JPS622027B2 - - Google Patents
Info
- Publication number
- JPS622027B2 JPS622027B2 JP59002633A JP263384A JPS622027B2 JP S622027 B2 JPS622027 B2 JP S622027B2 JP 59002633 A JP59002633 A JP 59002633A JP 263384 A JP263384 A JP 263384A JP S622027 B2 JPS622027 B2 JP S622027B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- stress
- temperature
- tini
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 41
- 239000000956 alloy Substances 0.000 claims description 41
- 238000011282 treatment Methods 0.000 claims description 18
- 238000001953 recrystallisation Methods 0.000 claims description 17
- 229910010380 TiNi Inorganic materials 0.000 claims description 16
- 229910004337 Ti-Ni Inorganic materials 0.000 claims description 9
- 229910011209 Ti—Ni Inorganic materials 0.000 claims description 9
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 claims description 9
- 230000032683 aging Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims 2
- 238000000034 method Methods 0.000 description 13
- 230000035882 stress Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005482 strain hardening Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Description
【発明の詳細な説明】
本発明はTiNi相およびTiNi3相の二相を有する
Ni過剰組成のTi―Ni系合金に500〜1100℃の温度
範囲での溶体化処理および200〜700℃の温度範囲
での時効処理を施した後、200℃以上の温度にお
いて再結晶を起こさせないで温間加工すること、
および温間加工した後更に再結晶を起こさせない
で加熱処理することにより、転位の動きによるす
べり変形を起こし難くし、超弾性特性を著しく向
上させるTi―Ni系超弾性合金の製造方法に関す
るものである。[Detailed description of the invention] The present invention has two phases: a TiNi phase and a TiNi 3 phase.
After solution treatment in a temperature range of 500 to 1100℃ and aging treatment in a temperature range of 200 to 700℃ to a Ti-Ni alloy with excessive Ni composition, recrystallization does not occur at temperatures above 200℃. Warm processing with
The present invention also relates to a method for manufacturing a Ti-Ni superelastic alloy, which is heat-treated without causing recrystallization after warm working, thereby making it difficult to cause slip deformation due to the movement of dislocations and significantly improving the superelastic properties. be.
熱弾性型のマルテンサイト変態を示すTi―Ni
およびTi―Ni―X(以下Ti―Ni系合金と呼ぶ)
は良好な超弾性合金および形状記憶効果を示すこ
とが知られており、こうした特性を種々の応用品
へ利用する検討がなされている。 Ti-Ni exhibits thermoelastic martensitic transformation
and Ti-Ni-X (hereinafter referred to as Ti-Ni alloy)
is known to exhibit good superelastic alloys and shape memory effects, and studies are underway to utilize these properties in various applications.
超弾性は外部応力により応力誘起マルテンサイ
ト変態を生じ、これに伴なつて十数パーセントに
も及ぶ見掛け上の塑性変形を生じ、応力が除かれ
ると逆変態により元の形状に復帰するものであ
る。こうした超弾性は一般に応力ヒステリシスの
大きさおよびすべり変形を生じない限界応力など
によつて評価され、応力ヒステリシスが小さくま
たすべり変形を生じない限界応力が高い程望まし
いとされている。このため転位の動きなどによる
すべり変形を起こし難くしてやることが必要であ
る。しかし、従来の超弾性合金は使用温度に応じ
て50.0〜51.0at%Niの組成の合金が選択され、こ
の合金に1000℃程度の高温での加熱処理を行なつ
て使用していた。このため再結晶を起こし転位が
動き易くなり、すべり変形を生じない限界応力が
低い欠点があつた。 Superelasticity is characterized by stress-induced martensitic transformation caused by external stress, resulting in apparent plastic deformation of more than ten percent, and when the stress is removed, the material returns to its original shape through reverse transformation. . Such superelasticity is generally evaluated by the magnitude of stress hysteresis and the critical stress at which no sliding deformation occurs, and it is said that the smaller the stress hysteresis and the higher the critical stress at which no sliding deformation occurs, the more desirable. Therefore, it is necessary to make it difficult to cause slip deformation due to the movement of dislocations. However, as conventional superelastic alloys, alloys with a composition of 50.0 to 51.0 at% Ni are selected depending on the operating temperature, and this alloy is used after being heat treated at a high temperature of about 1000°C. As a result, recrystallization occurs and dislocations become more mobile, which has the disadvantage that the critical stress at which slip deformation does not occur is low.
