JPS62207769A - Manufacture of silicon nitride sintered body - Google Patents
Manufacture of silicon nitride sintered bodyInfo
- Publication number
- JPS62207769A JPS62207769A JP61049142A JP4914286A JPS62207769A JP S62207769 A JPS62207769 A JP S62207769A JP 61049142 A JP61049142 A JP 61049142A JP 4914286 A JP4914286 A JP 4914286A JP S62207769 A JPS62207769 A JP S62207769A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- silicon nitride
- temperature
- sintering
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 42
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000843 powder Substances 0.000 claims description 29
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 22
- 230000000737 periodic effect Effects 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- 238000005245 sintering Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 14
- 239000007791 liquid phase Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000000280 densification Methods 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 239000011812 mixed powder Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 239000012752 auxiliary agent Substances 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000001272 pressureless sintering Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 2
- -1 AiN Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 229910003564 SiAlON Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は、自動車、411械装置、化学装置、宇宙航
空機器等々の広い分野において使用される各種構造部品
の素材として利用され、とくにすぐれた高温強度を有す
るファインセラミックス材料を得るのに好適な窒化珪素
質焼結体の製造方法に関するものである。[Detailed description of the invention] [Object of the invention] (Industrial application field) This invention can be used as a material for various structural parts used in a wide range of fields such as automobiles, 411 machinery, chemical equipment, aerospace equipment, etc. The present invention relates to a method for producing a silicon nitride sintered body suitable for obtaining a fine ceramic material having particularly excellent high-temperature strength.
(従来の技術およびその問題点)
窒化珪素を主成分とする焼結体は常温および高温で化学
的に安定であり、高い機械的強度を有するため、軸受な
どの摺動部材、ターボチャージャロータなどのエンジン
部材等として好適な材料である。(Conventional technology and its problems) Sintered bodies mainly composed of silicon nitride are chemically stable at room and high temperatures and have high mechanical strength, so they are used in sliding parts such as bearings, turbocharger rotors, etc. This material is suitable for engine parts, etc.
しかし、窒化珪素はこれ単独では焼結が困難なため、通
常の場合、MgO、Al2O2−Y2O2等の焼結助剤
を添加して焼結を行う方法が用いられている。これらの
焼結は、焼結時に生ずる液相を媒介としだ液相焼結によ
ると考えられており、焼結後に液相はガラス相として焼
結体中に残留する。一方、焼結体の耐クリープ特性、高
温強度、耐酸化性等の特性については、焼結体中に残留
する第2相すなわちガラス相に大きく影響を受ける。そ
して、特に、軟化温度の低いガラス相の存在は窒化珪素
質焼結体の高温機械特性を大きく低下させるので好まし
くないという問題点があった。However, since it is difficult to sinter silicon nitride alone, a method is usually used in which sintering is performed by adding a sintering aid such as MgO or Al2O2-Y2O2. These sinterings are thought to be caused by liquid phase sintering mediated by a liquid phase generated during sintering, and after sintering, the liquid phase remains in the sintered body as a glass phase. On the other hand, the properties of the sintered body, such as creep resistance, high temperature strength, and oxidation resistance, are greatly influenced by the second phase, that is, the glass phase, remaining in the sintered body. In particular, the presence of a glass phase with a low softening temperature is undesirable because it greatly reduces the high-temperature mechanical properties of the silicon nitride sintered body.
他方、窒化珪素質焼結体の中で、とくに特性の優れたも
のとして、α−サイアロン組成の窒化珪素質焼結体があ
る。このα−サイアロンと称される窒化珪素質焼結体は
、α型のSi3N4構造の格子間に、Li、Mg、Ca
、Yなどの金属が侵入型固溶をしていると同時に、St
位置にAn、N位置に0が置換型固溶したもので、窒化
珪素質焼結体本来の高温高強度等の特性に加えて、多く
の原子が固溶することによって熱伝導率が低下するとい
う特徴を持ち、断熱を必要とするセラミックスエンジン
用部材として注目されている。On the other hand, among the silicon nitride sintered bodies, there is a silicon nitride sintered body having an α-sialon composition, which has particularly excellent properties. This silicon nitride sintered body called α-Sialon has Li, Mg, Ca
, Y, etc. are in interstitial solid solution, and at the same time, St
It is a substitution type solid solution with An at the position and 0 at the N position, and in addition to the characteristics such as high temperature and high strength inherent to silicon nitride sintered compacts, the thermal conductivity decreases due to the solid solution of many atoms. Due to these characteristics, it is attracting attention as a material for ceramic engines that require insulation.
このα−サイアロン型窒化珪素質焼結体の製造方法とし
ては、Si3 N、、AiN、金属酸化物の混合粉末を
ホットプレスにより製造する方法(特開昭56−129
667号)、常圧焼結法により製造する方法(特開昭5
7−3769号)、ガス圧焼結法により製造する方法(
特開昭60−86075号)などが知られている。As a method for manufacturing this α-SiAlON type silicon nitride sintered body, a method of manufacturing a mixed powder of Si3N, AiN, and metal oxide by hot pressing (Japanese Patent Application Laid-Open No. 56-129
667), a method of manufacturing by pressureless sintering method (Japanese Patent Application Laid-open No. 5
7-3769), a method of manufacturing by gas pressure sintering method (
JP-A No. 60-86075) is known.
