JPS6219496B2 - - Google Patents
Info
- Publication number
- JPS6219496B2 JPS6219496B2 JP58067062A JP6706283A JPS6219496B2 JP S6219496 B2 JPS6219496 B2 JP S6219496B2 JP 58067062 A JP58067062 A JP 58067062A JP 6706283 A JP6706283 A JP 6706283A JP S6219496 B2 JPS6219496 B2 JP S6219496B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- liquid
- acid
- solid
- dissolving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052733 gallium Inorganic materials 0.000 claims description 81
- 229910052738 indium Inorganic materials 0.000 claims description 75
- 238000000034 method Methods 0.000 claims description 53
- 239000007788 liquid Substances 0.000 claims description 49
- 229910052751 metal Inorganic materials 0.000 claims description 37
- 239000002184 metal Substances 0.000 claims description 37
- 239000000243 solution Substances 0.000 claims description 33
- 239000002253 acid Substances 0.000 claims description 25
- 238000003723 Smelting Methods 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 16
- 239000011550 stock solution Substances 0.000 claims description 16
- 239000003480 eluent Substances 0.000 claims description 14
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 13
- 239000003456 ion exchange resin Substances 0.000 claims description 13
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 12
- 239000003929 acidic solution Substances 0.000 claims description 8
- 239000003513 alkali Substances 0.000 claims description 8
- 238000001311 chemical methods and process Methods 0.000 claims description 8
- 238000006386 neutralization reaction Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 4
- 230000003472 neutralizing effect Effects 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- 239000002585 base Substances 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 26
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 24
- 229910052725 zinc Inorganic materials 0.000 description 20
- 239000011701 zinc Substances 0.000 description 20
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 229910052742 iron Inorganic materials 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 12
- 229910021645 metal ion Inorganic materials 0.000 description 10
- -1 germanite Inorganic materials 0.000 description 9
- 229910052500 inorganic mineral Inorganic materials 0.000 description 9
- 239000011707 mineral Substances 0.000 description 9
- 238000000638 solvent extraction Methods 0.000 description 8
- 238000002386 leaching Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000009854 hydrometallurgy Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000000622 liquid--liquid extraction Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 150000004671 saturated fatty acids Chemical group 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940008718 metallic mercury Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Description
本発明は、ガリウムGaおよびインジウムInを
低濃度で含むが、ガリウムおよびインジウム以外
の金属類も多量に含有されているGaおよびIn微
量含有物質(固体や澱物の場合もあれば液体の場
合もある)から金属Gaおよび金属Inを収率よく
かつ経済的有利に回収する方法に関する。
ガリウムおよびインジウムは各種の金属製錬プ
ロセスやその他の化学的処理工程から出る澱物や
煙灰あるいは液中に低濃度で分布して含有されて
くる場合があり、このような澱物や液がガリウム
およびインジウムの採取源として大きな役割をも
つている。しかし、この種の澱物や液は低濃度の
ガリウムおよびインジウムに比べ、極めて多量の
ガリウムおよびインジウム以外の金属類、例えば
Fe、Al、Zn、As、Naその他の金属類を含有して
いるのが通常である。
このようなガリウムおよびインジウム源からガ
リウムおよびインジウムを採取する方法として、
澱物の場合にはこれを酸で溶解して溶液とし、ガ
リウムおよびインジウム低濃度液を対象として溶
媒抽出法を適用する方法が提案され、注目されて
いる。例えばこのような溶媒としては、イソプロ
ピルエーテル、トリブチルホスフエート、メチル
イソブチルケトン、あるいは第三級飽和脂肪酸類
等の有機溶媒を用い、液―液抽出を行つてガリウ
ムおよびインジウムを濃縮する方法が報告されて
いる。このうち、イソプロピルエーテル、トリブ
チルホスフエートあるいはメチルイソブチルケト
ンを用いる方法は、ガリウムおよびインジウムを
選択的に抽出できる点で優れた方法であると言え
るが、抽出時の水相条件として、高塩酸濃度を必
要とする点、とくに、イソプロピルエーテル、メ