最近、Ni過剰組成のTi―Ni合金では溶体化処
理および時効処理によつてTiNi3粒子の析出を生
じ、これによつてすべり変形が生じない限界応力
を高めることができ、超弾性合金特性が改善され
ることが報告された〔日本金属学会会報 22巻、
33(1983)参照〕。 Recently, in Ti-Ni alloys with excessive Ni composition, solution treatment and aging treatment cause the precipitation of TiNi 3 particles, which increases the critical stress at which no sliding deformation occurs, and improves superelastic alloy properties. It was reported that the improvement [Bulletin of the Japan Institute of Metals, Vol. 22,
33 (1983)].
このような析出粒子によつてすべり変形を起き
難くする方法は非常に効果的であるが、負荷の初
期段階における析出粒子間での転位のすべり運動
が可能であり、優れた超弾性を得るためには更に
転位の動きを阻止する必要がある。 Although this method of using precipitated particles to prevent slip deformation from occurring is very effective, it is possible for dislocations to slip between the precipitated particles in the initial stage of loading, and in order to obtain excellent superelasticity. It is also necessary to prevent the movement of dislocations.
一方最近、転位を動き難くしすべり変形を生じ
ない限界応力を高める目的で冷間加工後250℃以
上の温度で再結晶を起こさせないで加熱処理する
方法が発表された(特開昭58−161753号公報参
照)。 On the other hand, recently, a method has been announced in which heat treatment is performed at a temperature of 250°C or higher without causing recrystallization after cold working, in order to make it difficult for dislocations to move and increase the critical stress that does not cause slip deformation (Japanese Patent Application Laid-Open No. 161753/1983). (see publication).
この方法は冷間で圧延、引き抜き等の加工を加
えてすべり変形の起き難い加工組織とすることを
目的としたものである。しかし、Ti―Ni系合金
は加工性とくに冷間加工性が極めて悪いためにそ
の加工度は高々20%程度に限定される。このため
合金内に転位の動きを十分阻止しすべり変形を起
こし難くする加工組織を均一に得ることが困難で
ある。 The purpose of this method is to add processing such as cold rolling and drawing to create a processed structure that is less prone to slip deformation. However, Ti--Ni alloys have extremely poor workability, especially cold workability, so the degree of workability is limited to about 20% at most. For this reason, it is difficult to uniformly obtain a processed structure in the alloy that sufficiently inhibits the movement of dislocations and makes slip deformation difficult to occur.
こうした観点から本発明者らは、析出粒子によ
る転位のピンニング効果と同時に、合金内に転位
の動きによるすべり変形の起き難い加工組織を均
一に得ることを目的としてその方法について検討
を行ない、その結果有益な効果をもたらす方法を
見いだしたものである。 From this point of view, the present inventors investigated a method with the aim of obtaining a uniform processed structure in the alloy that is unlikely to undergo sliding deformation due to the movement of dislocations, as well as the pinning effect of dislocations by precipitated particles, and found the following results: They have found a way to have a beneficial effect.
すなわち本発明方法は、TiNi相およびTiNi3相
の二相を有するNi過剰組成のTi―Ni系合金に500
〜1100℃の温度範囲での溶体化処理および200〜
700℃の温度範囲での時効処理を施した後、200℃
以上の温度において再結晶を起こさせないで温間
加工すること、および温間加工した後更に再結晶
を起こさせないで加熱処理することを特徴とする
ものであり、このことによつて合金内に転位の動
きによるすべり変形が起こり難くなり、優れた超
弾性合金を得ることが可能となつたものである。 In other words, the method of the present invention involves adding 500% to a Ti-Ni alloy with a Ni-excess composition and having two phases: a TiNi phase and a TiNi three phase.
Solution treatment in the temperature range of ~1100℃ and 200~
After aging treatment in the temperature range of 700℃, 200℃
It is characterized by warm working without causing recrystallization at a temperature above 100%, and heat treatment after warm working without causing recrystallization. This makes it difficult for sliding deformation due to the movement of the metal to occur, making it possible to obtain an excellent superelastic alloy.
