JPS62207883A - Laser treatment of surface layer of cermet - Google Patents
Laser treatment of surface layer of cermetInfo
- Publication number
- JPS62207883A JPS62207883A JP5043986A JP5043986A JPS62207883A JP S62207883 A JPS62207883 A JP S62207883A JP 5043986 A JP5043986 A JP 5043986A JP 5043986 A JP5043986 A JP 5043986A JP S62207883 A JPS62207883 A JP S62207883A
- Authority
- JP
- Japan
- Prior art keywords
- cermet
- laser
- laser beam
- layer
- sprayed layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011195 cermet Substances 0.000 title claims abstract description 78
- 238000013532 laser treatment Methods 0.000 title 1
- 239000002344 surface layer Substances 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000010439 graphite Substances 0.000 claims abstract description 12
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 12
- 230000002745 absorbent Effects 0.000 claims abstract description 10
- 239000002250 absorbent Substances 0.000 claims abstract description 10
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 3
- 239000010452 phosphate Substances 0.000 claims abstract 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract 2
- 238000005542 laser surface treatment Methods 0.000 claims description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 16
- 239000000919 ceramic Substances 0.000 abstract description 10
- 239000011148 porous material Substances 0.000 abstract description 10
- 238000002844 melting Methods 0.000 abstract description 7
- 230000008018 melting Effects 0.000 abstract description 7
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000000576 coating method Methods 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 6
- 230000007797 corrosion Effects 0.000 abstract description 6
- 230000008020 evaporation Effects 0.000 abstract description 5
- 238000001704 evaporation Methods 0.000 abstract description 5
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 238000007789 sealing Methods 0.000 abstract description 3
- 229910000975 Carbon steel Inorganic materials 0.000 abstract description 2
- 239000010962 carbon steel Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000000155 melt Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000007750 plasma spraying Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はサーメット表面のレーザ表層処理方法、更に
詳しくはプラズマ溶射等によって形成されたサーメット
の表面を溶融処理するようにしたものに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for laser surface treatment of a cermet surface, and more particularly to a method for melting the surface of a cermet formed by plasma spraying or the like.
一般に金属材をジェットエンジン、タービンブレード、
機械部品等の構成部材として使用する場合には耐食性、
耐摩耗性、耐熱性が要求されることから金属材の表面に
サーメットヲプラズマ溶射でコーティングしたシ、予め
形成されたサーメットを拡散接合等で接合したりして耐
食性、耐摩耗性、耐熱性が得られるようにしていた。Generally, metal materials are used in jet engines, turbine blades,
Corrosion resistance, when used as a component of machine parts etc.
Abrasion resistance and heat resistance are required, so the surface of the metal material is coated with cermet by plasma spraying, or pre-formed cermet is bonded by diffusion bonding, etc. to achieve corrosion resistance, abrasion resistance, and heat resistance. I was trying to get it.
しかし、かかるサーメットには空孔が多いために耐食性
、耐摩耗性に劣るところから、レーザビームを利用した
空孔の封孔処理が行われていた。However, since such cermets have many pores, they have poor corrosion resistance and wear resistance, and therefore, pores have been sealed using a laser beam.
しかしながら、従来のレーザビームを利用した封孔処理
にあってはサーメットを構成するセラミックス系成分殊
に炭化物系のセラミックスはレーザ吸収率が高く、一方
金属素地はレーザの吸収率が低いためにセラミックス系
成分のみが加熱され蒸発してしまい、サーメットの表面
に大きな空孔が残存し、しかもサーメットにクラックが
発生するという問題点があった。これは予め形成された
サーメットの単体自身にレーザビームを利用した封孔処
理を行った場合にも同様の問題を生じる。However, in conventional hole sealing treatment using a laser beam, ceramic components, especially carbide ceramics, that make up the cermet have a high laser absorption rate, while metal substrates have a low laser absorption rate. Only the components are heated and evaporated, leaving large pores on the surface of the cermet and causing cracks in the cermet. A similar problem occurs when sealing a preformed cermet itself using a laser beam.
この発明はかかる問題点を解決するためになされたもの
で、サーメット表面における空孔の封孔処理が充分に行
われ、クラックの発生を防止してサーメットの耐食性、
耐摩耗性を向上させることができるサーメット表面のレ
ーザ表層処理方法を得ることを目的とする。This invention was made to solve this problem, and the pores on the cermet surface are sufficiently sealed, preventing the occurrence of cracks and improving the corrosion resistance of the cermet.