チルイソブチルケトンは水相への溶解量が大きく
て寿命が非常に短い点で問題がある。また、第三
級飽和脂肪酸による方法は、溶媒が安価でありか
つ酸の種類やガリウムおよびインジウム濃度にあ
まり制限を受けない点で優れているが、水相の共
存金属塩類の種類と濃度によつては抽出率が大幅
に低下すると云う問題がある。加えて、溶媒抽出
法は、共通の問題として、残液中に溶媒が液滴の
形で取り込まれたり溶解したりするという欠点を
有している。
より具体的に、従来から提案されまた実施され
た工業的なGaおよびIn金属の回収法を述べれ
ば、金属製錬煙灰類、メイン金属採収後の各種の
残渣類、湿式製錬過程中の溶液類、その他化学プ
ロセスから発生する液や固形物などの対象とし、
この中に微量に混在しているGa、Inを工業的に
採取する場合に、GaとInは両者が経済的含量の
場合と一方が経済的含量に達しない場合もある。
一般に、Gaを主とするか或いはInを主とするか
によつて(また被処理原料の形態によつて)その
回収法の主流は以下の如くであつた。
まず金属ガリウムの工業的な採取は、主として
アルミニウム製錬廃液または亜鉛製錬残渣から行
われていた。アルミニウム製錬廃液からの場合
は、バイヤー法によつてボーキサイトを処理して
得た溶液からアルミナの結晶を晶出させ、このア
ルミナの結晶を濾別したあとの濾液であるアルミ
ン酸ソーダ溶液を対象とし、
(1) この溶液に炭酸ガスを吹き込んで(またはア
ルカリ剤添加による中和によつて)この溶液中
に微量に含まれるガリウムを粗水酸化物の形で
分離する方法、
(2) この溶液を、水銀陰極を用いてガリウムの電
解を行い、金属水銀との混合物としてガリウム
を分離する方法、が実施されていた。
また、亜鉛製錬残渣からの場合には、亜鉛焼
鉱を硫酸で浸出したいわゆる亜鉛浸出残渣(湿
式亜鉛製錬法の場合)あるいは還元剤を加えて
亜鉛精鉱をはい焼して亜鉛を蒸溜採収した残渣
(乾式亜鉛製錬の場合)を対象とし、
(3) この残渣を強酸または還元性雰囲気で酸浸出
あるいはアルカリ浸出して得たガリウム含有溶
液を中和し、生成したガリウムを含む粗水酸化
物を濃塩酸で溶解して約6N塩酸溶液とし、こ
の溶液より前述の溶媒抽出法(イソプロピルエ
ーテルあるいはトリブチルホスフエート等を使
用)によつて液―液抽出することによりガリウ
ムを濃縮する方法等が採用されたりしていた。
しかし、の水酸化物による分離法では、非常に
濾過が困難な操作を必要とすると共に、Fe、Cu
およびAl等が多量に共存している場合には、こ
れらの水酸化物が多量に生成して処理操作が煩雑
化し、得られるガリウムも他金属が多くなつてこ
れらの金属の分離が期待できない。また、(2)の水
銀陰極での電解法では、ガリウム濃度が低い溶液
や有機物が混入する溶液では電流効率低下の点か
らこの方法を採用出来ないという基本的な問題の
他に、水銀の損失も考慮に入れなければならな
い。そして、(3)の溶媒抽出法では前述の問題があ
り、これを適用する溶液を予め前処理(中和法や
濃アルカリ溶解法)してガリウムを濃縮したとし
ても、亜鉛製錬残渣の如くFe、Al、Cu、Zn等が
多量に存在するものは、このような前処理に大き
な負担がかかり、工業的に採用するのに難点があ
る。
一方、インジウムの工業的採取には、各種のプ
ロセスから発生するIn微量含有の弱酸性溶液を対
象とし、
(1) この弱酸性溶液よりInを硫化物として沈澱さ
せる方法、
(2) この弱酸性溶液よりInを水酸化物として沈澱
させる方法、
(3) この弱酸性溶液に金属Zn、Cd、Alなどを添
加してInを置換析出させる方法、
(4) この弱酸性溶液から溶媒抽出法によつてInを
回収する方法、等があり、
また、亜鉛製錬、銅製錬などで生成する焼
鉱、煙灰、相鉛合金等のIn含有の固体状原料を
対象として、
(5) これらを硫酸で処理し、得られたIn含有溶液
を、硫化水素処理および水酸化処理をしたあ
と、金属ZnまたはAlによりInを置換析出させ
る方法、等が実施化されたりしている。
しかし、(1)や(2)の方法では、Cu、Fe、Zn、
As、Alなどが多量に共存している場合には、沈
澱物が多量に生成すると共に処理操作が煩雑にな
り、他金属との分離か期待できない。また、(3)の
方法では、添加金属より貴な金属が共存している
場合にはその金属とInの分離が不可能である。こ
の点、(4)は溶媒抽出法は長所もあるが、先の述べ
たような問題がある。たとえば、イソプロピルエ
ーテルを溶媒として用いる方法はInを選択的に抽
出できるので非常に優れた方法と言えるが、抽出
時の水相条件として、臭化水素を必要とし、また
このイソプロピルエーテルの水相への溶解量が多
くて寿命が短いと云う欠点がある。他の溶媒を用
いる場合も色々あるが、ある特定の金属とInとの
分離には有効であつても、全ての金属からInを分
離するのに有効なものはなく、多種の金属を含む
溶液からInを分離濃縮する場合には他金属の性質
を考慮して前処理に大きな負担がかかることにな
る。また(5)の方法の場合には、Cu、Fe、Zn、
As、Alなどを多量に含んでいる物質を処理して
得た溶液から微量のInを分離するのであるから、
数多くの分離方法を組合せなければならず、従来
にあつては、どのような方法も、工程が複雑かつ
煩雑となり、経済的な方法はなかつたのが実情で
ある。
とりわけ、微量のGaおよびInを比較的多量の
他の金属とともに含有する被処理原料から、Ga
およびInの両者を効率的に分離回収できる商業的
な方法は、未だ確立されていない。
本発明は、このような従来のGaおよびIn採取
の問題の解決を目的としてなされたもので、この
目的において本発明者らは種々の試験研究を重ね
た結果、ここに、以上に詳述した如きGaおよび
Inを工業的に採取する場合のその実質上全ての採
取原料を対象原料とすることができ、かつ各種従
来法の既述のごとき問題を一挙に解決できる、
GaおよびIn微量含有物質からのGaおよびInの工
業的採取法を確立することができた。
かくして、本発明は、GaおよびInを微量含有
する固形物質を酸で溶解した液、または金属の製
錬工程その他の化学プロセスから液状で発生する
GaおよびIn微量含有液を処理原液とし、この処
理原液を、GaおよびInを選択的に吸着可能なPH
値のもとでキレート性イオン交換樹脂の層に通液
させる第一工程、
第二工程として、第一工程を経た該樹脂を鉱酸
で処理して樹脂吸着物質を溶離する第二工程、
第二工程からの溶離液にアルカリ剤を添加して
PHを10以上に調整することによりIn分を沈澱させ
たあと、固液分離する第三工程、
第三工程で得られた固形分を酸で溶解して酸性
溶液を得る溶解工程、
該溶解工程で得られた溶液にInより卑な金属を
添加してInをこの溶液から置換析出させるIn析出
工程、
第三工程で得られた液体分に酸を添加して逆中
和することによりGa分を沈澱させたあと、固液
分離する逆中和工程、
該逆中和工程で得られた固形分をアルカリで溶
解し、このアルカリ溶液を電解液としてGaを採
取する電解工程、
からなるGaおよびIn微量有物質からのGaおよび
Inを回収する方法を提供する。
〔第一工程〕
第一工程は、GaおよびInを微量含有する固形
物質を酸で溶解した液、または金属の製錬工程そ
の他の化学プロセスから液状で発生するGaおよ
びIn微量含有液を処理原液とし、この処理原液
を、GaおよびInを選択的に吸着可能なPH値のも
とでキレート性イオン交換樹脂の層に通液させる
工程である。ここで、GaおよびInを微量含有す
る固形物質としては、ボーキサイト、ゲルマナイ
ト、亜鉛鉱等の原料鉱物そのもの、あるいはこれ
らまたは他の鉱物の製錬過程から発生する煙灰、
製錬残渣類、石炭灰など、を指し、Zn、Fe、
Al、As、Ni、Cd、等の少なくとも2種以上がGa
やInの数10〜数100倍もしくはそれ以上含有する
物質群を指しており、従来より、Ga、In採取源
として使用されていたものはもとより、従来の技
術では経済的に採取できなかつたようなGa、In
を微量含有するものも含まれる。また、金属の製
錬工程その他の化学プロセスから液状で発生する
GaおよびIn微量含有液とはGaやInの採取を主目
的とするのではない金属の湿式製錬や化学プロセ
スの過程の中において、メイン物質も含むがGa
