JPS6220153B2 - - Google Patents
Info
- Publication number
- JPS6220153B2 JPS6220153B2 JP58192573A JP19257383A JPS6220153B2 JP S6220153 B2 JPS6220153 B2 JP S6220153B2 JP 58192573 A JP58192573 A JP 58192573A JP 19257383 A JP19257383 A JP 19257383A JP S6220153 B2 JPS6220153 B2 JP S6220153B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- water
- hydration reaction
- weight
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- 229910052799 carbon Inorganic materials 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 229910018125 Al-Si Inorganic materials 0.000 claims description 5
- 229910018520 Al—Si Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000011822 basic refractory Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229910001868 water Inorganic materials 0.000 description 13
- 238000006703 hydration reaction Methods 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000011819 refractory material Substances 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910018134 Al-Mg Inorganic materials 0.000 description 4
- 229910018467 Al—Mg Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 238000004901 spalling Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011820 acidic refractory Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- -1 electrode scrap Chemical compound 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】
本発明は、耐酸化性、耐スポール性、耐食性お
よび強度の点で優れたカーボン含有塩基性キヤス
タブル耐火物に関するものである。
近年、塩基性キヤスタブル耐火物は省力化、省
エネルギーの観点より、れんがに代つて急速に増
加してきた。しかし、最近はこの増加も頂点に達
した感がある。この原因としては、塩基性キヤス
タブル耐火物の伸び悩みが一因と考えられる。
塩基性キヤスタブル耐火物は塩基性スラグに対
する耐食性は十分であるが、熱膨張係数が大きい
ため熱的スポーリングに弱く、また、スラグ浸潤
が大きいため構造的スポーリングを起こし易い。
これらの点を改良するための手段として、例え
ば、特開昭57―92581号公報に見られるようにカ
ーボンを利用する方法がある。前記特開昭公報に
記載の発明はMgO含有量が50%以上の骨材98〜
65重量部と黒鉛5〜35重量部とを用い、バインダ
ーとして縮合リン酸ソーダ系バインダーとハイア
ルミナセメントを用いたものである。
すなわちカーボンを含む耐火物は溶銑、溶鋼、
スラグ等と接する場合カーボンの濡れ難い特徴に
より化学的侵食に対して極めて優れた耐食性を示
す。また、カーボンの存在により耐火物が過焼結
しないため熱的スポーリングを起こしにくくな
る。
しかし、カーボンは雰囲気中の酸素の存在下で
極めて容易に酸化し、カーボンの上記優れた特性
を全く失うことになる。特に水に濡れにくいカー
ボンはキヤスタブル耐火物に添加した場合、施工
水分量が多くなり組織が劣化するため、この傾向
は同質れんがにくらべて激しくなる。
これらの解決策としてカーボンより酸素親和力
の大きい金属を添加する技術は公知であり、例え
ば特開昭55―107749号公報にはマグネシア粉末、
アルミニウム粉末とシリコン粉末の添加が効果が
あると示されている。しかし、当該特開昭公報記
載の発明は非水系のバインダーを使用したれんが
であり水を全く使用していない。しかし、キヤス
タブル耐火物の場合、施工媒体として水を使用す
るため、該金属と下記水和反応により激しく反応
し、H2ガスが発生し、:
Mg+2H2O→Mg(OH)2+H2↑
Al+3H2O→Al(OH)3+3/2H2↑
Si+4H2O→Si(OH)4+2H2↑
組織を破壊する。また、上記水和反応により、金
属は金属水和物となり、カーボンの酸化防止効果
は全くなくなる。これらの点より、特開昭55―
107749号公報に示すような技術はキヤスタブル耐
火物には適用が不可能である。
これに対し、本発明者らは共願人として特開昭
55―95681号公報の如く、予め樹脂を被覆させた
アルミニウムを使用することにより水との水和反
応を抑制または完全になくすることを提案し公知
である。しかし、耐火骨材がアルミニウム質、粘
土質シヤモツト、炭化珪素、窒化珪素等の中性〜
酸性耐火骨材と水分の混合物のPHは3〜9であ
り、このようなPH領域では本来アルミニウムの水
和反応速度は速くないため、樹脂被覆を施すこと
によりアルミニウムの水和反応抑制効果が得られ
るが、マグネシア、ドロマイト、スピネル等の塩
基性耐火骨材と水分の混合物ではMgあるいはCa