なお本発明における温間加工は、冷間加工では
得られない十分な加工組織を得るためのものであ
り、転位の動きを阻止しすべり変形を起き難くす
るために再結晶を起こさない温度で行なう必要が
ある。また、温間加工後の加熱処理も同様な理由
により再結晶を起こさない温度で行なう必要があ
る。 Note that the warm working in the present invention is to obtain a sufficient processed structure that cannot be obtained by cold working, and is carried out at a temperature that does not cause recrystallization in order to prevent the movement of dislocations and make slip deformation difficult to occur. There is a need. Further, for the same reason, the heat treatment after warm working must be performed at a temperature that does not cause recrystallization.
次に本発明における処理条件の限定理由につい
て述べる。 Next, the reasons for limiting the processing conditions in the present invention will be described.
溶体化処理温度については、500℃未満におい
てはTiNiマトリツクス中へTiNi3の十分な固溶が
得られず、次の時効処理時に転位の動きを阻止す
るに十分なTiNi3粒子の析出が得られない。ま
た、1100℃をこえると酸化によるTi元素の滅失
が問題となる。以上の観点から500〜1100℃の温
度範囲に限定した。 Regarding the solution treatment temperature, if the temperature is lower than 500℃, sufficient solid solution of TiNi 3 cannot be obtained in the TiNi matrix, and enough TiNi 3 particles can be precipitated to prevent the movement of dislocations during the next aging treatment. do not have. Furthermore, when the temperature exceeds 1100°C, loss of Ti element due to oxidation becomes a problem. From the above point of view, the temperature range was limited to 500 to 1100°C.
時効処理温度については、200℃未満において
は十分なTiNi3粒子の析出が起こらず、また700℃
をこえると過時効となりTiNi3析出粒子―マトリ
ツクス界面の整合性が失われ、転位の動きを十分
阻止できなくなる。以上の観点から200〜700℃の
温度範囲に限定した。 Regarding the aging treatment temperature, sufficient precipitation of TiNi 3 particles does not occur at temperatures below 200℃, and at temperatures below 700℃.
If the temperature exceeds 100%, over-aging occurs and the TiNi 3 precipitated particle-matrix interface loses integrity, making it impossible to sufficiently prevent dislocation movement. From the above point of view, the temperature range was limited to 200 to 700°C.
温間加工温度については、200℃未満において
は変形抵抗が大きいためにすべり変形を起こし難
くするのに十分な加工組織を得ることが困難であ
り、また再結晶が起きる温度においては、転位が
動き易いと考えられ良好な超弾性が得られなくな
る。 As for the warm working temperature, at temperatures below 200°C, it is difficult to obtain a sufficient processed structure to prevent slip deformation due to large deformation resistance, and at temperatures where recrystallization occurs, dislocations move. This is considered to be easy, and good superelasticity cannot be obtained.
なお、温間加工の加工度については数%程度で
もその効果が認められるが、冷間加工では得られ
ない十分な加工組織を得るためには30%以上の加
工が望ましい。また温間加工および温間加工後の
加熱処理において再結晶が起きない温度としては
500℃付近までが望ましいが、これ以上の温度で
も再結晶が起きない短時間処理の場合には良好な
超弾性が得られる。 Although the effect of warm working is recognized even at a degree of working of a few percent, working to a degree of 30% or more is desirable in order to obtain a sufficient working structure that cannot be obtained with cold working. In addition, the temperature at which recrystallization does not occur during warm working and heat treatment after warm working is
The temperature is preferably around 500°C, but good superelasticity can be obtained even at temperatures higher than this in the case of short-time treatment without recrystallization.
以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.
実施例 1
TiNi相およびTiNi3相の二相を有するNi過剰組
成のTi―50.7at%Ni合金をアルゴン中にて高周波
誘導溶解した後1000℃にて2時間真空焼鈍を行な
つて均一化処理を施し、その後900℃にて鍛造を
行なつて12φの棒とした。この棒を更に熱間スエ
ージングにより4φまで加工した後850℃にて2
時間溶体化処理を行ない水冷した。次に500℃に
て2時間時効処理を施した後400℃にて温間伸線
を行ない1φの線とし、その一部を引張試験片と
した。その後更に残りの合金(1φの線)に200
℃、400℃および550℃で1時間の加熱処理を施し
引張試験片とした。Example 1 A Ti-50.7at%Ni alloy with a Ni-excess composition having two phases, a TiNi phase and a TiNi 3 phase, was subjected to high-frequency induction melting in argon, and then vacuum annealed at 1000°C for 2 hours to homogenize it. After that, it was forged at 900℃ to make a 12φ rod. This rod was further processed to 4φ by hot swaging, and then heated to 850°C for 2 hours.