およびInも微量に含む液、例えばメイン金属電解
精製用の電解液など、あるいは、メイン物質は殆
ど除去されてはいるが他の金属イオン類を多量に
含むと共に微量のGaおよびInも同伴しているよ
うな二次液や廃液に類するもの、等を指してい
る。
このような、各所で発生するGaおよびIn微量
含有物質(固形状のものもあれば、液状のものも
ある)を本発明では処理対象とするのであるが、
固形状のものの場合には、これを酸で処理する。
この酸としては、コスト的に安価な硫酸を用いる
のがよい。その際、この硫酸浸出後の遊離硫酸濃
度が10(g/)以上となるように、常温、常圧
で一段浸出を行い、濾過分離して浸出液(本発明
でいう処理原液)を採取すればよい。
本発明で使用する処理原液は、このようにして
GaおよびInを微量含有する固形物質を酸で溶解
した液、または金属の製錬工程その他の化学プロ
セスから液状で発生するGaおよびIn微量含有液
であるが、GaおよびInが共に0.1〜1(g/)
程度含まれ、このGaおよびIn以外の金属イオ
ン、例えば、Zn、Fe、Al、As、Ni、Cd等の金属
イオンが単独または合計で2〜70(g/)もし
くはそれ以上共存する液である。
第一工程では、この処理原液を、GaおよびIn
を選択的に吸着可能なPH値のもとでキレート性イ
オン交換樹脂の層に通液させる。ここで使用する
キレート性イオン交換樹脂は、例えば一般式、
ただし、Mなアルカリ金属または水素、R1お
よびR2は水素または炭素数1〜3のアルキル基
である、
で示されるフエノール化合物とフエノール類およ
びアルデヒド類とを架橋三次元化してなるキレー
ト樹脂を用いることができる。このような樹脂自
体は、例えば特開昭54―121241号公報において酸
性電気亜鉛メツキ浴中の鉄イオン濃度を低減でき
るイオン交換樹脂として、またユニセレツクUR
―50の登録商標でユニチカ株式会社から市販の樹
脂として知られている。このようなキレート性イ
オン交換樹脂(とくにアミノカルボン酸基を有す
るキレート性イオン交換樹脂)が、Ga、In以外
の多種金属イオンを極めて多量に含む液から、
GaとInとを選択的に吸着できる能力を有するこ
とが判明したのであるが、この場合にその処理原
液のPH値が1.0〜4.0好ましくは、2.0〜3.0になる
ように調整する。既述のように、硫酸浸出液を処
理原液とする場合には、このPH値を満足した液を
そのまま得ることが可能であり、また処理原液が
元々このPH値の酸性液として金属の製錬工程や化
学プロセスから得られる場合には、ことさらこの
PH値調整を行わなくてもよい。
なお、この処理原液中に三価の鉄イオンが共存
する場合には、亜硫酸ガスや重亜硫酸ソーダ等の
還元剤によつてこれを二価の鉄イオンに予め還元
しておくのがよい。該樹脂への処理原液の通液に
あたつては、この樹脂を充填した交換塔に空間速
度(以下単に、S.Vと呼ぶことがある)が5.0以
下、好ましくは0.5〜1.5となるような速度で通液
する。これによつて処理原液中のGaおよびInだ
けがこの樹脂に選択的に吸着される。そのさいの
樹脂への接触温度としては10〜50℃、好ましくは
35〜45℃が適当である。
第1図は、処理原液のPH値と該樹脂へのGaお
よびInの吸着量との関係を示したもので、該キレ
ート性イオン交換樹脂を充填した交換塔に処理原
液をS.V5.0以下で通液したときのデータであるが
PH値が1.0〜4.0でGaおよびInが共によく吸着する
ことがわかる。
また、第2図は、亜鉛、鉄、アルミニウムをそ
れぞれ10〜20(g/)含有するガリウムおよび
インジウム微量含有の硫酸酸性溶液をPH2.8に調
整し、亜硫酸水素ナトリウムを添加して溶液の還
元性を保つた後、S.V1.0で該キレート性イオン交
換樹脂に通液した場合の通液量と貫流点との関係
を示したもので、これによりガリウムおよびイン
ジウムが所定の条件下でこの混合溶液から選択的
に該樹脂に吸着されることがわかる。
〔第二工程〕
第二工程は、第一工程を経た該樹脂を鉱酸で処
理して樹脂吸着物質を溶融する工程である。既述
のように、第一工程においてこの樹脂には、Ga
およびInイオンが他の金属イオンとは選択されて
吸着する。これを溶離するには、鉱酸例えば硫酸
または塩酸を使用して簡単に行うことができる。
硫酸の場合には、1〜6N好ましくは2〜3Nの濃
度のものを使用するとよい。この溶離により、
GaおよびIn以外の金属イオン濃度が低く、Gaお
よびInを、0.01〜1(g/)程度もしくはそれ
以上含有するGaおよびIn含有溶液を得ることが
できる。
この溶離液を得たならば、これを先の処理原液
からの吸着工程(第一工程)と同様に、この溶離
液のPH値を1.0〜4.0好ましくは2.0〜3.0に調整し
たうえ、必要に応じて還元剤により三価の鉄イオ
ンを二価の鉄イオンに還元し、前記吸着工程で使
用したのと同じキレート性イオン交換樹脂の層
(この樹脂を充填した交換塔)にS.V5.0以下好ま
しくはS.V1.0〜3.0で通液することによつて、こ
の樹脂にGaおよびInを再びに吸着させ、これを
再び鉱酸で溶離するという工程を繰り返すことに
よつて、溶離液中のGaおよびIn以外の金属イオ
ン濃度を一層低下させることができる。この繰り
返し溶離に使用する鉱酸としては、先の場合と同
様に、例えば硫酸の場合には、1〜6N好ましく
は3〜4N、塩酸の場合には、1〜6N好ましくは
2〜3Nの濃度のものを使用することができ、こ
の溶離液中のGaおよびInの濃度は、0.1〜50
(g/)といつた極めて高い濃度とすることが
できる。そして、この溶離液中のGaおよびIn以
外の金属イオンは極めて微量となり、Gaおよび
Inだけが分離濃縮される。
第3図は、第2図の場合に得られた溶離液のPH
を2.8に調整した後、S.V2.0で該キレート性イオ
ン交換樹脂の層に通液したときの通液量と貫流点
との関係を示したものである。同図からGaおよ
びInが選択的にこの樹脂に吸着され、溶離液中に
はGaおよびInが濃縮されると共に、これ以外の
金属イオン濃度が低下するようになることがわか
る。
第4図は、前記の溶離液から該樹脂に吸着され
たガリウムおよびインジウムを2Nの塩酸で溶離
した場合の溶離曲線を示している。
〔第三工程〕
第三工程は、第二工程で得られた溶離液にアル
カリ剤を添加してPHを10以上にう調整することに
よりIn分を沈澱させたあと、固液分離する工程で
ある。
このアルカリ剤としては、水酸化カルシウム、
水酸化ナトリウム、炭酸カルシウム、アンモニア
水等の一種または二種以上を使用することができ
る。すなわち、本発明の第三工程では、第二工程
からの溶離液にアルカリ剤を添加してそのPH値を
10以上に調整することにより、Inを水酸化物とし
て沈澱させるが、Gaは液中に溶存させ、その状
態で固液分離することにより、In分とGa分とを
分離するのである。
第三工程で得られた固形分は、酸に溶解して酸
性液となし、次いでこれにInより卑な金属を添加
してInをこの溶液から置換析出させる。これによ
り、金属Inが高収率で採取される。すなわち、第
三工程での沈澱を濾別したあとこれを鉱酸、例え
ば硫酸または塩酸でPHが2.0以下で溶解し、この
酸性溶液に亜鉛末やアルミニウム板等のInより卑
な金属をInに対して1〜3当量添加することによ
つて、インジウムスポンジを得る。この採取され
たスポンジInは、必要に応じてこれを溶融して陽
極に鋳造し、これを電解精製して高純度のIn金属
とすることができる。
一方、第三工程で得られた液体分は、これに酸
を添加して逆中和しPHを5〜8に調整することに
よりGa分を沈澱させたあと、固液分離し、次い
で得られた固形分をアルカリで溶解し、このアル
カリ溶液を電解液として金属分を採取する。すな
わち、第三工程からの濾液の方は、酸例えば硫酸
を添加してPHが5〜8程度になるまで逆中和する
ことによりGa分を沈澱させ、固液分離後、得ら
れた固形分にアルカリ例えば水酸化ナトリウムを
加えてPHを10以上に調整し、得られたアルカリ溶
液を電解液としてGa分を電解採取する。
本発明で利用する特徴的な現象は、第二工程で
使用した鉱酸の溶離液中に溶存するGaイオンと
Inイオンが第三工程での中和の過程で、Gaの沈
澱が再溶解する現象である。この関係を第5図に