イオンが容易に溶出してPHは10以上となり、この
ような高アルカリのPH領域では、アルミニウムの
水和反応は急激に生じ、水素ガスを発生する。樹
脂被覆を施しても、完全に水を遮断することはで
きず、被覆膜の極く1部から侵入した水により、
アルミニウムは急激な水和反応を生じ水素ガスを
発生するので、樹脂被覆膜は水素ガス圧により部
分的破壊を生じ、さらに水の侵入を促進すること
となりアルミニウムの水和反応抑制効果が得られ
ない欠点がある。
そこで本発明者らはこれらの点について種々検
討を行つた結果Si、Al―Si、Al―Mg合金が、ア
ルミニウムと比べ高アルカリのPH領域で水和反応
の活性度が低く、水素の発生が著しく緩慢である
ことを見出した。
このようにSiおよびAl―Si、Al―Mg合金が本
質的にPH>10の溶液中で水和反応が少なく、か
つ、これらSiおよびAl―Si、Al―Mg合金をあら
かじめ樹脂で被覆することにより、PH>10の溶液
中で初期に生じる水和反応を抑制する効果がある
ので、実際に流し込み施工を行う際の、混練、流
し込み、養生に要する、即ち水と共存するおよそ
6〜24時間では、実用上水和反応しないことを確
認したことにより耐酸化性、耐スポール性、耐食
性および強度に優れたカーボン含有塩基性キヤス
タブル耐火物を完成するに至つたものである。
すなわち、本発明のカーボン含有塩基性キヤス
タブルは、マグネシアクリンカー、ドロマイトク
リンカーおよびスピネルクリンカー等塩基性耐火
骨材を主体とするものであるが、アルミナ、シリ
カ、ジルコニア等の酸化物や炭化珪素、炭化硅素
等の非酸化物も使用でき、特に限定するものでは
ない。カーボンとしては土状黒鉛、鱗状黒鉛の天
然黒鉛ないし電極屑、石油コークス、カーボンブ
ラツク等の人造黒鉛が使用できるが、施工水分量
の低減および組織の緻密化の点より、メソフエイ
スを含む生コークスおよびこの生コークスを熱処
理して得られる石油コークスが最も好ましい。カ
ーボンの配合割合としては、使用目的により異な
るが2〜30重量部が望ましい。すなわち、2重量
部未満ではカーボンの溶鋼、スラグに対する濡れ
難い特性が十分発揮できない。また、30重量部を
超えると施工水分が多くなり、強度、組織の点で
は不十分となる。また、カーボンの酸化防止とし
ての金属あるいは合金としてはカーボンより酸素
親和力が大きく、かつPH>10以上の溶液中での反
応が小さいSiおよびAl―Si、Al―Mgからなる一
種以上の金属および合金粉末をアスフアルトピツ
チ、タールピツチおよびノボラツク型フエノール
樹脂等の水に不溶の樹脂で被覆したものが使用で
きる。金属および合金の添加量としては、0.5〜
7重量部が望ましい。すなわち、この範囲以外で
は十分な効果が得られないからである。
本発明のカーボン含有塩基性キヤスタブルに
は、施工性向上のための例えば縮合リン酸ソーダ
等の分散剤、解膠剤およびクエン酸、Ca(OH)2
等のアルミナセメントの硬化調整剤を、また、乾
燥促進剤としての金属アルミニウム等を少量添加
してもよい。
以下に、本発明のカーボン含有塩基性キヤスタ
ブル耐火物の実施例を従来品と比較して示す。
実施例
第1表に示す配合に所定の水分を加え混練し、
40×40×160mmの枠に流し込み、24時間養生後、
105℃−24時間乾燥後供試試料とし、加熱後の曲
げ強さおよび酸化テストを行なつた。これより、
本発明品は比較品にくらべ中間温度域から高温度
域の曲げ強さが2〜3倍と大巾に向上し、また、
酸化特性も大巾に向上していることが判る。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carbon-containing basic castable refractory that is excellent in oxidation resistance, spall resistance, corrosion resistance and strength. In recent years, basic castable refractories have been rapidly replacing bricks from the viewpoint of labor and energy conservation. However, recently, this increase seems to have reached its peak. One of the reasons for this is thought to be the sluggish growth of basic castable refractories. Although basic castable refractories have sufficient corrosion resistance against basic slag, they are susceptible to thermal spalling due to their large coefficient of thermal expansion, and are susceptible to structural spalling due to large slag infiltration. As a means to improve these points, for example, there is a method of utilizing carbon as seen in Japanese Patent Application Laid-Open No. 57-92581. The invention described in the above-mentioned Japanese Unexamined Patent Publication No. 1999-11931 is based on aggregates with an MgO content of 50% or more.
65 parts by weight and 5 to 35 parts by weight of graphite, and a condensed sodium phosphate binder and high alumina cement as binders. In other words, refractories containing carbon include hot metal, molten steel,
