JPS62188217A - Vertical type organic metal thermal decomposition vapor growth equipment - Google Patents
Vertical type organic metal thermal decomposition vapor growth equipmentInfo
- Publication number
- JPS62188217A JPS62188217A JP2878186A JP2878186A JPS62188217A JP S62188217 A JPS62188217 A JP S62188217A JP 2878186 A JP2878186 A JP 2878186A JP 2878186 A JP2878186 A JP 2878186A JP S62188217 A JPS62188217 A JP S62188217A
- Authority
- JP
- Japan
- Prior art keywords
- container
- growth
- gas
- growth furnace
- vapor phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 10
- 239000002184 metal Substances 0.000 title claims description 10
- 238000005979 thermal decomposition reaction Methods 0.000 title claims description 4
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000013078 crystal Substances 0.000 claims description 22
- 238000001947 vapour-phase growth Methods 0.000 claims description 17
- 238000000197 pyrolysis Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 8
- 239000012212 insulator Substances 0.000 claims description 6
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000012071 phase Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 1
- 125000002524 organometallic group Chemical group 0.000 claims 1
- 238000011045 prefiltration Methods 0.000 abstract description 15
- 239000000843 powder Substances 0.000 abstract description 14
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 4
- 239000011491 glass wool Substances 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 abstract 3
- 239000011810 insulating material Substances 0.000 abstract 3
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 49
- 239000004065 semiconductor Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 2
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 241000828585 Gari Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- LZYIDMKXGSDQMT-UHFFFAOYSA-N arsenic dioxide Inorganic materials [O][As]=O LZYIDMKXGSDQMT-UHFFFAOYSA-N 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- -1 hydrogen compound Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical group Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003342 selenium Chemical class 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、有機金属熱分解気相成長装置に係わり、特に
化合物半導体の結晶成長に適した縦型有機金属熱分解気
相成長装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a metal-organic pyrolytic vapor phase growth apparatus, and more particularly to a vertical metal-organic pyrolytic vapor-phase growth apparatus suitable for crystal growth of compound semiconductors.
半導体レーザ、例えばガリウムアルミニウム砒素(Ga
AIAs)半導体レーザ用化合物半導体薄膜結晶成長法
としては、有機金属の一種であるトリメチルガリウム(
TMG)、 トリメチルアルミニウム(TMA)と砒素
の水素化合物であるアルシン(Asl13)との熱分解
を利用して行なう有機金属熱分解気相成長法(Meta
l Organic Chemical Vapor
Deposi−tion、 MOCVD)が知られてい
る。MOCVD法は、原料を全てガス状で供給するため
組成の制御が容易でかつ、大面積基板上に均一に結晶成
長ができるので半導体レーザの量産技術として期待され
ている。Semiconductor lasers, such as gallium aluminum arsenide (Ga
As a method for growing compound semiconductor thin film crystals for semiconductor lasers (AIAs), trimethylgallium (
TMG), metal-organic pyrolysis vapor phase epitaxy (Meta
l Organic Chemical Vapor
Deposition (MOCVD) is known. The MOCVD method is expected to be a mass production technology for semiconductor lasers because all raw materials are supplied in gaseous form, making it easy to control the composition and allowing uniform crystal growth on a large-area substrate.
MOCVD法を実施するに際しては、複数枚のウェハ上
に均一に成長可能な縦型の気相成長炉が多く使用されて
いる。When implementing the MOCVD method, a vertical vapor phase growth furnace that can uniformly grow on a plurality of wafers is often used.
有機金属の熱分解による気相成長においては、結晶成長
基板近傍以外での熱分解を避けるため一般に熱源として
は、高周波加熱による方法がとられる。このため試料支
持台は高周波加熱の熱源となるのでカーボン等で作られ
、この上に結晶成長基板(試料)を載せ結晶成長を行な
う。結晶成長は、所定の組成をもつ原料ガスが成長炉上
部より導入し、結晶成長を行なう基板上部で熱分解する
ことにより行なわれる。この過程は以下のように表わさ
れる。In vapor phase growth by thermal decomposition of organic metals, a method using high frequency heating is generally used as a heat source in order to avoid thermal decomposition outside the vicinity of the crystal growth substrate. For this reason, the sample support stand serves as a heat source for high-frequency heating and is made of carbon or the like, and a crystal growth substrate (sample) is placed on this stand for crystal growth. Crystal growth is performed by introducing a raw material gas having a predetermined composition from the upper part of the growth furnace and thermally decomposing it above the substrate on which crystal growth is to be performed. This process is expressed as follows.