示した。すなわち溶離液のPH値が4より低けれ
ば、この低PH値から徐々にPHをアルカリ添加によ
つてあげてゆくと、Gaは一旦沈澱するが、PH値
が8を越える付近から(好ましくは10をこえると
ころから)このGaは再度溶解し始めるのに対
し、Inは再溶解しない。本発明ではこの現象を利
用して、鉱酸溶離液中のGaとInを分別する。
以上説明したように、本発明によると、従来よ
り様々な問題があつたGaおよびInの工業的製造
法に代わる、経済的で且つ処理対象原料が広範囲
にまで拡張された高収率のGa、In回収法が提供
される。以下に実施例をあげるが、実施例で使用
したキレート性イオン交換樹脂は、ユニセレツク
UR―50なる登録商標でユニチカ株式会社から市
販されている樹脂(前記一般式の化合物として
M、R1およびR2がいずれも水素である化合物
を、前記フエノール類としてフエノールおよび前
記アルデヒド類としてホルムアルデヒドで架橋三
次元化して得られる樹脂)である。
実施例 1
本例は、第1表にその組成を示すように、
Zn、Al、Feを多く含み、Ga、Inを微量含有する
亜鉛製錬工程から出る物質を原料として、これか
らGa、Inを分別回収した例を示す。
The present invention is directed to materials containing trace amounts of Ga and In (sometimes in the form of solids, precipitates, or liquids) that contain gallium Ga and indium In at low concentrations, but also contain large amounts of metals other than gallium and indium. The present invention relates to a method for recovering metal Ga and metal In with good yield and from an economically advantageous method. Gallium and indium may be distributed at low concentrations in sludge, smoke, or liquids from various metal smelting processes and other chemical processing processes, and these sludges and liquids may contain gallium. It also plays a major role as a source of indium. However, compared to low concentrations of gallium and indium, this type of sludge and liquid contains extremely large amounts of metals other than gallium and indium, such as
It usually contains Fe, Al, Zn, As, Na, and other metals. As a method of extracting gallium and indium from such gallium and indium sources,
In the case of precipitates, a method has been proposed in which the precipitate is dissolved with an acid to form a solution, and a solvent extraction method is applied to liquids with low concentrations of gallium and indium, and this method is attracting attention. For example, methods have been reported for concentrating gallium and indium by liquid-liquid extraction using organic solvents such as isopropyl ether, tributyl phosphate, methyl isobutyl ketone, or tertiary saturated fatty acids. ing. Among these, the method using isopropyl ether, tributyl phosphate, or methyl isobutyl ketone can be said to be an excellent method in that it can selectively extract gallium and indium, but it requires a high concentration of hydrochloric acid as the water phase condition during extraction. In particular, isopropyl ether and methyl isobutyl ketone have a problem in that they dissolve in a large amount in the aqueous phase and have a very short lifetime. In addition, the method using tertiary saturated fatty acids is advantageous in that the solvent is inexpensive and there are no restrictions on the type of acid or the concentration of gallium and indium, but it depends on the type and concentration of coexisting metal salts in the aqueous phase. However, there is a problem in that the extraction rate is significantly reduced. In addition, solvent extraction methods have the drawback that a common problem is that the solvent is entrained or dissolved in the residual liquid in the form of droplets. More specifically, the industrial recovery methods of Ga and In metals that have been proposed and implemented in the past include metal smelting smoke, various residues after main metal recovery, and hydrometallurgy during the hydrometallurgical process. Targets solutions, liquids and solids generated from other chemical processes,
When Ga and In, which are mixed in small amounts in this, are industrially extracted, there are cases where both Ga and In are in an economical content, and cases where one of them does not reach an economical content.