The object of the present invention is to obtain a method for laser surface treatment of a cermet surface that can improve wear resistance.
この発明に係るサーメット表面のレーザ表層処理方法は
サーメット表面にレーザ吸収剤を塗布し、その後レーザ
ビームを照射してサーメット表面を溶融処理するように
構成したものである。A method for laser surface treatment of a cermet surface according to the present invention is configured such that a laser absorbent is applied to the cermet surface, and then a laser beam is irradiated to melt the cermet surface.
この発明においては、サーメット表面にレーザ吸収剤を
塗布した後にレーザビームを照射するから、サーメット
表面全体でのレーザ吸収率が均一化し、セラミックス系
成分の選択的蒸発が捕えられ、金属素地も溶融されるこ
ととなる。In this invention, since the laser beam is irradiated after applying the laser absorbent to the cermet surface, the laser absorption rate over the entire cermet surface becomes uniform, selective evaporation of ceramic components is captured, and the metal base is also melted. The Rukoto.
第1図はこの発明の一実施例で基材にコーティングされ
たサーメットを表層処理する状態を示す説明図、第2図
はこの発明の別の実施例でサーメット単体を表層処理す
る状態を示す説明図である。Fig. 1 is an explanatory diagram showing a state in which a cermet coated on a base material is subjected to surface treatment in one embodiment of the present invention, and Fig. 2 is an explanatory diagram showing a state in which a cermet alone is subjected to surface treatment in another embodiment of the present invention. It is a diagram.
図において、(1)は炭素鋼の基材、(2)は基材(1
)の表面に例えばプラズマ溶射によって形成された炭化
物系のサーメット溶射層、(2a)はサーメット溶射#
(2)の空孔、(3)はサーメット溶射層(2)の表
面にレーザ吸収剤を塗布し、その後レーザビーム(4)
の照射によって溶融処理されたサーメット溶射層(2)
の溶融処理層である。(5)はレーザビーム(4)を集
光させる集光レンズである。In the figure, (1) is the base material of carbon steel, (2) is the base material (1
), for example, a carbide-based cermet sprayed layer formed by plasma spraying, (2a) is a cermet sprayed layer #
For holes (2) and (3), a laser absorbent is applied to the surface of the cermet sprayed layer (2), and then a laser beam (4) is applied.
Cermet sprayed layer (2) melted by irradiation of
This is a melt-treated layer. (5) is a condensing lens that condenses the laser beam (4).
次に1この発明方法について説明する。Next, 1 this invention method will be explained.
この発明方法はまず基材(1)の表面を雰囲気圧20〜
760 Torrの下で、炭化物系セラミックスと金属
粉の溶射用粉末材料をプラズマ溶射する。In this invention method, the surface of the base material (1) is first heated at an atmospheric pressure of 20 to
Thermal spray powder materials of carbide ceramics and metal powder are plasma sprayed under 760 Torr.
そうすると、基材(1)の表面には厚さが約100〜2
000μmのサーメット溶射! (2)が第1図に示す
ように形成される。Then, the surface of the base material (1) has a thickness of about 100 to 2
000μm cermet spraying! (2) is formed as shown in FIG.
次に、基材(1)の表面に形成されたサーメット溶射層
(2)の表面にレーザ吸収剤を均一に塗布する。Next, a laser absorbent is uniformly applied to the surface of the cermet sprayed layer (2) formed on the surface of the base material (1).
このレーザ吸収剤としてはグラファイト、リン酸亜鉛、
リン酸マンガン等のリン酸塩、StO,がある。Graphite, zinc phosphate,
There are phosphates such as manganese phosphate, StO.
しかる後にル−ザ吸収剤が塗布されたサーメット溶射層
(2)の表面に向けてCO宏レーザのレーザビーム(4
)を第1図に示す矢印Aの方向に移動させながら照射し
て溶融処理を行う。After that, a CO Hiroshi laser beam (4
) is irradiated while moving in the direction of arrow A shown in FIG. 1 to carry out the melting process.