When in contact with slag, etc., carbon exhibits extremely excellent corrosion resistance against chemical attack due to its property of being difficult to wet. Furthermore, the presence of carbon prevents the refractory from being oversintered, making thermal spalling less likely to occur. However, carbon oxidizes very easily in the presence of oxygen in the atmosphere and loses all of the above-mentioned excellent properties of carbon. In particular, when carbon, which is difficult to wet with water, is added to castable refractories, the amount of water in the construction increases and the structure deteriorates, so this tendency is more severe than with homogeneous bricks. As a solution to these problems, the technology of adding metals that have a higher affinity for oxygen than carbon is well known.
The addition of aluminum powder and silicon powder has been shown to be effective. However, the invention described in JP-A-Sho uses a non-aqueous binder and does not use any water at all. However, in the case of castable refractories, since water is used as a construction medium, it reacts violently with the metal through the following hydration reaction, generating H 2 gas: Mg + 2H 2 O → Mg (OH) 2 + H 2 ↑ Al + 3H 2 O→Al(OH) 3 +3/2H 2 ↑ Si+4H 2 O→Si(OH) 4 +2H 2 ↑ Destroys the tissue. Further, due to the above hydration reaction, the metal becomes a metal hydrate, and the antioxidant effect of carbon is completely eliminated. From these points, Japanese Unexamined Patent Application Publication No. 1987-
The technique shown in Publication No. 107749 cannot be applied to castable refractories. In contrast, the present inventors, as co-applicants,
No. 55-95681 proposes to suppress or completely eliminate the hydration reaction with water by using aluminum coated with a resin in advance. However, the fireproof aggregate is neutral, such as aluminum, clay clay, silicon carbide, silicon nitride, etc.
The pH of the mixture of acidic refractory aggregate and water is 3 to 9, and since the hydration reaction rate of aluminum is originally not fast in this PH range, applying a resin coating has the effect of suppressing the hydration reaction of aluminum. However, in a mixture of basic refractory aggregates such as magnesia, dolomite, and spinel and water, Mg or Ca
Ions are easily eluted and the pH reaches 10 or higher, and in such a highly alkaline pH range, the hydration reaction of aluminum occurs rapidly, generating hydrogen gas. Even if a resin coating is applied, it is not possible to completely block out water, and water that enters from a very small part of the coating film may cause damage.