しかしながら、ホットプレス法は焼結性に優れち密な焼
結体が得られるものの単純形状の製品しか製造できない
。また、常圧焼結法は複雑形状の製品に適用可能である
が、焼結の進行が不上方で焼結体中に数%の気孔が残る
ため高強度の焼結体が得られない。さらに、ガス圧焼結
法は複雑形状の製品に適用可能でありかつ常圧焼結法に
比べ気孔率が低下するため強度は向上するが、それでも
焼結体中に若干の気孔が残り強度も上方ではない。加え
て、これらの3つの方法において上方にち密化させるに
は、AiNおよび金属酸化物を多量に入れる必要があり
、これにより焼結体中にガラス相を生成するため特に高
温において強度が低下するという問題点があった。However, although the hot press method has excellent sinterability and can produce a dense sintered body, it can only produce products with a simple shape. In addition, although the pressureless sintering method is applicable to products with complex shapes, a high-strength sintered body cannot be obtained because sintering progresses slowly and several percent of pores remain in the sintered body. Furthermore, although the gas pressure sintering method can be applied to products with complex shapes and improves strength due to lower porosity than the pressureless sintering method, some pores remain in the sintered body and the strength is reduced. Not above. In addition, upward densification in these three methods requires the inclusion of large amounts of AiN and metal oxides, which generates a glass phase in the sintered body, reducing its strength, especially at high temperatures. There was a problem.
この発明は、上述した従来の問題点に着目してなされた
もので、とくに高温における強度にすぐれた窒化珪素質
焼結体を提供することを目的としている。The present invention was made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a silicon nitride sintered body that has particularly excellent strength at high temperatures.
[発明の構成]
(問題点を解決するための手段)
この発明による窒化珪素質焼結体の製造方法は、窒化珪
素粉末に、(周期律表第1fla族。[Structure of the Invention] (Means for Solving the Problems) A method for producing a silicon nitride sintered body according to the present invention includes silicon nitride powder containing silicon nitride powder (FLA group 1 of the periodic table).
Li、Ca、Mg)からなる群のなかから選ばれる元素
の酸化物の少なくとも1種以上を添加した原料粉末を混
合し成形して成形体を得たのち、前記成形体を1気圧以
上500気圧未満の窒素雰囲気下で1600℃以上22
00℃以下の温度で処理し、次いで500気圧以上の窒
素雰囲気下で1600℃以h2200℃以下の温度で処
理するようにしたことを特徴としている。After mixing raw material powder to which at least one oxide of an element selected from the group consisting of Li, Ca, and Mg is added and molding to obtain a molded body, the molded body is heated at a pressure of 1 atm or more to 500 atm. 1600℃ or more in a nitrogen atmosphere of less than 22
It is characterized in that the treatment is carried out at a temperature of 00°C or less, and then the treatment is carried out at a temperature of 1600°C or more and 2200°C or less in a nitrogen atmosphere of 500 atmospheres or more.
この発明の一実施態様において、窒化珪素質焼結体を製
造するにあたり、窒化珪素粉末に1周期律表第111a
族元素の酸化物の中から選ばれる2種以りの酸化物を添
加した原料粉末を混合し成形して成形体を得たのち、1
気圧以上500気圧未満の窒素雰囲気下で1600℃以
上2200℃以下、より望ましくは1800℃以J:、
2200℃以下の温度で処理し、次いで500気圧以上
の窒素雰囲気下で1600℃以上2200℃以下、より
望ましくは180旦0C以J:2200℃以下の温度で
処理するようにし、さらに望ましくは、前記2種以上の
酸化物が、
(Y203 ) (M203 ) 1−x・・・(1
)(ただし、MはNd 、Smであって、0.2≦X≦
0.8(モル比)を表す)であるようにすることを特徴
としている。In one embodiment of the present invention, when producing a silicon nitride sintered body, silicon nitride powder is added with one powder from periodic table 111a.
After mixing raw material powder to which two or more oxides selected from group element oxides are added and molding to obtain a molded body, 1.
1600°C or more and 2200°C or less, more preferably 1800°C or less, in a nitrogen atmosphere of at least 500 atm.
The treatment is carried out at a temperature of 2200° C. or lower, and then at a temperature of 1600° C. or higher and 2200° C. or lower, more preferably 180° C. or higher and 2200° C. or lower, in a nitrogen atmosphere of 500 atmospheres or higher, and more preferably, the Two or more oxides are (Y203) (M203) 1-x...(1
) (where M is Nd, Sm, and 0.2≦X≦
0.8 (representing a molar ratio).