It was subjected to time solution treatment and cooled in water. Next, the wire was aged at 500°C for 2 hours, and then warm wire drawn at 400°C to obtain a 1φ wire, and a portion of the wire was used as a tensile test piece. After that, add 200 to the remaining alloy (1φ wire).
℃, 400℃ and 550℃ for 1 hour to obtain a tensile test piece.
第1図aに温間伸線のままの状態における応力
―歪曲線を示す。なお、比較のために従来の方法
による合金として冷間加工後400℃にて1時間加
熱処理した合金、850℃にて2時間溶体化処理し
た後500℃にて2時間時効処理を施した合金およ
び1000℃にて1時間加熱処理した合金の応力―歪
曲線を第1図b,c,dに示す。 Figure 1a shows the stress-strain curve in the warm wire drawing state. For comparison, alloys made using conventional methods include an alloy that was heat-treated at 400°C for 1 hour after cold working, and an alloy that was solution-treated at 850°C for 2 hours and then aged at 500°C for 2 hours. The stress-strain curves of the alloy heat-treated at 1000°C for 1 hour are shown in Figures 1b, c, and d.
図から明らかなように1000℃にて1時間加熱処
理した合金ではdのようにすべり変形による永久
歪が認められ元の形状に戻らないのに対し、本発
明方法による合金においてはaのように永久歪が
全く認められず、優れた超弾性が得られている。
なお、冷間加工後400℃にて1時間加熱処理した
合金および850℃にて2時間溶体化処理した後500
℃にて2時間処理を施した合金ではb,cのよう
に比較的良好な超弾性が得られているが、本発明
合金に比べすべり変形を生じない限界応力が低
く、また応力ヒステリシスも大きくなつている。
このことから本発明方法による合金の超弾性が非
常に優れていることが明らかである。 As is clear from the figure, the alloy heat-treated at 1000°C for 1 hour suffers permanent deformation due to sliding deformation, as shown in d, and does not return to its original shape, whereas the alloy prepared by the method of the present invention suffers from permanent deformation, as shown in a. No permanent deformation was observed, and excellent superelasticity was obtained.
In addition, alloys heat treated at 400℃ for 1 hour after cold working and 500℃ after solution treatment at 850℃ for 2 hours.
The alloys treated at ℃ for 2 hours have relatively good superelasticity as shown in b and c, but the critical stress at which no sliding deformation occurs is lower than that of the alloy of the present invention, and the stress hysteresis is also large. It's summery.
It is clear from this that the superelasticity of the alloy produced by the method of the present invention is very excellent.
第2図a,b,cに各々200℃、400℃および
550℃で1時間加熱処理を施した合金の応力―歪
曲線を示す。 Figure 2 a, b, c are respectively 200℃, 400℃ and
The stress-strain curve of the alloy heat-treated at 550°C for 1 hour is shown.
図から明らかなように再結晶が起きていないと
考えられる200℃および400℃の加熱処理において
はa,bのように優れた超弾性が得られている
が、550℃においては再結晶が起きていると考え
られ、cのように永久歪が認められ元の形状に戻
らなくなつている。 As is clear from the figure, excellent superelasticity is obtained as shown in a and b in heat treatments at 200°C and 400°C, where no recrystallization is considered to have occurred, but at 550°C, recrystallization occurs. As shown in c, permanent deformation is observed and it is no longer possible to return to the original shape.
実施例 2
Ti―51.0at%Ni合金を実施例1と同様な方法に
より1φの線とした後、300℃にて1時間加熱処
理を行ない応力―歪曲線を求めた。その結果を第
3図aに示す。なお、比較のために従来方法によ
る合金として、冷間加工後400℃にて1時間加熱
処理した合金、850℃にて2時間時効処理を施し
た合金および1000℃にて1時間加熱処理した合金
の応力―歪曲線を第3図b,c,dに示す。Example 2 A Ti-51.0at%Ni alloy was made into a 1φ wire in the same manner as in Example 1, and then heat treated at 300° C. for 1 hour to obtain a stress-strain curve. The results are shown in Figure 3a. For comparison, the following alloys were prepared using the conventional method: an alloy heat-treated at 400°C for 1 hour after cold working, an alloy aged at 850°C for 2 hours, and an alloy heat-treated at 1000°C for 1 hour. The stress-strain curves are shown in Figure 3b, c, and d.