そうすると、サーメット溶射層(2)の表面部分は、レ
ーザ吸収率が低い金属素地もセラミックス系成分と同程
度にレーザビームを吸収することとなシ、表面全体での
レーザ吸収率が均一化し、セラミックス系成分の選択的
蒸発が抑えられ、金属素地も溶融されてその表面部分に
は空孔(2a)のない緻密な約50〜300μmの溶融
処理層(3)が形成され、サーメット溶射層(2)全体
はクラックがなく、硬度の低下もない被覆となる。In this way, the surface portion of the cermet sprayed layer (2) will not absorb the laser beam to the same extent as the ceramic component, even though the metal base has a low laser absorption rate, and the laser absorption rate over the entire surface will be uniform, and the ceramic base will absorb the laser beam to the same extent as the ceramic component. Selective evaporation of system components is suppressed, the metal base is also melted, and a dense melted layer (3) of about 50 to 300 μm without voids (2a) is formed on its surface, and the cermet sprayed layer (2 ) The entire coating has no cracks and no decrease in hardness.
この発明方法の説明として、第1図では基材(1)に形
成されたサーメット溶射層(2)の表面に溶融処理層(
3)を形成する例を示したが、第2図はサーメット単体
α2の表面に溶融処理層(3)を形成する実施例を示す
。この実施例ではサーメット単体<13の表面にレーザ
吸収剤を塗布し、その後レーザビーム(4)を照射して
サーメット単体a2の表面に溶融処理層(3)を形成す
る。As an explanation of the method of this invention, FIG. 1 shows a melt-treated layer (
3), FIG. 2 shows an example in which a melt-treated layer (3) is formed on the surface of a single cermet α2. In this example, a laser absorbent is applied to the surface of the cermet unit <13, and then a laser beam (4) is irradiated to form a melted layer (3) on the surface of the cermet unit a2.
なお、いずれの実施例も、レーザビーム(4)の相対的
移動は、サーメット溶射層(2)又はサーメット単体a
zの表面全体が溶融されるように行われることは勿論で
ある。In addition, in any of the examples, the relative movement of the laser beam (4) is caused by the cermet sprayed layer (2) or the cermet alone a.
Of course, this is done so that the entire surface of z is melted.
次にこの発明方法によシサーメット表面を溶融処理した
具体例を説明する。Next, a specific example in which the surface of the cermet was melt-treated by the method of the present invention will be described.
〔具体例1〕
この具体例に使用される基材(1)の材質は5S41、
寸法は肉厚が7fi、縦ioo諺、横200mである。[Specific Example 1] The material of the base material (1) used in this specific example is 5S41,
The dimensions are 7fi thick, 200m long and 200m wide.
その基材(1)の表面にプラズマ溶射によってサーメッ
ト溶射層(2)を形成する。溶射材料は60%Tic
−Ni −Cr合金粉末、形成されたサーメット溶射層
(2)の厚さは160μmである。A cermet sprayed layer (2) is formed on the surface of the base material (1) by plasma spraying. Thermal spray material is 60% Tic
-Ni-Cr alloy powder, the thickness of the formed cermet sprayed layer (2) is 160 μm.
そのサーメット溶射層(2)の表面にグラファイトを均
一に塗布し、しかる後にレーザビーム(4)による溶融
処理を行う。このレーザビームによる溶融処理条件は次
の通りである。用いたレーザはConレーザ、レーザ出
力は2kW、レーザ移動速度50#/rnln集光レン
ズ+15″焦点位置+100m、である。Graphite is uniformly applied to the surface of the cermet sprayed layer (2), and then melted with a laser beam (4). The conditions for this laser beam melting treatment are as follows. The laser used was a Con laser, the laser output was 2 kW, and the laser moving speed was 50#/rnln condenser lens + 15'' focal position + 100 m.
上記条件の下で、サーメット溶射層(2)の表面にレー
ザビーム(4)全照射して溶融処理を行うと、サーメッ
ト溶射層(2)の表面から内部に向けて約100μmの
厚さで溶融された表面に貫通していない空孔(2a)の
ない緻密な溶融処理層(3)が形成され、サーメット溶
射層(2)全体にクラックがなく、硬度の低下もない被
覆となった。サーメット溶射層(2)の硬度を測定した
ところ、レーザ照射前950Hマ、レーザ照射後945
Hマと硬度の低下がみられないことがわかる0
また、第6図(a)はサーメット溶射層にグラファイト
を塗布しないでレーザビームを照射した場合のサーメッ
ト溶射層の拡大断面図、第3図(b)はサーメット溶射
層にグラファイトを塗布した後にレーザビーム全照射し
た場合のサーメット溶射層の拡大断面図である。図にお
いて(1)は基材、(2)はサーメット溶射層、(3)
は溶融処理層をそれぞれ示す。Under the above conditions, when the surface of the cermet sprayed layer (2) is fully irradiated with the laser beam (4) and melted, the cermet sprayed layer (2) is melted from the surface to the inside with a thickness of approximately 100 μm. A dense melt-treated layer (3) without penetrating pores (2a) was formed on the surface, and the entire cermet sprayed layer (2) had no cracks and a coating with no decrease in hardness. When the hardness of the cermet sprayed layer (2) was measured, it was 950H before laser irradiation and 945H after laser irradiation.