また、この発明の他の実施態様において、窒化珪素質焼
結体を製造するにあたり、窒化珪素粉末に、窒化アルミ
ニウムと、(周期律表第1Ila族の元素、Li、Ca
およびMg)からなる群のなかから選ばれる元素の酸化
物とを、
M (S i 、 AfL) 12 (0、N) 1
B(0くX≦2) ・・・(2)
(ただし、Mは上記酸化物の金属元素)の式で示される
組成に混合し成形して成形体を得たのち、1気圧以上5
00気圧未満の窒素雰囲気下で1600℃以)2200
℃以下の温度で処理し、次いで500気圧以Eの窒素雰
囲気下で1600℃以上2200℃以下の温度で処理す
るようにし、さらに望ましくは、前記式中のXの範囲が
、0.05≦X≦0.25であるようにしたことを特徴
としている。In another embodiment of the present invention, when producing a silicon nitride sintered body, aluminum nitride (elements of group Ila of the periodic table, Li, Ca, etc.) is added to the silicon nitride powder.
and an oxide of an element selected from the group consisting of Mg (S i , AfL) 12 (0, N) 1
B (0 x ≦ 2) ... (2) (where M is the metal element of the above oxide) After mixing into the composition shown by the formula and molding to obtain a molded body, the mixture is heated at 1 atm or more to 5
(1600℃ or less in a nitrogen atmosphere of less than 00 atmospheres) 2200
℃ or less, and then treated at a temperature of 1600°C or more and 2200°C or less in a nitrogen atmosphere of 500 atmospheres or more, and more preferably, the range of X in the above formula is 0.05≦X. It is characterized in that it is ≦0.25.
本発明者らは、高温機械特性のすぐれた窒化珪素質焼結
体を得るべく研究をすすめたところ、窒化珪素粉末に少
なくとも酸化物系焼結助剤を添加して焼結するにあたり
、前記酸化物系焼結助剤として(周期律表第111a族
元素、Li、Ca。The present inventors conducted research to obtain a silicon nitride sintered body with excellent high-temperature mechanical properties, and found that when sintering silicon nitride powder with at least an oxide-based sintering aid added, As physical sintering aids (elements of group 111a of the periodic table, Li, Ca.
Mg)からなる群のなかから選ばれる元素の酸化物のう
ちの1種以上の酸化物を用い、窒化珪素粉末に少なくと
も前記酸化物系焼結助剤を添加した混合粉末を成形した
のち前記成形体を1気圧以、l11m500気圧未満、
より望ましくは2気圧以上500気圧未満の窒素雰囲気
下で1600℃以上2200℃以下の温度で処理し、次
いで500気圧以北の窒素雰囲気下で1600℃以上2
200°C以下の温度で処理することにより、高温機械
特性にすぐれた焼結体が得られることを見い出した。Using one or more oxides of elements selected from the group consisting of Mg), a mixed powder of silicon nitride powder and at least the oxide sintering aid added thereto is molded, and then the molding is performed. Body under 1 atm, less than 11m500 atm,
More preferably, the treatment is carried out at a temperature of 1600°C or more and 2200°C or less in a nitrogen atmosphere of 2 atm or more and less than 500 atm, and then at a temperature of 1600°C or more and 2200°C or more in a nitrogen atmosphere north of 500 atm.
It has been found that a sintered body with excellent high-temperature mechanical properties can be obtained by processing at a temperature of 200°C or lower.
すなわち、この発明では、焼結体中の第2相の軟化温度
を高くすることに着目して北記問題点を解決したもので
ある。そして、この発明で焼結助剤として用いられる周
期律表第111a族およびLi、Ca、Mgの酸化物は
融点が高いため、単独の成分では通常の常圧焼結または
ガス圧焼結の焼結温度(1600’C以上2200 ’
C!以’F)の範囲ではト分な量の低粘度の液相が生成
しないため焼結性が悪く、従来はホットプレスなど外か
ら圧力を加える場合に用いられてきた。この発明の一実
施態様では、とくに2挿具りの第111a族の酸化物の
混合物を使用することにより酸化物の融点を低下させる
ことができ、酸化物の種類および2挿具りの比率を適当
に選ぶことにより、焼結温度tsoo℃以上2200℃
以下において十分な量の液相が得られるようになった。That is, the present invention solves the above problem by focusing on increasing the softening temperature of the second phase in the sintered body. Since the oxides of group 111a of the periodic table and Li, Ca, and Mg used as sintering aids in this invention have high melting points, they cannot be used as a single component in normal pressure sintering or gas pressure sintering. Freezing temperature (1600'C or more 2200'
C! In the range below F), a sufficient amount of low-viscosity liquid phase is not generated, resulting in poor sinterability, and conventionally it has been used when pressure is applied from outside, such as in a hot press. In one embodiment of the invention, the melting point of the oxide can be lowered by using a mixture of Group 111a oxides, in particular two stubs, and the type of oxide and the ratio of two stubs can be reduced. Sintering temperature can be increased to 2200°C or more by selecting the appropriate value.
A sufficient amount of liquid phase was obtained below.