In general, the mainstream recovery methods have been as follows, depending on whether the material is mainly Ga or In (and depending on the form of the raw material to be treated). First, industrial extraction of metallic gallium was mainly carried out from aluminum smelting waste liquid or zinc smelting residue. In the case of waste liquid from aluminum smelting, alumina crystals are crystallized from a solution obtained by processing bauxite using the Bayer method, and the filtrate after filtering out the alumina crystals is a sodium aluminate solution. (1) A method of separating trace amounts of gallium contained in this solution in the form of crude hydroxide by blowing carbon dioxide into this solution (or neutralizing it by adding an alkali agent), (2) This method A method has been implemented in which gallium is electrolyzed in a solution using a mercury cathode, and gallium is separated as a mixture with metallic mercury. In addition, in the case of zinc smelting residue, zinc leaching residue is produced by leaching zinc sintered ore with sulfuric acid (in the case of wet zinc smelting method), or by adding a reducing agent and sintering zinc concentrate to distill zinc. (3) Neutralize the gallium-containing solution obtained by acid leaching or alkali leaching of this residue in a strong acid or reducing atmosphere to obtain a gallium-containing solution containing the generated gallium. Dissolve the crude hydroxide with concentrated hydrochloric acid to obtain an approximately 6N hydrochloric acid solution, and concentrate gallium by performing liquid-liquid extraction from this solution using the above-mentioned solvent extraction method (using isopropyl ether or tributyl phosphate, etc.). methods have been adopted. However, the separation method using hydroxide requires extremely difficult filtration operations, and also requires very difficult filtration operations.
If a large amount of hydroxides, Al, etc. coexist, a large amount of these hydroxides will be produced, making the processing operation complicated, and the obtained gallium will also contain many other metals, making it difficult to expect separation of these metals. In addition, with the electrolysis method using a mercury cathode (2), in addition to the basic problem that this method cannot be used in solutions with low gallium concentration or solutions containing organic substances, due to the drop in current efficiency, there is also a loss of mercury. must also be taken into account. The solvent extraction method (3) has the above-mentioned problem, and even if the solution to which it is applied is pretreated (neutralization method or concentrated alkali dissolution method) to concentrate gallium, it will not produce the same amount of gallium as zinc smelting residue. For materials containing large amounts of Fe, Al, Cu, Zn, etc., such pretreatment requires a large burden, making it difficult to use them industrially. On the other hand, industrial extraction of indium involves the use of weakly acidic solutions containing trace amounts of In generated from various processes. (3) Adding metals such as Zn, Cd, Al, etc. to this weakly acidic solution to precipitate In as a hydroxide; (4) Solvent extraction method from this weakly acidic solution. Therefore, there are methods to recover In, etc.; A method has been implemented in which the resulting In-containing solution is treated with hydrogen sulfide and hydroxylated, and then In is precipitated by substitution with metal Zn or Al. However, in methods (1) and (2), Cu, Fe, Zn,
When large amounts of As, Al, etc. coexist, a large amount of precipitates are formed and the treatment operation becomes complicated, making it impossible to expect separation from other metals. Furthermore, in method (3), if a metal more noble than the additive metal coexists, it is impossible to separate the metal and In. In this respect, although the solvent extraction method (4) has some advantages, it also has the problems mentioned above. For example, the method using isopropyl ether as a solvent is an excellent method because it can selectively extract In, but it requires hydrogen bromide as an aqueous phase condition during extraction, and the isopropyl ether aqueous phase The disadvantage is that the amount of dissolved material is large and the lifespan is short. There are various cases where other solvents are used, but even if they are effective for separating In from a certain metal, none are effective for separating In from all metals, and solutions containing various metals are effective. When separating and concentrating In from the metal, a large burden is placed on pretreatment in consideration of the properties of other metals. In addition, in the case of method (5), Cu, Fe, Zn,
This is because a trace amount of In is separated from a solution obtained by processing a substance containing large amounts of As, Al, etc.
The reality is that many separation methods have to be combined, and in the past, any method involved complicated and complicated steps, and there was no economical method. In particular, Ga
A commercial method that can efficiently separate and recover both In and In has not yet been established. The present invention was made with the aim of solving such conventional problems of Ga and In extraction.For this purpose, the present inventors have conducted various tests and researches, and as a result, the present invention has been developed as described in detail above. Ga and
When In is industrially extracted, virtually all the extracted raw materials can be used as target raw materials, and the problems mentioned above in various conventional methods can be solved all at once.
We were able to establish an industrial method for extracting Ga and In from materials containing trace amounts of Ga and In. Thus, the present invention can be applied to a liquid obtained by dissolving a solid substance containing small amounts of Ga and In with an acid, or a liquid generated from a metal smelting process or other chemical process.
A solution containing trace amounts of Ga and In is used as a treatment stock solution, and this treatment stock solution is converted to a pH that can selectively adsorb Ga and In.
a first step in which the liquid is passed through a layer of chelating ion exchange resin under a certain temperature; Adding an alkaline agent to the eluent from the second step
A third step of precipitating the In content by adjusting the pH to 10 or more, followed by solid-liquid separation; a dissolving step of dissolving the solid content obtained in the third step with an acid to obtain an acidic solution; In the In precipitation step, a metal less base than In is added to the solution obtained in the third step, and In is precipitated by displacement from this solution.Ga content is removed by adding acid to the liquid obtained in the third step and reverse neutralizing it. A reverse neutralization step in which solid-liquid separation is performed after precipitating Ga, and an electrolytic step in which the solid content obtained in the reverse neutralization step is dissolved with an alkali and the alkaline solution is used as an electrolyte to collect Ga. Ga and In from trace amounts of In
Provide a method to recover In. [First step] In the first step, a solution obtained by dissolving a solid substance containing a small amount of Ga and In with an acid, or a solution containing a small amount of Ga and In generated in a liquid form from metal smelting process or other chemical process is processed into a raw solution. This is a step in which this treated stock solution is passed through a layer of chelating ion exchange resin under a pH value that allows selective adsorption of Ga and In. Here, solid substances containing small amounts of Ga and In include raw material minerals themselves such as bauxite, germanite, and zinc ore, or smoke ash generated from the smelting process of these or other minerals.