図から明らかなように本発明方法よる合金は従
来方法による合金に比べ転位の動きによるすべり
変形が起こり難いと考えられ、すべり変形を生じ
ない限界応力が高くまた応力ヒステリシスも小さ
く、優れた超弾性が得られている。 As is clear from the figure, the alloy produced by the method of the present invention is thought to be less prone to slip deformation due to the movement of dislocations than the alloy produced by the conventional method, has a high critical stress at which slip deformation does not occur, has small stress hysteresis, and has excellent superelasticity. is obtained.
以上実施例で述べたように本発明方法は、析出
粒子による転位のピンニング効果と同時に、合金
内の転位の動きを阻止しすべり変形が起き難い加
工組織とすることにより、優れた超弾性合金を得
ることを可能にしたものであり、バネ材料等への
用途に対して極めて有益なものである。 As described in the examples above, the method of the present invention has the effect of pinning dislocations due to precipitated particles, and at the same time prevents the movement of dislocations within the alloy and creates a processed structure in which slip deformation is difficult to occur, thereby producing an excellent superelastic alloy. This makes it possible to obtain this material, and it is extremely useful for applications such as spring materials.
第1図aは本発明方法による超弾性合金の応力
―歪曲線を示す図、第1図b,cおよびdは従来
方法による超弾性合金の応力―歪曲線を示す図、
第2図aおよびbは本発明方法による超弾性合金
の応力―歪曲線を示す図、第2図cは再結晶を起
こさせた場合の応力―歪曲線を示す図、第3図a
は本発明方法による超弾性合金の応力―歪曲線を
示す図、第3図b,cおよびdは従来方法による
超弾性合金の応力―歪曲線を示す図である。
FIG. 1a is a diagram showing the stress-strain curve of a superelastic alloy produced by the method of the present invention, and FIGS. 1b, c, and d are diagrams depicting the stress-strain curve of a superelastic alloy produced by the conventional method.
Figures 2a and b are diagrams showing the stress-strain curves of the superelastic alloy produced by the method of the present invention, Figure 2c is a diagram showing the stress-strain curve when recrystallization is caused, and Figure 3a
Figure 3b, c and d are diagrams showing stress-strain curves of superelastic alloys produced by the method of the present invention, and Figures 3b, c and d are diagrams showing stress-strain curves of superelastic alloys produced by the conventional method.
Claims (1)
組成のTi―Ni系合金において、500〜1100℃の温
度範囲において溶体化処理した後急冷処理を施
し、次に200〜700℃の温度範囲において時効処理
を行なつた後、200℃以上の温度において再結晶
を起こさせないで温間加工することを特徴とする
Ti―Ni系超弾性合金の製造方法。 2 TiNi相およびTiNi3相の二相を有するNi過剰
組成のTi―Ni系合金において、500〜1100℃の温
度範囲において溶体化処理した後急冷処理を施
し、次に200〜700℃の温度範囲において時効処理
を行なつた後、200℃以上の温度において再結晶
を起こさせないで温間加工し、その後更に再結晶
を起こさせないで加熱処理することを特徴とする
Ti―Ni系超弾性合金の製造方法。[Claims] 1. A Ti--Ni alloy with a Ni-excess composition having two phases, a TiNi phase and a TiNi 3 phase, is subjected to solution treatment in a temperature range of 500 to 1100°C, followed by rapid cooling treatment, and then quenched at a temperature of 200°C. It is characterized by being subjected to aging treatment in a temperature range of ~700°C and then warm working at a temperature of 200°C or higher without causing recrystallization.
Manufacturing method of Ti-Ni superelastic alloy. 2. A Ti-Ni alloy with a Ni-excess composition having two phases, a TiNi phase and a TiNi 3 phase, is subjected to solution treatment in a temperature range of 500 to 1100°C, followed by rapid cooling treatment, and then in a temperature range of 200 to 700°C. After aging treatment at , warm working is performed at a temperature of 200°C or higher without causing recrystallization, and then further heat treatment is performed without causing recrystallization.