しかもこの液相は、従来のMgO、A1203 Y2
03などを助剤として利用した場合の液相に比べて融点
が高いため、焼結後に焼結体中に残留しても高温におい
て強度が低下することが少ないものと考えられる。Moreover, this liquid phase is similar to conventional MgO, A1203 Y2
Since the melting point is higher than that of the liquid phase when 03 or the like is used as an auxiliary agent, it is thought that even if it remains in the sintered body after sintering, the strength will not decrease at high temperatures.
また、窒化珪素質焼結体のうち、ち密で高強度であり高
温において強度低下の少ないα−サイアロン組成の窒化
珪素質焼結体を得るにあたり、窒化珪素粉末に、(周期
律表第1ea族、Li。Among silicon nitride sintered bodies, in order to obtain a silicon nitride sintered body having an α-sialon composition which is dense and has high strength and whose strength decreases little at high temperatures, it is necessary to add silicon nitride powder (group 1ea of the periodic table). , Li.
ca、Mg)からなる群のなかから選ばれた元素の酸化
物の少なくとも1種と窒化アルミニウム粉末を混合した
の原料混合粉末の成形体を、上記のように1気圧以上5
00気圧未満の窒素雰囲気下で1600℃以上2200
℃以下の温度で処理した後、500気圧以上の窒素雰囲
気下で1600°C以上2200℃以下の温度で処理す
ることにより、ち密で高強度な焼結体が得られることを
見い出した。A molded body of a raw material mixed powder obtained by mixing at least one oxide of an element selected from the group consisting of
1600℃ or more 2200℃ under nitrogen atmosphere below 00atm
It has been found that a dense and high-strength sintered body can be obtained by processing at a temperature of 1600°C or higher and 2200°C or lower in a nitrogen atmosphere of 500 atmospheres or higher after the treatment at a temperature of 500°C or lower.
すなわち、前述のように、焼結過程を2段に分け、まず
1気圧以上500気圧未満の窒素雰囲気下で1600℃
以上2200℃以下の温度で処理することにより、原料
粉末およびα−サイアロンの分解をおさえながら、ち密
化を進行させ、理論密度比90%以上(残部は閉気孔)
の焼結体を得る。次に、窒素雰囲気を500気圧以上に
上昇させることにより、焼結体表面に外力を加えてち密
化を促進させる。これにより、焼結体の内部に残ってい
た閉気孔は消滅し、気孔率の低い焼結体を得ることがで
きる。特にこの方法の特徴としては、第1段の焼結で完
全に気孔のない焼結体を得る必要はなく、気孔の大部分
が閉気孔になりさえすればよい。したがって、前記した
式(2)のXの値が小さい場合においても十分ち密な焼
結体が得られる。That is, as mentioned above, the sintering process is divided into two stages, first at 1600°C in a nitrogen atmosphere of 1 atm or more and less than 500 atm.
By processing at a temperature of 2200°C or lower, densification is promoted while suppressing the decomposition of the raw material powder and α-sialon, and the theoretical density ratio is 90% or more (the remainder is closed pores).
A sintered body is obtained. Next, by increasing the nitrogen atmosphere to 500 atmospheres or more, external force is applied to the surface of the sintered body to promote densification. As a result, closed pores remaining inside the sintered body disappear, and a sintered body with low porosity can be obtained. A particular feature of this method is that it is not necessary to obtain a sintered body completely free of pores in the first stage of sintering, and it is only necessary that most of the pores become closed pores. Therefore, even when the value of X in the above-mentioned formula (2) is small, a sufficiently dense sintered body can be obtained.
この発明において、原料粉末は、■窒化珪素、■周期律
表第11a族の元素、Li、Ca、Mgのなかから選ば
れる元素の酸化物、および必要に応じて■窒化アルミニ
ウムが用いられる。ここで、窒化珪素としては、アルフ
ァ型を主とする粉末が好ましいが、ベータ型またはアモ
ルファスの粉末であってもさしつかえない。また、周期
律表第1a族の元素とは、Sc、Y、La、Ce。In this invention, the raw material powders include (1) silicon nitride, (2) an oxide of an element selected from among elements of group 11a of the periodic table, Li, Ca, and Mg, and (2) aluminum nitride as necessary. Here, the silicon nitride is preferably an alpha-type powder, but a beta-type or amorphous powder may also be used. Furthermore, the elements of Group 1a of the periodic table are Sc, Y, La, and Ce.
Pr、Nd、Pm、Sm、Eu、Gd、Tb。Pr, Nd, Pm, Sm, Eu, Gd, Tb.
Dy、Ho、Er、Tm、Yb、Luの元素である。焼
結助剤として用いるこれらの元素およびLi、Ca、M
gの酸化物は微細な粉末がより好ましいが、これらの水
酸化物、炭酸塩など熱処理によって酸化物を生成するも
のであってもよい。The elements are Dy, Ho, Er, Tm, Yb, and Lu. These elements used as sintering aids and Li, Ca, M
The oxide (g) is preferably a fine powder, but oxides such as hydroxides and carbonates of these may be produced by heat treatment.
