを形成するための反応装置の概略
構成図である。
1・・・反応容器、2・・・ガス入口、3・・・ガス出
口、4・・・基体ホルダ、5・・・基体、6・・・加熱
源、7・・・熱フィラメント、8・・・直流電源、9・
・・導波管。
出願人代理人 弁理士 鈴江武彦
第1 ;:
第2 図
第3 図Figure 1 is a schematic configuration diagram of a reaction apparatus for forming diamond used in Example 1 of the present invention, and Figure 2 is a schematic diagram of a reaction apparatus for forming diamond used in Example 2 of the present invention. FIG. 3 is a schematic diagram of a reaction apparatus for forming diamond used in Example 3 of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Gas inlet, 3... Gas outlet, 4... Substrate holder, 5... Substrate, 6... Heat source, 7... Hot filament, 8... ...DC power supply, 9.
...Waveguide. Applicant's representative Patent attorney Takehiko Suzue No. 1 ;: Figure 2 Figure 3
Claims (3)
合物を含有する反応ガスを導入してこの反応ガスを分解
することにより基体上にダイヤモンドを成長させるダイ
ヤモンドの製造方法において、表面に金属を蒸着させた
基体を用いることを特徴とするダイヤモンドの製造方法
。(1) A diamond manufacturing method in which a substrate is placed in a reaction vessel, a reactive gas containing an organic compound is introduced into the reaction vessel, and the reactive gas is decomposed to grow diamond on the substrate. A method for producing diamond, characterized by using a substrate on which a metal is vapor-deposited.
た基体を用いることを特徴とする特許請求の範囲第1項
記載のダイヤモンドの製造方法。(2) A method for manufacturing diamond according to claim 1, characterized in that a substrate is used on which a metal island having a diameter of 5000 Å or less is deposited.
基体を用いることを特徴とする特許請求の範囲第1項記
載のダイヤモンドの製造方法。(3) A method for producing diamond according to claim 1, characterized in that a substrate is used, on the surface of which a metal film having a thickness of 1 μm or less is deposited.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4292286A JPS62202897A (en) | 1986-02-28 | 1986-02-28 | Production of diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4292286A JPS62202897A (en) | 1986-02-28 | 1986-02-28 | Production of diamond |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62202897A true JPS62202897A (en) | 1987-09-07 |
Family
ID=12649514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4292286A Pending JPS62202897A (en) | 1986-02-28 | 1986-02-28 | Production of diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62202897A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63166733A (en) * | 1986-12-27 | 1988-07-09 | Kyocera Corp | Production of diamond film |
JPH0218392A (en) * | 1988-05-27 | 1990-01-22 | Xerox Corp | Production of polycrystalline diamond film |
US5206083A (en) * | 1989-09-18 | 1993-04-27 | Cornell Research Foundation, Inc. | Diamond and diamond-like films and coatings prepared by deposition on substrate that contain a dispersion of diamond particles |
US5328761A (en) * | 1990-10-05 | 1994-07-12 | Sumitomo Electric Industries, Ltd. | Diamond-coated hard material, throwaway insert and a process for the production thereof |
US5593719A (en) * | 1994-03-29 | 1997-01-14 | Southwest Research Institute | Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys |
US5605714A (en) * | 1994-03-29 | 1997-02-25 | Southwest Research Institute | Treatments to reduce thrombogeneticity in heart valves made from titanium and its alloys |
US5725573A (en) * | 1994-03-29 | 1998-03-10 | Southwest Research Institute | Medical implants made of metal alloys bearing cohesive diamond like carbon coatings |
US5731045A (en) * | 1996-01-26 | 1998-03-24 | Southwest Research Institute | Application of diamond-like carbon coatings to cobalt-cemented tungsten carbide components |
US5780119A (en) * | 1996-03-20 | 1998-07-14 | Southwest Research Institute | Treatments to reduce friction and wear on metal alloy components |
US5939140A (en) * | 1994-06-13 | 1999-08-17 | Sumitomo Electric Industries, Ltd. | Hot filament CVD of diamond films |
US5945153A (en) * | 1994-07-11 | 1999-08-31 | Southwest Research Institute | Non-irritating antimicrobial coating for medical implants and a process for preparing same |