Manufacturing method of Ti-Ni superelastic alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP263384A JPS60155657A (en) | 1984-01-12 | 1984-01-12 | Production of ti-ni superelastic alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP263384A JPS60155657A (en) | 1984-01-12 | 1984-01-12 | Production of ti-ni superelastic alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60155657A JPS60155657A (en) | 1985-08-15 |
JPS622027B2 true JPS622027B2 (en) | 1987-01-17 |
Family
ID=11534789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP263384A Granted JPS60155657A (en) | 1984-01-12 | 1984-01-12 | Production of ti-ni superelastic alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60155657A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63150931U (en) * | 1987-03-24 | 1988-10-04 | ||
CN110964995A (en) * | 2019-11-27 | 2020-04-07 | 中国科学院金属研究所 | A method for increasing the proportion of ∑3n-type grain boundaries in IN718 nickel-based superalloy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113174512B (en) * | 2021-03-29 | 2022-05-20 | 西安交通大学 | Non-cold-deformation high-elastic thermal effect Ti-Ni bulk material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151445A (en) * | 1982-02-27 | 1983-09-08 | Tohoku Metal Ind Ltd | Titanium-nickel alloy having reversible shape storage effect and its manufacture |
JPS5928548A (en) * | 1982-08-06 | 1984-02-15 | Kazuhiro Otsuka | Superelastic shape-memory ni-ti base alloy and manufacture thereof |
-
1984
- 1984-01-12 JP JP263384A patent/JPS60155657A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151445A (en) * | 1982-02-27 | 1983-09-08 | Tohoku Metal Ind Ltd | Titanium-nickel alloy having reversible shape storage effect and its manufacture |
JPS5928548A (en) * | 1982-08-06 | 1984-02-15 | Kazuhiro Otsuka | Superelastic shape-memory ni-ti base alloy and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63150931U (en) * | 1987-03-24 | 1988-10-04 | ||
CN110964995A (en) * | 2019-11-27 | 2020-04-07 | 中国科学院金属研究所 | A method for increasing the proportion of ∑3n-type grain boundaries in IN718 nickel-based superalloy |
Also Published As
Publication number | Publication date |
---|---|
JPS60155657A (en) | 1985-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101004051B1 (en) | Iron-based alloys having shape memory and super-elasticity and methods of manufacturing the same | |
JPS63186859A (en) | Method for improving dynamic and static mechanical properties of (α+β)-titanium alloys | |
US5958159A (en) | Process for the production of a superelastic material out of a nickel and titanium alloy | |
JP2005036274A (en) | Method of producing superelastic titanium alloy for living body, and superelastic titanium alloy for living body | |
JPH0474856A (en) | Production of beta ti alloy material having high strength and high ductility | |
JPS6237353A (en) | Manufacture of shape memory alloy | |
JPH0138867B2 (en) | ||
JPH0251976B2 (en) | ||
JPS622027B2 (en) | ||
KR910008004B1 (en) | Memorial alloy with high strength & the making method | |
JPS622026B2 (en) | ||
US3194693A (en) | Process for increasing mechanical properties of titanium alloys high in aluminum | |
JPS63235444A (en) | Ti-ni-al based shape memory alloy and its production | |
JPH07207390A (en) | Super elastic spring | |
WO1999049091A1 (en) | Ti-V-Al BASED SUPERELASTICITY ALLOY | |
JP2541802B2 (en) | Shape memory TiNiV alloy and manufacturing method thereof | |
JPS59215448A (en) | functional alloy | |
JPH06293929A (en) | Beta titanium alloy wire and its production | |
JP2706273B2 (en) | Superelastic Ni-Ti-Cu alloy and method for producing the same | |
JP4028008B2 (en) | NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material | |
JP2573499B2 (en) | TiNiCuV quaternary shape memory alloy | |
JP2003213388A (en) | METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF >=3 mm | |
Noh J.-P. et al. | Phase transformation behaviours and shape memory characteristics of Ti-45xNi-5Cu-xMo x= 0.3-1.0 alloys | |
JPS61106740A (en) | Ti-ni alloy having reversible shape memory effect and its manufacture | |
JPS5935978B2 (en) | shape memory titanium alloy |