また、これらの酸化物は単独の外、2挿具Eのものを混
合して用いてもよい、この場合、酸化物系焼結助剤の2
種以上の組合わせおよびその比率は、L記の酸化物のな
かから任意に選ぶことができるが、より好ましくは次の
基準によるのが良い、すなわち、窒化珪素粉末に、5〜
20重量%の助剤を加えた時、1600℃未満の焼結温
度ではち密化せず、1600℃以りの処理においてのみ
焼結する助剤の組合わせおよび比率が良い。In addition, these oxides may be used alone or in combination with the two sintering tools E. In this case, the two oxide sintering aids may be used in combination.
The combinations and ratios thereof can be arbitrarily selected from among the oxides listed in L, but it is more preferable to use the following criteria.
When 20% by weight of auxiliary agents are added, the combination and ratio of auxiliary agents is such that densification does not occur at sintering temperatures below 1600°C and sintering occurs only at temperatures above 1600°C.
例えば、Y2O3とNd2O3を使用する場合、(Y2
O3) (Nd203)1−X(前記(1)式参照
)で0.2≦X≦0.8(モル比)の範囲で焼結が可能
である。また、Y2O3とSm2O3を使用する場合、
(Y2O3)XSm203)1−xで0.2≦X≦0.
8(モル比)の範囲で焼結が可能である。For example, when using Y2O3 and Nd2O3, (Y2
Sintering is possible with O3) (Nd203)1-X (see formula (1) above) in the range of 0.2≦X≦0.8 (molar ratio). Also, when using Y2O3 and Sm2O3,
(Y2O3)XSm203) 1-x, 0.2≦X≦0.
Sintering is possible within a range of 8 (molar ratio).
また、窒化珪素質焼結体がサイアロン組成をもつ場合、
窒化珪素と、窒化アルミニウムと、と記酸化物との3種
の粉末の混合比率は、一般式、M(Si、A交)12(
”N)113・・・(3)(MはL記酸化物の元素)
をみだすように選ぶのがより望ましい。この場合、Xの
値はO<X≦2の範囲で任意に選ぶことができるが、特
に高温において強度低下の少ない焼結体が必要な場合は
、0.05≦X≦0.25が良い、すなわち、Xが0.
05未満では焼結促進効果が少なく高強度の焼結体が得
られにくく、Xが0.25を越える場合は焼結性は良く
ち密な焼結体が得られるものの残留ガラス相の量が多く
なるため高温強度が低下する傾向にある。In addition, when the silicon nitride sintered body has a sialon composition,
The mixing ratio of the three types of powders, silicon nitride, aluminum nitride, and the oxide, is expressed by the general formula, M(Si, A-cross)12(
"N) 113...(3) (M is an element of the L oxide) It is more preferable to select the value so as to express the following. In this case, the value of However, if a sintered body with little strength loss at high temperatures is required, it is preferable that 0.05≦X≦0.25, that is, X is 0.05≦X≦0.25.
If X is less than 0.25, the effect of promoting sintering is small and it is difficult to obtain a high-strength sintered body. If As a result, high-temperature strength tends to decrease.
これらの混合粉末の成形方法については特に限定しない
が、例えば、金型プレス成形、ラバープレス、射出成形
など通常のセラミックスの成形方法を、目的とする品物
の形状に合わせて選択できる。The method for molding these mixed powders is not particularly limited, but for example, any conventional ceramic molding method such as mold press molding, rubber press molding, or injection molding can be selected depending on the shape of the intended product.
次に焼結については、2つの工程により行われる。まず
、粉末の成形体を1気圧以上500気圧未満の窒素雰囲
気下で1600℃以上2200℃以下の温度で処理する
。処理時間は10分間以上が好ましい。この工程で、成
形体が1600℃以上2200℃以下の温度に加熱され
ることにより、酸化物系助剤が液相を形成し液相焼結の
機構によりち密化が進行する。また、窒化アルミニウム
を含む場合はAfLNおよび酸化物系助剤とSi3N4
が反応しち密化が進行する。この時、雰囲気を窒素雰囲
気下で1気圧以上500気圧未満とするのは、1気圧未
満では窒化珪素が分解しち密化しないためであり、50
0気圧以1では焼結体中に高圧の窒素ガスが閉じ込めら
れるため理論密度の90%程度までしかち密化しないた
めである。この工程で理論密度90%以L(残部は閉気
孔)の焼結体を得る0次に、500気圧以上の窒素雰囲
気下で1600℃以上2200℃以下の温度で処理する
。この工程では、通常のHIP処理と同様のメカニズム
で残された閉気孔が消滅し、ち密な焼結体が得られる。Next, sintering is performed in two steps. First, a powder compact is treated in a nitrogen atmosphere of 1 atm or more and less than 500 atm at a temperature of 1600° C. or more and 2200° C. or less. The treatment time is preferably 10 minutes or more. In this step, the compact is heated to a temperature of 1,600° C. or more and 2,200° C. or less, so that the oxide-based auxiliary agent forms a liquid phase, and densification progresses by the mechanism of liquid phase sintering. In addition, if aluminum nitride is included, AfLN and oxide auxiliary agents and Si3N4
reacts, and denseness progresses. At this time, the atmosphere is set to 1 atm or more and less than 500 atm in a nitrogen atmosphere because silicon nitride decomposes and does not become dense when it is less than 1 atm.