It can be seen that there is no decrease in Hma and hardness.0 In addition, Figure 6 (a) is an enlarged cross-sectional view of the cermet sprayed layer when the laser beam is irradiated without applying graphite to the cermet sprayed layer, and Figure 3 (b) is an enlarged sectional view of the cermet sprayed layer when the entire laser beam is irradiated after coating the cermet sprayed layer with graphite. In the figure, (1) is the base material, (2) is the cermet sprayed layer, and (3)
indicate melt-treated layers, respectively.
第31i<(a)では過剰の蒸発による空孔(2b)、
溶融処理層(3)の表面の凹凸及び体積の減少が観察さ
れると共に溶融処理層(3)の表面全体にクラック(6
)がみられる。これに対して第6図(b)では溶融処理
層(3)の空孔及び表面の凹凸がなくなったことがわか
る。また、表面下に存在する空孔(2C)はレーザ照射
によシ生じた残存空孔であシ、表面には開孔していない
ため、耐食性は向上する。更に、表面にはクラックが発
生していないことがわかる。In No. 31i<(a), vacancies (2b) due to excessive evaporation,
Surface irregularities and volume reduction of the melt-treated layer (3) were observed, and cracks (6) were observed on the entire surface of the melt-treated layer (3).
) can be seen. In contrast, in FIG. 6(b), it can be seen that the pores and surface irregularities of the melt-treated layer (3) have disappeared. In addition, the pores (2C) existing under the surface are residual pores generated by laser irradiation and are not open on the surface, so corrosion resistance is improved. Furthermore, it can be seen that no cracks were generated on the surface.
また、溶融処理層(3)及び未処理サーメット溶射層(
2)へのグラファイト中の炭化物の溶融或いは拡散とみ
られる過剰炭化物は分析されず、炭化物の悪影響はない
。In addition, a melt-treated layer (3) and an untreated cermet sprayed layer (
2) Excess carbide, which appears to be melting or diffusion of carbide in graphite, is not analyzed, and there is no adverse effect of carbide.
〔具体例2〕
この具体例では溶射材料が50%Cr5C* −NiC
r合金粉末で、形成されたサーメット溶射層(2)の厚
さが300μmである点が具体例1と相違し、レーザビ
ームによる溶融処理条件は具体例1と同様である。[Specific Example 2] In this specific example, the thermal spray material is 50% Cr5C*-NiC
The difference from Example 1 is that the thickness of the cermet sprayed layer (2) formed using r-alloy powder is 300 μm, and the conditions for the melting treatment using a laser beam are the same as in Example 1.
グラファイトが塗布されたサーメット溶射層(2)の表
面にレーザビーム(4)を照射し□て溶融処理を行うと
、約150μmの厚さで溶融された表面に貫通する空孔
(2a)のない緻密な溶融処理層(3)が形成され、サ
ーメット溶射層(2)全体口はクラックがなく、硬度の
低下もない被覆となった。曇暴糸1台番飼画す卜沖示す
〒
〔具体例3〕
この具体例では板厚5■、縦寸法20m、横寸法40m
+のサーメット単体(75% WC−Co)(13の表
面にグラファイトを塗布し、レーザ出力2.5 kwの
レーザビーム(4)を照射して溶融処理を行い、それ以
外の条件は具体例1と同様である。When the surface of the cermet sprayed layer (2) coated with graphite is melted by irradiating the laser beam (4), the melted surface has a thickness of about 150 μm and there are no holes (2a) penetrating it. A dense melt-treated layer (3) was formed, and the entire opening of the cermet sprayed layer (2) was coated with no cracks and no decrease in hardness. [Specific example 3] In this specific example, the plate thickness is 5 cm, the vertical dimension is 20 m, and the horizontal dimension is 40 m.