Refers to smelting residues, coal ash, etc., including Zn, Fe,
At least two or more of Al, As, Ni, Cd, etc. are Ga
It refers to a group of substances that contain tens to hundreds of times or more than Ga and In, and not only those that have traditionally been used as sources for collecting Ga and In, but also those that cannot be economically extracted using conventional techniques. Ga, In
This also includes those containing trace amounts of. It is also generated in liquid form from metal smelting and other chemical processes.
A liquid containing trace amounts of Ga and In is used in metal hydrometallurgy and chemical processes whose main purpose is not to collect Ga or In, but it also contains Ga and In.
Liquids that also contain small amounts of In and In, such as electrolytic solutions for electrolytic refining of main metals, or liquids in which most of the main substances have been removed but contain large amounts of other metal ions and also contain small amounts of Ga and In. This refers to things similar to secondary liquids and waste liquids. The present invention targets these substances containing trace amounts of Ga and In (some solid, some liquid) that occur in various places.
If it is in solid form, it is treated with acid.
As this acid, it is preferable to use sulfuric acid, which is inexpensive. At that time, one step of leaching is performed at normal temperature and pressure so that the free sulfuric acid concentration after leaching with sulfuric acid is 10 (g/) or more, and the leachate (treated stock solution in the present invention) is collected by filtration. good. The processing stock solution used in the present invention is thus prepared.
A liquid containing a small amount of Ga and In is a liquid obtained by dissolving a solid substance containing a small amount of Ga and In with an acid, or a liquid containing a small amount of Ga and In is generated in liquid form from metal smelting process or other chemical process, but both Ga and In are 0.1 to 1 ( g/)
It is a liquid in which metal ions other than Ga and In, for example, metal ions such as Zn, Fe, Al, As, Ni, Cd, etc. coexist singly or in total at 2 to 70 (g/) or more. . In the first step, this treatment stock solution is mixed with Ga and In.
The solution is passed through a layer of chelating ion exchange resin at a pH value that allows selective adsorption. The chelating ion exchange resin used here has the general formula, for example: However, M alkali metal or hydrogen, R 1 and R 2 are hydrogen or an alkyl group having 1 to 3 carbon atoms, and a chelate resin obtained by three-dimensionally crosslinking a phenol compound, a phenol, and an aldehyde. Can be used. Such a resin itself has been used as an ion exchange resin capable of reducing the iron ion concentration in an acidic electrogalvanizing bath, for example, in Japanese Patent Application Laid-open No. 121241/1983, and as an ion exchange resin that can reduce the concentration of iron ions in an acidic electrogalvanizing bath.
- Known as a commercially available resin from Unitika Co., Ltd. under the registered trademark of 50. Such a chelating ion exchange resin (particularly a chelating ion exchange resin having an aminocarboxylic acid group) can be used to remove liquids containing extremely large amounts of various metal ions other than Ga and In.
It has been found that it has the ability to selectively adsorb Ga and In. In this case, the pH value of the treated stock solution is adjusted to 1.0 to 4.0, preferably 2.0 to 3.0. As mentioned above, when using sulfuric acid leachate as a processing stock solution, it is possible to obtain a solution that satisfies this PH value as is, and the processing stock solution is originally used as an acidic solution with this PH value during the metal smelting process. This is especially true when obtained from chemical processes such as
There is no need to adjust the PH value. If trivalent iron ions coexist in this treatment stock solution, it is preferable to reduce them to divalent iron ions in advance using a reducing agent such as sulfur dioxide gas or sodium bisulfite. When passing the treatment stock solution through the resin, the exchange tower filled with the resin should be fed at a rate such that the space velocity (hereinafter sometimes simply referred to as SV) is 5.0 or less, preferably 0.5 to 1.5. Pass the liquid through. As a result, only Ga and In in the treatment stock solution are selectively adsorbed to this resin. The contact temperature to the resin at this time is 10 to 50℃, preferably
A temperature of 35 to 45°C is suitable. Figure 1 shows the relationship between the PH value of the treated stock solution and the amount of Ga and In adsorbed onto the resin. The data when passing fluid is as follows.
It can be seen that both Ga and In are well adsorbed at pH values of 1.0 to 4.0. In addition, Figure 2 shows that an acidic sulfuric acid solution containing trace amounts of gallium and indium containing 10 to 20 (g/) of zinc, iron, and aluminum each was adjusted to pH 2.8, and sodium hydrogen sulfite was added to reduce the solution. This figure shows the relationship between the amount of liquid passed through the chelating ion exchange resin at S.V1.0 after maintaining its properties and the flow point. It can be seen that this mixed solution is selectively adsorbed by the resin. [Second Step] The second step is a step in which the resin subjected to the first step is treated with a mineral acid to melt the resin-adsorbed substance. As mentioned above, Ga is added to this resin in the first step.
and In ions are selectively adsorbed from other metal ions. This can be easily eluted using mineral acids such as sulfuric acid or hydrochloric acid.
In the case of sulfuric acid, it is preferable to use a concentration of 1 to 6N, preferably 2 to 3N. This elution results in
It is possible to obtain a Ga and In-containing solution that has a low concentration of metal ions other than Ga and In and contains Ga and In on the order of 0.01 to 1 (g/) or more. Once this eluent has been obtained, adjust the pH value of this eluent to 1.0 to 4.0, preferably 2.0 to 3.0, in the same way as in the previous adsorption step from the treated stock solution (first step), and then adjust the pH value as necessary. Accordingly, trivalent iron ions are reduced to divalent iron ions using a reducing agent, and S.V5. 0 or less, preferably S.V 1.0 to 3.0, Ga and In are adsorbed onto this resin again, and this is eluted by repeating the process of eluting with mineral acid again. The concentration of metal ions other than Ga and In in the liquid can be further reduced. As in the previous case, the mineral acid used for this repeated elution has a concentration of 1 to 6N, preferably 3 to 4N in the case of sulfuric acid, and 1 to 6N and preferably 2 to 3N in the case of hydrochloric acid. The concentration of Ga and In in this eluent ranges from 0.1 to 50
(g/) can be achieved. The amount of metal ions other than Ga and In in this eluent is extremely small, and Ga and In
Only In is separated and concentrated. Figure 3 shows the pH of the eluent obtained in the case of Figure 2.