This is because if the pressure is lower than 0 atm, high-pressure nitrogen gas is trapped in the sintered body, and the sintered body is only densified to about 90% of the theoretical density. In this step, a sintered body having a theoretical density of 90% or less L (the remainder is closed pores) is obtained. Next, the sintered body is treated at a temperature of 1,600° C. or more and 2,200° C. or less in a nitrogen atmosphere of 500 atmospheres or more. In this step, the remaining closed pores disappear by a mechanism similar to that of normal HIP processing, and a dense sintered body is obtained.
この2つの工程において、処理温度が1600℃以上2
200℃以下であるのは、1600℃未満では焼結性が
悪く1分にち密化しないため高温強度が低下する。また
、2200℃超過では窒化珪素の粒成長が大きく、常温
および高温強度が低下する。これらの焼結工程は温度お
よび圧力をコントロールすることにより一回の処理で行
うことが好ましいが、2つの工程に分けて行ってもよい
、そして、焼結工程を通じて、成形体をSi3N4 、
S、i3N4+5i02 、BN、AfLNなどの粉
体で被ってもよい、また、雰囲気ガスは窒素ガスloo
%が好ましいが、他のAr等の不活性ガスを添加しても
よい。In these two steps, the processing temperature is 1600℃ or higher2
The reason why the temperature is 200° C. or lower is that if the temperature is lower than 1600° C., the sinterability is poor and densification does not occur in 1 minute, resulting in a decrease in high-temperature strength. Further, if the temperature exceeds 2200°C, the grain growth of silicon nitride becomes large, and the strength at room temperature and high temperature decreases. These sintering steps are preferably carried out in one process by controlling the temperature and pressure, but they may also be carried out in two steps.
It may be covered with powder such as S, i3N4+5i02, BN, AfLN, etc. Also, the atmosphere gas may be nitrogen gas loo
%, but other inert gases such as Ar may be added.
(実施例1)
窒化珪素粉末81.8重量%、酸化イツトリウム7.3
重量%、酸化ネオジム10.9v[uit%からなる混
合粉末を200kgf/am2の圧力で金型成形し、続
いて2000kgf/am2(7)圧力でラバープレス
して5X6X50mmの板状に成形した。これを窒素雰
囲気下において第1図に示すスケジュールエの条件で加
熱処理したところ、密度3.24g/cm’のち密な焼
結体が得られた。次に、この焼結体の表面を研削し、3
×4 X 40 m mの形状に加工した後、スパン3
0mmで3点曲げによる抗折試験を行ったところ、試験
温度1300°Cにおける5本の平均強度として第1表
に示すように55kgf/mm2を得た。(Example 1) Silicon nitride powder 81.8% by weight, yttrium oxide 7.3%
A mixed powder consisting of neodymium oxide (wt%) and neodymium oxide (10.9 v [uit%) was molded in a mold at a pressure of 200 kgf/am2, and then rubber pressed at a pressure of 2000 kgf/am2 (7) to form a plate shape of 5 x 6 x 50 mm. When this was heat-treated under the schedule conditions shown in FIG. 1 in a nitrogen atmosphere, a dense sintered body with a density of 3.24 g/cm' was obtained. Next, the surface of this sintered body is ground, and
After processing into a shape of ×4 × 40 mm, span 3
When a bending test was conducted by three-point bending at 0 mm, the average strength of the five pieces at a test temperature of 1300°C was 55 kgf/mm2 as shown in Table 1.
(実施例2)
窒化珪素81.5重量%、酸化イツトリウム7.3重量
%、酸化サマリウム11.2重量%からなる混合粉末を
実施例1と同様の条件で成形・焼結したところ、密度3
.29g/cm3のち密な焼結体が得られた0次いで1
300℃の抗折強度を測定したところ、第1表に示すよ
うに5本の平均として50kgf/mm2を得た。(Example 2) When a mixed powder consisting of 81.5% by weight of silicon nitride, 7.3% by weight of yttrium oxide, and 11.2% by weight of samarium oxide was molded and sintered under the same conditions as in Example 1, the density was 3.
.. A dense sintered body of 29 g/cm3 was obtained.
When the bending strength at 300°C was measured, as shown in Table 1, an average of 50 kgf/mm2 was obtained for the five pieces.