Graphite was applied to the surface of + cermet (75% WC-Co) (13) and melted by irradiation with a laser beam (4) with a laser output of 2.5 kW.Other conditions were as in Example 1. It is similar to
グラファイトが塗布されたサーメット単体azの表面に
レーザビーム(4)を照射して溶融処理を行うと、約2
00μmの厚さで溶融された空孔(2a)のない緻密な
溶融処理層(3)が形成され、サーメット単体(L2は
全体にクラックがなく、硬度の低下もないものとなった
。When the surface of a single cermet az coated with graphite is irradiated with a laser beam (4) and melted, approximately 2
A dense molten layer (3) with a thickness of 0.00 μm and no pores (2a) was formed, and the cermet alone (L2) had no cracks throughout and no decrease in hardness.
この発明は以上説明したとおシ、サーメット表面にレー
ザ吸収剤を塗布した後にレーザビームを照射して溶融処
理するようにしたので、サーメット表面全体でのレーザ
吸収率が均一化し、セラミックス系成分の選択的蒸発が
抑えられ、金属素地もセラミックスと同程度に溶融され
てサーメット表面に空孔がない緻密な溶融処理層が形成
されると共にサーメットにクラックがないという効果が
ある。As explained above, this invention applies a laser absorbent to the cermet surface and then melts it by irradiating it with a laser beam, which makes the laser absorption rate uniform over the entire cermet surface and allows for the selection of ceramic components. This has the effect of suppressing evaporation of metal, melting the metal base to the same degree as ceramics, forming a dense melted layer with no holes on the cermet surface, and preventing cracks in the cermet.
第1図はこの発明の一実施例で基材にコーティングされ
たサーメットを表層処理する状態を示す説明図、第2図
はこの発明の別の実施例でサーメット単体釜表層処理す
る状態を示す説明図、第3図(a)はサーメット溶射層
にグラファイトを塗布しないでレーザビームを照射した
場合のサーメット溶射層の拡大断面図、第6図(b)は
サーメット溶射層にグラファイトを塗布した後にレーザ
ビームを照射した場合のサーメット溶射層の拡大断面図
である。
図において、(1)は基材、(2)はサーメット溶射層
、(3)は溶融処理層、(4)はレーザビームである。
なお各図中、同一符号は同−又は相当部分を示すO
代理人 弁理士 佐 藤 正 年
第1図
1:系材
2:リーメット瀉11層
3:うg融処(1層
4: レーワ゛ヒ゛−ム
第2図Fig. 1 is an explanatory diagram showing a state in which a cermet coated on a base material is subjected to surface treatment in one embodiment of the present invention, and Fig. 2 is an explanatory diagram showing a state in which a cermet single pot is surface-treated in another embodiment of the present invention. Figure 3(a) is an enlarged cross-sectional view of the cermet sprayed layer when the laser beam is irradiated without applying graphite to the cermet sprayed layer, and Figure 6(b) is an enlarged cross-sectional view of the cermet sprayed layer when the laser beam is applied to the cermet sprayed layer after graphite is applied. FIG. 2 is an enlarged cross-sectional view of a cermet sprayed layer when irradiated with a beam. In the figure, (1) is a base material, (2) is a cermet sprayed layer, (3) is a melted layer, and (4) is a laser beam. In each figure, the same reference numerals indicate the same or equivalent parts. Agent: Patent Attorney Masaru Sato Figure 2
Claims (3)
レーザビームを照射してサーメット表面を溶融処理する
ようにしたことを特徴とするサーメット表面のレーザ表
層処理方法。(1) A method for laser surface treatment of a cermet surface, characterized in that a laser absorbent is applied to the cermet surface, and then a laser beam is irradiated to melt the cermet surface.
徴とする特許請求の範囲第1項記載のサーメット表面の
レーザ表層処理方法。(2) The method for laser surface treatment of a cermet surface according to claim 1, wherein the cermet is a carbide cermet.