(2人下余抱)
(C)13 )3 ・Ga (V)+T117(V)→
Ga (V)+ 3CL (V)ASI+3 (v)→
As4(■)+ 2そして、気相・固相の界面で
Ga(v)十±As(V)→GaAs(S)となる。(
文献:例えばJ、 Cryst、 Growth 62
225−229 (1983))結晶成長に寄与しなか
った熱分解ガスは完全に除毒後排出される。(2 people below) (C) 13 ) 3 ・Ga (V) + T117 (V) →
Ga (V)+ 3CL (V)ASI+3 (v)→
As4(■)+2 Then, at the interface between the gas phase and the solid phase, Ga(v)±As(V)→GaAs(S). (
References: e.g. J. Cryst, Growth 62
225-229 (1983)) Pyrolysis gas that did not contribute to crystal growth is completely detoxified and then exhausted.
ところで、熱分解したガス中には、未反応のAsH,ガ
スや数−以下の微粉末が含まれている。通常、これら排
ガス中の微粉末はフィルタで収集され、一方未反応のア
ルシンガスは塩化第二鉄を主成分とする処理剤で酸化し
、AsO2(M化砒素)の状態で上記処理剤内に定着さ
せ除去する(酸化定着方式)。微粉末をトラップするフ
ィルタは、使用回数が増えると目詰りを起こし、成長炉
内の圧力上昇をもたらす。常圧で結晶成長を行なう場合
、この圧力上昇は結晶の品質を著しく低下させる。Incidentally, the thermally decomposed gas contains unreacted AsH, gas, and several fine powders. Normally, these fine powders in the exhaust gas are collected by a filter, while unreacted arsine gas is oxidized with a processing agent whose main component is ferric chloride, and fixed in the processing agent in the form of AsO2 (arsenic oxide). and remove it (oxidation fixing method). Filters that trap fine powder become clogged as they are used more frequently, leading to an increase in pressure inside the growth furnace. When crystal growth is performed at normal pressure, this pressure increase significantly reduces the quality of the crystal.
すなわち、成長炉内の圧力が高い状態でGaAlAs結
晶を成長した場合、常圧で成長したものに比べGa−r
ich異常層が生成することが判明した。 Ga−ri
ch層は、正常に成長したGaAlAs層に比ベキャリ
ア濃度が高くなり、著しい場合には導電型まで変わり、
異常なp−n接合が生じることになる。この現象は、半
導体レーザのようなデバイスにとっては致命的であり良
好な品質のGaAlAs結晶を得るためには、成長中の
圧力を一定に保つことが極めて重要である。成長炉の圧
力上昇を防ぐためフィルタの孔径の最適化をはかるとと
もに、フィルタの交換を小まめに行なうことが必要であ
った。In other words, when a GaAlAs crystal is grown under high pressure inside the growth reactor, the Ga-r
It was found that an ich abnormal layer was formed. Gari
The ch layer has a higher carrier concentration than a normally grown GaAlAs layer, and in significant cases, the conductivity type changes.
An abnormal pn junction will result. This phenomenon is fatal to devices such as semiconductor lasers, and in order to obtain GaAlAs crystals of good quality, it is extremely important to keep the pressure constant during growth. In order to prevent a pressure increase in the growth reactor, it was necessary to optimize the pore size of the filter and to replace the filter frequently.
また、排ガス中に含まれる微粉末は成長炉底部やフィル
タの到達するまでの間の配管内に堆積し、配管の途中に
設けたバルブが詰まるという不都合が発生した。Further, the fine powder contained in the exhaust gas was deposited at the bottom of the growth furnace and in the pipes leading to the filter, causing the inconvenience that the valves provided in the middle of the pipes were clogged.
本発明は、上記事情を考慮してなされたもので、その目
的とするところは、化合物半導体薄膜の結晶成長を行な
うに際し、排ガス中の微粉末を効率的に集塵することに
より、排ガス配管中に堆積する量を少なくしかつ、フィ
ルタの目詰りを抑制し、成長炉中の圧力上昇を抑えて輔
晶組成の均質化を行ない、また、着脱洗浄可能なプレフ
ィルタを使用することにより装置の保守業務が低減でき
る縦型有機金属熱分解気相成長装置を提供する。The present invention has been made in consideration of the above circumstances, and its purpose is to efficiently collect fine powder in exhaust gas during crystal growth of a compound semiconductor thin film. This reduces the amount of sulfur deposited on the growth furnace, suppresses filter clogging, and suppresses pressure rise in the growth furnace to homogenize the sulfur crystal composition.In addition, by using a removable and washable pre-filter, the equipment can be easily cleaned. A vertical metal organic pyrolysis vapor phase growth apparatus that can reduce maintenance work is provided.