(比較例1)
実施例1.実施例2の組成の成形体を窒素雰囲気1気圧
下において1700℃で4時間焼結したところ、焼結体
の嵩密度はそれぞれ、2.15g/cm’ 、1.9
5 g7cm’ とち密化しなかった。(Comparative Example 1) Example 1. When the molded body having the composition of Example 2 was sintered at 1700°C for 4 hours in a nitrogen atmosphere of 1 atm, the bulk density of the sintered body was 2.15 g/cm' and 1.9, respectively.
5g7cm' and did not densify.
(比較例2)
窒化珪素粉末90重量%、酸化マグネシウム10重量%
からなる混合粉末を比較例1の条件で焼結したところ、
1300°Cの抗折強度は第1表に示すように5本の平
均として12kgf/m m 2であった。なお、焼結
体の密度は3610g/cm’であった。(Comparative Example 2) Silicon nitride powder 90% by weight, magnesium oxide 10% by weight
When a mixed powder consisting of was sintered under the conditions of Comparative Example 1,
As shown in Table 1, the bending strength at 1300°C was 12 kgf/m 2 as an average of the five pieces. Note that the density of the sintered body was 3610 g/cm'.
なお、窒化珪素粉末に周期律表第n[a族元素の酸化物
を1種だけ添加してなる原料粉末(具体的にはSiN、
:85重量%、Y2O3:10重量%、A交203:5
重量%)を第1図のスケジュール■の条件で加圧、加熱
して得られる焼結体よりも、実施例1.2に示すように
窒化珪素粉末に周期律表第1a族元素の酸化物を2種以
上添加し、スケジュールエの条件で加圧、加熱して得ら
れる焼結体の方が1300″Cの抗折強度が大きくより
望ましいことを実験により確認した。Note that raw material powder (specifically, SiN,
: 85% by weight, Y2O3: 10% by weight, A 203:5
As shown in Example 1.2, oxides of Group 1a elements of the periodic table were added to the silicon nitride powder as shown in Example 1.2. It has been experimentally confirmed that a sintered body obtained by adding two or more kinds of, pressurizing and heating under Scheduling conditions has a higher bending strength at 1300''C and is more desirable.
第1表
(実施例3〜5)
窒化珪素粉末、窒化アルミニウム粉末、酸化物粉末を第
2表に示した組成で混合し、200kgf/cm2の圧
力で金型成形し、続いて2000kgf/cm2の圧力
でラバープレスして5X6X50mmの板状に成形した
。これを窒素雰囲気子弟1図に示すスケジュールエの条
件で加熱処理した0次いで、焼結体の表面を研削し、3
X 4 X 40 m mの形状に加工した後、密度
およびスパン30mmによる1200℃の3点曲げ試験
を行った。各5木の測定の平均を第2表に示す、第2表
に示すように、この発明によれば、ち密で高強度のサイ
アロン焼結体が得られる。Table 1 (Examples 3 to 5) Silicon nitride powder, aluminum nitride powder, and oxide powder were mixed in the composition shown in Table 2, molded at a pressure of 200 kgf/cm2, and then molded at a pressure of 2000 kgf/cm2. It was rubber pressed under pressure and molded into a plate shape of 5 x 6 x 50 mm. This was heat treated in a nitrogen atmosphere under the schedule conditions shown in Figure 1.Then, the surface of the sintered body was ground and
After processing into a shape of X 4 X 40 mm, a three-point bending test was conducted at 1200° C. with a density and a span of 30 mm. The average of the measurements of each of the five trees is shown in Table 2. As shown in Table 2, according to the present invention, a dense and high-strength sialon sintered body can be obtained.
(比較例3〜6)
第2表の組成からなる成形体を第2表および第2図、第
3図に示したスケジュール■、スケジュール厘の条件で
加熱処理した結果を同じく第2表に示す、このようにス
ケジュール■、■によればち密化は十分に進まず、強度
も低いことが確認された。(Comparative Examples 3 to 6) The molded bodies having the compositions shown in Table 2 were heat-treated under the conditions of Schedule 2 and Schedule 3 shown in Table 2 and Figures 2 and 3. The results are also shown in Table 2. , Thus, it was confirmed that according to schedules ■ and ■, densification did not progress sufficiently and the strength was low.
第2表
[発明の効果]
以上説明してきたように、この発明による窒化珪素質焼
結体の製造方法では、窒化珪素粉末に、(周期律表第1
1a族、Li、Ca、Mg)からなる群のなかから選ば
れる元素の酸化物の少なくとも1種以上を添加した原料
粉末を混合し成形して成形体を得たのち、前記成形体を
1気圧以と500気圧未満の窒素雰囲気下で1600℃
以上2200″C以丁の温度で処理し、次いで500%
圧以上の窒素雰囲気下で1600℃以上2200℃以下
の温度で処理するようにしたから、高温における強度が
著しく優れた窒化珪素質焼結体を得ることができるとい
う非常に優れた効果がもたらされる。Table 2 [Effects of the Invention] As explained above, in the method for producing a silicon nitride sintered body according to the present invention, silicon nitride powder is
A raw material powder containing at least one oxide of an element selected from the group consisting of Group 1a, Li, Ca, Mg) is mixed and molded to obtain a molded body, and then the molded body is heated to 1 atm. 1600℃ under nitrogen atmosphere below 500atm
Treated at a temperature of over 2200″C, then 500%
Since the treatment is carried out at a temperature of 1,600° C. or higher and 2,200° C. or lower in a nitrogen atmosphere of pressure or higher, a very excellent effect can be obtained in that a silicon nitride sintered body with extremely high strength at high temperatures can be obtained. .