Aluminum undergoes a rapid hydration reaction and generates hydrogen gas, so the resin coating film is partially destroyed by the hydrogen gas pressure, which further promotes water intrusion and prevents the hydration reaction of aluminum from being suppressed. There are no drawbacks. The inventors conducted various studies on these points and found that Si, Al-Si, and Al-Mg alloys have lower hydration reaction activity than aluminum in the high alkaline pH range, and are less likely to generate hydrogen. It was found to be significantly slower. In this way, Si and Al-Si, Al-Mg alloys essentially have little hydration reaction in solutions with pH > 10, and these Si and Al-Si and Al-Mg alloys are coated with resin in advance. This has the effect of suppressing the hydration reaction that occurs initially in a solution with a pH > 10, so it takes approximately 6 to 24 hours for kneading, pouring, and curing during actual pouring work, that is, coexistence with water. Now, we have completed a carbon-containing basic castable refractory that has excellent oxidation resistance, spalling resistance, corrosion resistance, and strength by confirming that there is no hydration reaction in practical use. That is, the carbon-containing basic castable of the present invention is mainly composed of basic refractory aggregates such as magnesia clinker, dolomite clinker, and spinel clinker, but it also contains oxides such as alumina, silica, and zirconia, silicon carbide, and silicon carbide. Non-oxides such as oxides can also be used, and are not particularly limited. As carbon, natural graphite such as earthy graphite or scale graphite, or artificial graphite such as electrode scrap, petroleum coke, carbon black, etc. can be used, but from the viewpoint of reducing the amount of water in construction and making the structure denser, raw coke containing mesophace and Petroleum coke obtained by heat-treating this raw coke is most preferred. The blending ratio of carbon varies depending on the purpose of use, but is preferably 2 to 30 parts by weight. That is, if the amount is less than 2 parts by weight, the carbon's property of being difficult to wet with molten steel and slag cannot be fully exhibited. Moreover, if it exceeds 30 parts by weight, the moisture content will increase during construction, resulting in insufficient strength and structure. In addition, as metals or alloys for preventing oxidation of carbon, one or more metals and alloys consisting of Si, Al-Si, and Al-Mg, which have a higher affinity for oxygen than carbon and less reactivity in solutions with pH > 10. Powders coated with water-insoluble resins such as asphalt pitch, tar pitch, and novolak type phenolic resins can be used. The amount of metals and alloys added is 0.5~
7 parts by weight is desirable. In other words, sufficient effects cannot be obtained outside this range. The carbon-containing basic castable of the present invention contains a dispersant such as condensed sodium phosphate, a deflocculant, citric acid, and Ca(OH) 2 to improve workability.
It is also possible to add a small amount of a hardening regulator for alumina cement, such as, and a small amount of metal aluminum as a drying accelerator. Examples of the carbon-containing basic castable refractories of the present invention will be shown below in comparison with conventional products. Example A prescribed amount of water was added to the formulation shown in Table 1 and kneaded,
After pouring into a 40 x 40 x 160 mm frame and curing for 24 hours,
After drying at 105°C for 24 hours, test samples were tested for bending strength after heating and oxidation tests. Than this,
The product of the present invention has significantly improved bending strength from the intermediate temperature range to the high temperature range by 2 to 3 times compared to the comparative product, and
It can be seen that the oxidation properties are also greatly improved. 【table】
Claims (1)
97.5重量部に樹脂を被覆したSi,Al―Si,Al―
Mgの1種または2種以上を0.5〜7重量部含有す
ることを特徴とするカーボン含有塩基性キヤスタ
ブル耐火物。1 2-30 parts by weight of carbon, 63-30 parts by weight of basic refractory aggregate