The figure shows the relationship between the amount of liquid passed and the flow point when the liquid was passed through the layer of the chelating ion exchange resin at S.V2.0 after adjusting the value to 2.8. It can be seen from the figure that Ga and In are selectively adsorbed by this resin, and that Ga and In are concentrated in the eluent, while the concentrations of other metal ions are reduced. FIG. 4 shows an elution curve when gallium and indium adsorbed on the resin are eluted from the eluent with 2N hydrochloric acid. [Third step] The third step is a step in which an alkaline agent is added to the eluent obtained in the second step to adjust the pH to 10 or higher to precipitate the In component, and then solid-liquid separation is performed. be. This alkaline agent includes calcium hydroxide,
One or more of sodium hydroxide, calcium carbonate, aqueous ammonia, etc. can be used. That is, in the third step of the present invention, an alkaline agent is added to the eluent from the second step to adjust its PH value.
By adjusting the concentration to 10 or more, In is precipitated as a hydroxide, while Ga is dissolved in the liquid, and by performing solid-liquid separation in that state, In and Ga are separated. The solid content obtained in the third step is dissolved in an acid to form an acidic liquid, and then a metal less noble than In is added thereto to precipitate In by displacement from this solution. As a result, metallic In can be extracted in high yield. That is, after the precipitate in the third step is filtered, it is dissolved in mineral acid, such as sulfuric acid or hydrochloric acid, at a pH of 2.0 or less, and a metal less noble than In, such as zinc powder or aluminum plate, is added to In in this acidic solution. Indium sponge is obtained by adding 1 to 3 equivalents. The collected sponge In can be melted and cast into an anode as needed, and then electrorefined to produce high-purity In metal. On the other hand, the liquid obtained in the third step is reverse neutralized by adding acid to adjust the pH to 5 to 8 to precipitate the Ga component, followed by solid-liquid separation. The solid content is dissolved with an alkali, and the metal content is collected using this alkaline solution as an electrolyte. That is, the filtrate from the third step is prepared by adding an acid such as sulfuric acid and reverse neutralizing it until the pH becomes about 5 to 8 to precipitate the Ga content, and after solid-liquid separation, the obtained solid content Add an alkali such as sodium hydroxide to adjust the pH to 10 or higher, and use the resulting alkaline solution as an electrolyte to electrolytically extract the Ga component. The characteristic phenomenon utilized in the present invention is that Ga ions dissolved in the mineral acid eluent used in the second step
This is a phenomenon in which Ga precipitates are redissolved during the neutralization process of In ions in the third step. This relationship is shown in FIG. In other words, if the pH value of the eluent is lower than 4, if the pH is gradually raised from this low pH value by adding alkali, Ga will precipitate once, but from around PH value exceeding 8 (preferably 10 ) This Ga starts to dissolve again, whereas In does not dissolve again. In the present invention, this phenomenon is utilized to separate Ga and In in a mineral acid eluent. As explained above, the present invention provides an economical and high-yield Ga, which can be used to expand the range of raw materials to be processed, as an alternative to the industrial production methods of Ga and In, which have had various problems in the past. In recovery methods are provided. Examples are given below, but the chelating ion exchange resin used in the examples is Uniselect.
A resin commercially available from Unitika Co., Ltd. under the registered trademark UR-50 (a compound of the above general formula in which M, R 1 and R 2 are all hydrogen, phenol as the phenol and formaldehyde as the aldehyde) It is a resin obtained by three-dimensional cross-linking. Example 1 In this example, as the composition is shown in Table 1,
An example is shown in which Ga and In are separated and recovered from materials produced in the zinc smelting process that contain large amounts of Zn, Al, and Fe and trace amounts of Ga and In.
【表】
第1表の原料480Kgに対し、浸出処理後の液中
の遊離酸濃度が80(g/)になるように、硫酸
を添加し、第2表にその組成をす浸出液1.5m3が
得られた。[Table] Sulfuric acid was added to 480 kg of the raw material shown in Table 1 so that the free acid concentration in the liquid after leaching treatment was 80 (g/), and the composition of the leachate is shown in Table 2. 1.5 m 3 was gotten.
【表】
第2表の浸出液1.5m3に硫化水素ガスを吹き込
んで酸化還元電位を調整した後、さらに炭酸カル
シウムで中和してPH値を2.0にみ、洗浄水を含め
て1.92m3にした場合の液の組成を第3表に示し
た。[Table] After adjusting the oxidation-reduction potential by blowing hydrogen sulfide gas into 1.5 m 3 of the leachate shown in Table 2, it was further neutralized with calcium carbonate to adjust the pH value to 2.0, and the total volume including washing water was 1.92 m 3 The composition of the liquid in this case is shown in Table 3.