第1図、第2図および第3図はこの発明の実施例におい
て用いた焼結条件のタイムスケジュール(I、II、l
i)を示す説明図である。
特許出願人 日産自動車株式会社
代理人弁理士 小 塩 豐
第1図
処理時間(時間l
第2図
第3図
九I畳哨間(藺藺)Figures 1, 2, and 3 show the time schedules (I, II, l) of the sintering conditions used in the examples of this invention.
It is an explanatory view showing i). Patent Applicant: Patent Attorney, Nissan Motor Co., Ltd., Patent Attorney, Fumi Oshio Figure 1 Processing time (hours) Figure 2 Figure 3
Claims (1)
Ca、Mg)からなる群のなかから選ばれる元素の酸化
物の少なくとも1種以上を添加した原料粉末を混合し成
形して成形体を得たのち、前記成形体を1気圧以上50
0気圧未満の窒素雰囲気下で1600℃以上2200℃
以下の温度で処理し、次いで500気圧以上の窒素雰囲
気下で1600℃以上2200℃以下の温度で処理する
ことを特徴とする窒化珪素質焼結体の製造方法。(1) Silicon nitride powder (group IIIa of the periodic table, Li,
After mixing raw material powder to which at least one oxide of an element selected from the group consisting of Ca, Mg) is mixed and molded to obtain a molded body, the molded body is heated to
1600℃ or more 2200℃ under nitrogen atmosphere below 0 atmospheres
1. A method for producing a silicon nitride sintered body, which comprises treating at a temperature of 1,600° C. or more and 2,200° C. or less in a nitrogen atmosphere of 500 atmospheres or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61049142A JPS62207769A (en) | 1986-03-05 | 1986-03-05 | Manufacture of silicon nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61049142A JPS62207769A (en) | 1986-03-05 | 1986-03-05 | Manufacture of silicon nitride sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62207769A true JPS62207769A (en) | 1987-09-12 |
Family
ID=12822832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61049142A Pending JPS62207769A (en) | 1986-03-05 | 1986-03-05 | Manufacture of silicon nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62207769A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02283670A (en) * | 1989-04-24 | 1990-11-21 | Shin Etsu Chem Co Ltd | Production of sintered silicon nitride having high strength |
WO2006118003A1 (en) * | 2005-04-28 | 2006-11-09 | Hitachi Metals, Ltd. | Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same |
-
1986
- 1986-03-05 JP JP61049142A patent/JPS62207769A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02283670A (en) * | 1989-04-24 | 1990-11-21 | Shin Etsu Chem Co Ltd | Production of sintered silicon nitride having high strength |
WO2006118003A1 (en) * | 2005-04-28 | 2006-11-09 | Hitachi Metals, Ltd. | Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same |
US7915533B2 (en) | 2005-04-28 | 2011-03-29 | Hitachi Metals, Ltd. | Silicon nitride substrate, a manufacturing method of the silicon nitride substrate, a silicon nitride wiring board using the silicon nitride substrate, and semiconductor module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4829027A (en) | Liquid phase sintering of silicon carbide | |
KR0168303B1 (en) | Aluminum nitride sinter and process for the production thereof | |
Mandal et al. | Comparison of the effectiveness of rare-earth sintering additives on the high-temperature stability of α-sialon ceramics | |
Slasor et al. | Preparation and Characterization of Yttrium α’-Sialons | |
JPS62207769A (en) | Manufacture of silicon nitride sintered body | |
JPS63123868A (en) | Manufacture of silicon nitride base sintered body | |
JP2742619B2 (en) | Silicon nitride sintered body | |
JP3034100B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3152790B2 (en) | Method for producing silicon nitride based sintered body | |
JP3007732B2 (en) | Silicon nitride-mixed oxide sintered body and method for producing the same | |
JP4301617B2 (en) | Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board | |
JP2000044351A (en) | Silicon nitride-based heat radiating member and its production | |
JP3606923B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2710865B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP3124867B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH078746B2 (en) | Silicon nitride ceramics and method for producing the same | |
JP2960591B2 (en) | Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same | |
JP2708136B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2801447B2 (en) | Method for producing silicon nitride based sintered body | |
JP2524635B2 (en) | Fiber reinforced ceramics | |
JP2694369B2 (en) | Silicon nitride sintered body | |
JP2736427B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2783711B2 (en) | Silicon nitride sintered body | |
JP2694368B2 (en) | Method for producing silicon nitride based sintered body | |
JP3007731B2 (en) | Silicon carbide-mixed oxide sintered body and method for producing the same |