97.5 parts by weight of resin-coated Si, Al―Si, Al―
A carbon-containing basic castable refractory containing 0.5 to 7 parts by weight of one or more types of Mg.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19257383A JPS6086080A (en) | 1983-10-17 | 1983-10-17 | Carbon-containing basic castable refractories |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19257383A JPS6086080A (en) | 1983-10-17 | 1983-10-17 | Carbon-containing basic castable refractories |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6086080A JPS6086080A (en) | 1985-05-15 |
JPS6220153B2 true JPS6220153B2 (en) | 1987-05-06 |
Family
ID=16293525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19257383A Granted JPS6086080A (en) | 1983-10-17 | 1983-10-17 | Carbon-containing basic castable refractories |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6086080A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109400162A (en) * | 2018-12-13 | 2019-03-01 | 湖南长宇科技发展有限公司 | A kind of electrical discharge machining graphite and preparation method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2673893B2 (en) * | 1988-05-20 | 1997-11-05 | 川崎炉材株式会社 | Carbon-containing amorphous refractory |
JPH064517B2 (en) * | 1989-03-28 | 1994-01-19 | 黒崎窯業株式会社 | Amorphous refractory containing non-oxide |
JPH02255579A (en) * | 1989-03-28 | 1990-10-16 | Kurosaki Refract Co Ltd | Production of carbon-containing refractory |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5595681A (en) * | 1978-12-28 | 1980-07-21 | Nippon Kokan Kk | Amorphous refractory article |
JPS55107749A (en) * | 1979-02-09 | 1980-08-19 | Kyushu Refract Co Ltd | Carbon-containing fire brick |
JPS58190876A (en) * | 1982-04-30 | 1983-11-07 | 九州耐火煉瓦株式会社 | Carbon-containing castable refractories |
-
1983
- 1983-10-17 JP JP19257383A patent/JPS6086080A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5595681A (en) * | 1978-12-28 | 1980-07-21 | Nippon Kokan Kk | Amorphous refractory article |
JPS55107749A (en) * | 1979-02-09 | 1980-08-19 | Kyushu Refract Co Ltd | Carbon-containing fire brick |
JPS58190876A (en) * | 1982-04-30 | 1983-11-07 | 九州耐火煉瓦株式会社 | Carbon-containing castable refractories |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109400162A (en) * | 2018-12-13 | 2019-03-01 | 湖南长宇科技发展有限公司 | A kind of electrical discharge machining graphite and preparation method thereof |
CN109400162B (en) * | 2018-12-13 | 2021-08-03 | 湖南长宇科技发展有限公司 | Graphite for electric spark machining and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS6086080A (en) | 1985-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0545546B2 (en) | ||
JPH0352428B2 (en) | ||
JPH09202667A (en) | Castable refractory for slide gate | |
JPS6220153B2 (en) | ||
JP4160796B2 (en) | High thermal shock resistant sliding nozzle plate brick | |
JPS627658A (en) | Carbon-containing refractories | |
JP2556416B2 (en) | Casting material for blast furnace gutter | |
JP2909582B2 (en) | Surface-treated aluminum powder, amorphous refractory containing the same and molded product thereof | |
JPH02221164A (en) | Castable refractory containing silicon carbide | |
JP3040354B2 (en) | Magnesia / carbon material | |
JPS59131563A (en) | Carbon containing refractories | |
KR830001463B1 (en) | Manufacturing method of fire brick | |
JPS61266345A (en) | Carbon-containing basic refractory brick | |
KR100689154B1 (en) | Refractory materials for mgo-c brick | |
JP2003171182A (en) | Carbon-containing unburned brick | |
KR100286663B1 (en) | Basic flame retardant for timing ladle | |
JPS6024072B2 (en) | Blast furnace gutter material | |
CA1189093A (en) | Carbon-containing refractory | |
JPS5913468B2 (en) | Basic refractories | |
CN114409384A (en) | Preparation method for producing carbon-free brick by using alumina particles as raw material | |
JPH03205347A (en) | Magnesia-carbon brick | |
JPH07291710A (en) | Graphite containing refractory | |
JPS6047224B2 (en) | Manufacturing method for carbon-silicon carbide refractories | |
JPH03205339A (en) | Carbon-containing refractory | |
JPS6035310B2 (en) | magnesia carbon brick |