【表】
溶液中の共存金属イオン濃度
但し組成比=[Table] Concentration of coexisting metal ions in solution. However, composition ratio =
Claims (1)
溶解した液、または金属の製錬工程その他の化学
プロセスから液状で発生するGaおよびIn微量含
有液を処理原液とし、この処理原液を、Gaおよ
びInを選択的に吸着可能なPH値のもとでキレート
性イオン交換樹脂の層に通液させる第一工程、 第二工程として、第一工程を経た該樹脂を鉱酸
で処理して樹脂吸着物質を溶離する第二工程、 第二工程からの溶離液にアルカリ剤を添加して
PHを10以上に調整することによりIn分を沈澱させ
たあと、固液分離する第三工程、 第三工程で得られた固形分を酸で溶解して酸性
溶液を得る溶解工程、 該溶解工程で得られた溶液にInより卑な金属を
添加してInをこの溶液から置換析出させるIn析出
工程 第三工程で得られた液体分に酸を添加して逆中
和することによりGa分を沈澱させたあと、固液
分離する逆中和工程、 該逆中和工程で得られた固形分をアルカリで溶
解し、このアルカリ溶液を電解液としてGaを採
取する電解工程、 からなるGaおよびIn微量含有物質からのGaおよ
びInを回収する方法。 2 前記溶解工程ではPHが5未満の酸性溶液を得
る特許請求の範囲第1項記載の方法。 3 前記逆中和工程ではPHを5〜8に調整するこ
とによりGa分を沈澱させる特許請求の範囲第1
項または第2項記載の方法。[Claims] 1. A liquid obtained by dissolving a solid substance containing a trace amount of Ga and In with an acid, or a liquid containing a trace amount of Ga and In generated in a liquid form from a metal smelting process or other chemical process is used as a processing stock solution, and this The first step is to pass the treated stock solution through a layer of chelating ion exchange resin under a pH value that allows Ga and In to be selectively adsorbed.The second step is to pass the treated solution through a layer of chelating ion exchange resin under a pH value that allows Ga and In to be selectively adsorbed. The second step is to elute the resin-adsorbed substances by treatment, and an alkaline agent is added to the eluent from the second step.
A third step of precipitating the In content by adjusting the pH to 10 or more, followed by solid-liquid separation; a dissolving step of dissolving the solid content obtained in the third step with an acid to obtain an acidic solution; An In precipitation step in which a metal less base than In is added to the solution obtained in the third step, and In is precipitated by displacement from this solution.Ga content is removed by adding an acid to the liquid obtained in the third step and reverse neutralizing it. A reverse neutralization step in which solid-liquid separation is performed after precipitation, and an electrolytic step in which the solid content obtained in the reverse neutralization step is dissolved with an alkali and the alkaline solution is used as an electrolyte to collect Ga. A method for recovering Ga and In from trace amounts of substances. 2. The method according to claim 1, wherein in the dissolving step, an acidic solution having a pH of less than 5 is obtained. 3. Claim 1: In the reverse neutralization step, the pH is adjusted to 5 to 8 to precipitate the Ga component.
or the method described in paragraph 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58067062A JPS59193230A (en) | 1983-04-18 | 1983-04-18 | Preparation of ga or in from substance containing minute amount of ga or in |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58067062A JPS59193230A (en) | 1983-04-18 | 1983-04-18 | Preparation of ga or in from substance containing minute amount of ga or in |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59193230A JPS59193230A (en) | 1984-11-01 |
JPS6219496B2 true JPS6219496B2 (en) | 1987-04-28 |
Family
ID=13333977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58067062A Granted JPS59193230A (en) | 1983-04-18 | 1983-04-18 | Preparation of ga or in from substance containing minute amount of ga or in |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59193230A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01311989A (en) * | 1988-04-20 | 1989-12-15 | Outboard Marine Corp | Titling fixture for outboard motor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62294491A (en) * | 1986-06-11 | 1987-12-21 | Hitachi Plant Eng & Constr Co Ltd | Treatment of waste water incorporating gallium and arsenic |
US6319483B1 (en) | 1999-01-14 | 2001-11-20 | Dowa Mining Co., Ltd. | Gallium and/or indium separation and concentration method |
KR100457633B1 (en) * | 2002-05-17 | 2004-11-17 | 김재용 | Method and Apparatus for extraction of Precious metals from Plating Wastewater |
KR20030089793A (en) * | 2002-05-20 | 2003-11-28 | 김재용 | Method and Apparatus for extraction of Precious metals from Plating Wastewater |
JP4789217B2 (en) * | 2008-03-21 | 2011-10-12 | シャープ株式会社 | Processing method for liquid crystal display device |
JP6017877B2 (en) * | 2012-07-30 | 2016-11-02 | 三菱マテリアル株式会社 | Method for recovering gallium from InGa waste |
JP6358150B2 (en) * | 2015-04-01 | 2018-07-18 | 住友金属鉱山株式会社 | Method for producing indium metal |
-
1983
- 1983-04-18 JP JP58067062A patent/JPS59193230A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01311989A (en) * | 1988-04-20 | 1989-12-15 | Outboard Marine Corp | Titling fixture for outboard motor |
Also Published As
Publication number | Publication date |
---|---|
JPS59193230A (en) | 1984-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6355175B1 (en) | Method for separating and isolating precious metals from non precious metals dissolved in solutions | |
US5961833A (en) | Method for separating and isolating gold from copper in a gold processing system | |
BG62180B1 (en) | Chloride assisted hydrometallurgical extraction of nickel and cobalt from sulphide ores | |
HUT76516A (en) | Hydrometallurgical extraction process | |
EA020759B1 (en) | Method of processing nickel bearing raw material | |
JP5631948B2 (en) | Nickel sludge treatment method | |
AU756317B2 (en) | Separation and concentration method | |
WO2002053788A1 (en) | Method for the recovery of base and precious metals by extractive chloridation | |
JPS6219496B2 (en) | ||
JP2010196140A (en) | Method for recovering bismuth | |
JP5200588B2 (en) | Method for producing high purity silver | |
RU2443791C1 (en) | Conditioning method of cyanide-containing reusable solutions for processing of gold-copper ores with extraction of gold and copper and regeneration of cyanide | |
JP4465496B2 (en) | Fly ash treatment method | |
Flett | Solution purification | |
JP5482461B2 (en) | Method for recovering copper from copper electrolysis waste liquid | |
US20140262816A1 (en) | Systems and methods for cobalt recovery | |
JPS6219495B2 (en) | ||
RU2744291C1 (en) | Method of extraction of copper (i) oxide cu2o from multicomponent sulfate solutions of heavy non-ferrous metals | |
JP2005526909A (en) | Chloride-assisted metallurgical extraction of metals | |
JPS6219498B2 (en) | ||
JPS6219497B2 (en) | ||
AU734584B2 (en) | Production of electrolytic copper from dilute solutions contaminated by other metals | |
US20140262814A1 (en) | Systems and methods for recovery of cobalt metal and ionic cobalt | |
JPS61111917A (en) | Recovery of gallium | |
JPH0339013B2 (en) |