本発明は、成長炉下部に容器とこの容器に充填された繊
維状絶縁物とからなるプレフィルタを配置し成長炉直下
で排ガス中の微粉末を効率的に集塵するものである。In the present invention, a pre-filter consisting of a container and a fibrous insulator filled in the container is disposed at the lower part of the growth furnace, and fine powder in the exhaust gas is efficiently collected directly below the growth furnace.
以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.
第1図は、本発明の一実施例に係わる縦型有機金属熱分
解気相成長装置の成長炉の概略構成を示す図である。第
2図は排ガス処理系統を示す図である。成長炉1内には
試料2および試料を載置する試料支持台3が配置されて
いる。試料支持台3は、カーボン環で高周波誘導により
加熱され熱分解成長の熱源となる。試料支持台3はシャ
フト4を介して回転Ja構5により回転できるようにな
っている。成長炉底部には、第3図(a)、 (b)に
示すような成長炉中心軸と直交する面6及び外側壁7に
同心的に穿孔された石英製容器8が配設されている。容
器8は、2重円筒状の有底容器24と上蓋6とからなる
。この容器8には例えばガラスウールからなる繊維状絶
縁物9が充填されプレフィルタを構成している。容器8
の上蓋6は取り外し可能で、このガラスウール9がダス
トで汚れた場合にはとり出し廃棄し、また容器8は王水
により洗浄し再使用ができる。このプレフィルタを収納
している下部室10には、排ガスの導出ダクト11が接
続されている。FIG. 1 is a diagram showing a schematic configuration of a growth furnace of a vertical metal organic pyrolysis vapor phase growth apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing the exhaust gas treatment system. A sample 2 and a sample support 3 on which the sample is placed are arranged in the growth furnace 1 . The sample support stand 3 is heated by high-frequency induction using a carbon ring, and serves as a heat source for pyrolysis growth. The sample support stand 3 can be rotated via a shaft 4 by a rotating mechanism 5. At the bottom of the growth reactor, a quartz container 8 is arranged, as shown in FIGS. 3(a) and 3(b), with concentric holes perforated in a surface 6 perpendicular to the central axis of the growth reactor and in an outer wall 7. . The container 8 consists of a double cylindrical bottomed container 24 and an upper lid 6. This container 8 is filled with a fibrous insulator 9 made of glass wool, for example, to constitute a pre-filter. Container 8
The top lid 6 is removable, and if the glass wool 9 becomes dirty with dust, it can be taken out and disposed of, and the container 8 can be washed with aqua regia and reused. An exhaust gas outlet duct 11 is connected to the lower chamber 10 housing this pre-filter.
一方、成長炉1の上部には原料ガスの導入ダク1−12
が接続されている。原料ガス導入ダクト12から導入さ
れたガスは、成長炉1内で熱分解し、試料(基板)2上
に結晶を成長せしめ、ガス導出ダクト11から排出され
三方弁12を介してフィルタハウジング13に導びかれ
る。フィルタハウジング13内には、孔径100μ程度
のフィルタ14が装着され排ガス中の微粉末が濾過され
、その後排ガス処理装置15で除毒後屋外へ排出される
。三方弁12には真空ポンプ16が接続されており結晶
成長に先立ち成長炉内のガスを排気し、ガス置換ができ
るようになっている。On the other hand, in the upper part of the growth furnace 1 there is a raw material gas introduction duct 1-12.
is connected. The gas introduced from the raw material gas introduction duct 12 is thermally decomposed in the growth furnace 1 to grow crystals on the sample (substrate) 2, and is discharged from the gas outlet duct 11 and sent to the filter housing 13 via the three-way valve 12. be guided. A filter 14 with a pore diameter of about 100 μm is installed inside the filter housing 13 to filter fine powders in the exhaust gas, and then the exhaust gas is detoxified by an exhaust gas treatment device 15 and then discharged outdoors. A vacuum pump 16 is connected to the three-way valve 12 so that the gas in the growth furnace can be evacuated and replaced with gas prior to crystal growth.
ガス導入ダクト12には、原料ガス源および流量制御弁
(ともに図示せず)が取り付けられている。A source gas source and a flow control valve (both not shown) are attached to the gas introduction duct 12.