US8087971B2 (en) | 2006-03-30 | 2012-01-03 | Konami Digital Entertainment Co., Ltd. | Doll toy |
-
1986
- 1986-02-28 JP JP4292286A patent/JPS62202897A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63166733A (en) * | 1986-12-27 | 1988-07-09 | Kyocera Corp | Production of diamond film |
JPH0218392A (en) * | 1988-05-27 | 1990-01-22 | Xerox Corp | Production of polycrystalline diamond film |
US5206083A (en) * | 1989-09-18 | 1993-04-27 | Cornell Research Foundation, Inc. | Diamond and diamond-like films and coatings prepared by deposition on substrate that contain a dispersion of diamond particles |
US5328761A (en) * | 1990-10-05 | 1994-07-12 | Sumitomo Electric Industries, Ltd. | Diamond-coated hard material, throwaway insert and a process for the production thereof |
US5725573A (en) * | 1994-03-29 | 1998-03-10 | Southwest Research Institute | Medical implants made of metal alloys bearing cohesive diamond like carbon coatings |
US5605714A (en) * | 1994-03-29 | 1997-02-25 | Southwest Research Institute | Treatments to reduce thrombogeneticity in heart valves made from titanium and its alloys |
US5593719A (en) * | 1994-03-29 | 1997-01-14 | Southwest Research Institute | Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys |
US5939140A (en) * | 1994-06-13 | 1999-08-17 | Sumitomo Electric Industries, Ltd. | Hot filament CVD of diamond films |
US5945153A (en) * | 1994-07-11 | 1999-08-31 | Southwest Research Institute | Non-irritating antimicrobial coating for medical implants and a process for preparing same |
US5984905A (en) * | 1994-07-11 | 1999-11-16 | Southwest Research Institute | Non-irritating antimicrobial coating for medical implants and a process for preparing same |
US6361567B1 (en) | 1994-07-11 | 2002-03-26 | Southwest Research Institute | Non-irritating antimicrobial coating for medical implants and a process for preparing same |
US5731045A (en) * | 1996-01-26 | 1998-03-24 | Southwest Research Institute | Application of diamond-like carbon coatings to cobalt-cemented tungsten carbide components |
US5780119A (en) * | 1996-03-20 | 1998-07-14 | Southwest Research Institute | Treatments to reduce friction and wear on metal alloy components |
US8087971B2 (en) | 2006-03-30 | 2012-01-03 | Konami Digital Entertainment Co., Ltd. | Doll toy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Deshpandey et al. | Diamond and diamondlike films: Deposition processes and properties | |
EP0755460B1 (en) | Process to produce diamond films | |
JPS62202897A (en) | Production of diamond | |
US5743957A (en) | Method for forming a single crystal diamond film | |
GB2219578A (en) | Manufacturing single-crystal diamond particles | |
Yuan et al. | Synthesis by laser ablation and characterization of pure germanium-carbon alloy thin films | |
JPH0948693A (en) | Method for forming diamond single crystal film | |
Olson et al. | A mechanism of CVD diamond film growth deduced from the sequential deposition from sputtered carbon and atomic hydrogen | |
JPS62171993A (en) | Production of diamond semiconductor | |
JPS61151096A (en) | Formation of diamond film or diamond-like carbon film | |
JPH079059B2 (en) | Method for producing carbon thin film | |
JPS6355197A (en) | Production of diamond having high purity | |
JP2582765B2 (en) | Diamond production equipment | |
JPH0769792A (en) | Method for epitaxial growth of diamond crystal and method for selective epitacial growth | |
JPS60186500A (en) | Method for synthesizing diamond from vapor phase | |
JP2579926B2 (en) | Diamond manufacturing method | |
JPH02155226A (en) | Manufacture of granular semiconductor diamond | |
JPS62202898A (en) | Production of diamond film | |
JPS62275092A (en) | Production of diamond | |
JPS62202896A (en) | Heating body for producing diamond | |
JPS6330397A (en) | Method for synthesizing diamond | |
JPS62171994A (en) | Formation of diamond | |
JPS6369973A (en) | Production of cubic boron nitride film | |
JPS62275093A (en) | Production of diamond | |
JPS62176991A (en) | Method for forming diamond |