_2のいずれかであることを特徴とする特許請求の範囲
第1項記載のサーメット表面のレーザ表層処理方法。(3) Laser absorbent is graphite, phosphate, SiO
The laser surface treatment method for a cermet surface according to claim 1, characterized in that the method is any one of _2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5043986A JPS62207883A (en) | 1986-03-10 | 1986-03-10 | Laser treatment of surface layer of cermet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5043986A JPS62207883A (en) | 1986-03-10 | 1986-03-10 | Laser treatment of surface layer of cermet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62207883A true JPS62207883A (en) | 1987-09-12 |
Family
ID=12858889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5043986A Pending JPS62207883A (en) | 1986-03-10 | 1986-03-10 | Laser treatment of surface layer of cermet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62207883A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010434A1 (en) * | 1988-04-23 | 1989-11-02 | Glyco-Metall-Werke Daelen & Loos Gmbh | Laminated material or workpiece with a functional layer, in particular a sliding layer having the structure of a solid but fusible dispersion, provided on a support layer |
WO1989010433A1 (en) * | 1988-04-23 | 1989-11-02 | Glyco-Metall-Werke Daelen & Loos Gmbh | Laminated material or workpiece comprising a functional layer, in particular a sliding layer, applied to a support layer |
WO1991009980A1 (en) * | 1989-12-27 | 1991-07-11 | Toshiba Kikai Kabushiki Kaisha | Production of anticorrosive and antiwearing alloy |
US5647920A (en) * | 1989-12-27 | 1997-07-15 | Toshiba Kikai Kabushiki Kaisha | Process for preparation of corrosion-resistant and wear-resistant alloy |
-
1986
- 1986-03-10 JP JP5043986A patent/JPS62207883A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010434A1 (en) * | 1988-04-23 | 1989-11-02 | Glyco-Metall-Werke Daelen & Loos Gmbh | Laminated material or workpiece with a functional layer, in particular a sliding layer having the structure of a solid but fusible dispersion, provided on a support layer |
WO1989010433A1 (en) * | 1988-04-23 | 1989-11-02 | Glyco-Metall-Werke Daelen & Loos Gmbh | Laminated material or workpiece comprising a functional layer, in particular a sliding layer, applied to a support layer |
US5093207A (en) * | 1988-04-23 | 1992-03-03 | Glyco Aktiengesellschaft | Laminate material or laminate workpiece with a functional layer, especially a friction bearing layer, disposed on a backing layer |
WO1991009980A1 (en) * | 1989-12-27 | 1991-07-11 | Toshiba Kikai Kabushiki Kaisha | Production of anticorrosive and antiwearing alloy |
US5647920A (en) * | 1989-12-27 | 1997-07-15 | Toshiba Kikai Kabushiki Kaisha | Process for preparation of corrosion-resistant and wear-resistant alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1257056A (en) | Methods for preparation of overlaid metal layers | |
JP2001192862A (en) | A coating system for providing environmental protection to a metal substrate and its related method | |
US4542048A (en) | Powder metal and/or refractory coated ferrous metals | |
JPH05134067A (en) | Manufacture of heat-receiving plate having cooling structure | |
JPS6169955A (en) | Flow coating of metal | |
US4562090A (en) | Method for improving the density, strength and bonding of coatings | |
US20110229665A1 (en) | Thermal spray coating for track roller frame | |
JPS62207883A (en) | Laser treatment of surface layer of cermet | |
US20230256544A1 (en) | Method to produce high corrosion and wear resistant cast iron components by using laser cladding | |
US20030217791A1 (en) | Method for producing a component and/or a coating comprised of a vibration-damping alloy or intermetallic compound, and component produced using this method | |
JPS6349744B2 (en) | ||
JP3354377B2 (en) | Fabrication method of high corrosion resistance modified layer by laser spraying method | |
JPS61113755A (en) | Manufacture of metallic material with thermal sprayed ceramic film having high corrosion and heat resistance | |
JPS62253758A (en) | Formation of cermet layer by laser irradiation and casting mold for continuous casting | |
RU2678045C1 (en) | Method of obtaining ceramic matrix coating on steel, working in high-temperature aggressive environments | |
JPH0372393B2 (en) | ||
JP2567137B2 (en) | Composite film coated member having excellent wear resistance and molten metal resistance and method for producing the same | |
JP3629578B2 (en) | Ti-based material and Cu-based bonding method | |
US3079275A (en) | Spray-coating process | |
JPS61288060A (en) | Plasma arc thermal spraying method under reduced pressure | |
JPS63153283A (en) | Dry plating method for steel material | |
JPS62182265A (en) | Method for sealing pore in thermally sprayed coating | |
JP3198681B2 (en) | Stainless steel cladding | |
JPS62116784A (en) | Method for restoring hardness of film formed of powder | |
JPH01268854A (en) | Method of removing pores of film |