この実施例では、ガス源として水素で希釈したアルシン
ガス、水素で希釈したn型ドーピングガスとなる水素化
セレン(H2Se)と、そして、水素ガスの供給源とに
接続されており、この水素ガスにより蒸気化されて供給
されるトリメチルガリウム(TMG)、 トリメチル
アルミニウム(TMA)とp型ドーピングガスとなる
ジエチルジンク(DEZ)が接続されている。アルシン
、トリメチルカリウlz 。In this example, the gas sources are arsine gas diluted with hydrogen, hydrogenated selenium (H2Se) diluted with hydrogen and used as an n-type doping gas, and connected to a hydrogen gas supply source. Trimethylgallium (TMG) and trimethylaluminum (TMA), which are vaporized and supplied, become p-type doping gas.
Diethyl zinc (DEZ) is connected. Arsine, trimethyl potassium lz.
トリメチルアルミニウムは、成長炉内で熱分解しガリウ
ム・アルミニウム・砒素の気相成長を果し、水素ガスは
キャリアガスとして働らく。第1図中、符号17は試料
支持台3を介して成長温度に加熱するためのRFコイル
である。Trimethylaluminum is thermally decomposed in a growth furnace to achieve vapor phase growth of gallium, aluminum, and arsenic, and hydrogen gas serves as a carrier gas. In FIG. 1, reference numeral 17 is an RF coil for heating the specimen to the growth temperature via the sample support 3.
次に、上記のような構成の気相成長装置を使用してガリ
ウムアルミニウム砒素の薄膜結晶を成長する場合につい
て説明する。Next, a case will be described in which a thin film crystal of gallium aluminum arsenide is grown using the vapor phase growth apparatus configured as described above.
先づ、面方位が(100)のGaAs基板2を有機洗浄
し、次に硫酸系エッチャントで化学エツチングし、イオ
ン交換水です\ぎ、スピナー乾燥する。First, a GaAs substrate 2 with a (100) plane orientation is organically cleaned, then chemically etched with a sulfuric acid etchant, ion-exchanged water, and dried with a spinner.
次いで基板を試料支持台3に載置する。次に成長炉内を
真空排気し、その後、水素ガスで成長炉1内を置換する
。成長炉1内のガス置換を十分に行なった後RFコイル
17により約750℃に加熱する。Next, the substrate is placed on the sample support stand 3. Next, the inside of the growth furnace 1 is evacuated, and then the inside of the growth furnace 1 is replaced with hydrogen gas. After the gas in the growth furnace 1 has been sufficiently replaced, it is heated to about 750° C. by the RF coil 17.
そして、所望の組成に混合された原料ガスをガス導入ダ
クト12より導入する。導入された原料ガスは、成長炉
上部に設けられた拡散板18によって拡散され成長炉の
上方から下方に向って流れる。混合ガスは、基板2近傍
で熱分解し基板上2で結晶となり成長する。成長層の膜
厚は、■原ガスすなわちトリメチルガリウム、1−リメ
チルアルミニウムの流量によって決まるので、予め成長
時間と膜厚との関係を調べておき、成長時間を制御する
ことで膜厚を制御する。Then, raw material gas mixed to a desired composition is introduced through the gas introduction duct 12. The introduced raw material gas is diffused by a diffusion plate 18 provided at the upper part of the growth furnace and flows from the top to the bottom of the growth furnace. The mixed gas is thermally decomposed near the substrate 2 and crystallizes and grows on the substrate 2. The thickness of the growth layer is determined by the flow rate of the raw gases, namely trimethylgallium and 1-limethylaluminum, so the relationship between growth time and film thickness should be investigated in advance, and the film thickness can be controlled by controlling the growth time. do.
基板2近傍で熱分解して成長にあずからなかった熱分解
ガスや、未分解のAs1l、ガスの一部は成長炉1内壁
等に堆積する。残りの大部分の排ガスは、成長炉下部に
配設されたプレフィルタの容器8の上面に穿孔された孔
19を通る。排ガス中に含まれる微粉末は、ガラスウー
ルからなる繊維状絶縁物9でトラップされその後、容器
外壁部に穿孔された孔20を通過する。大部分の微粉末
はプレフィルタで捕集される。このプレフィルタは繊維
状絶縁物でできているので圧力損失はほとんどない。ま
た、容器8に穿孔された孔は、成長炉中心軸に対して等
方的に設けられているので偏流による膜厚の不均質をも
たらさない。なお、下部室下端に設けられた○リング2
1を保護するため、シャフト4には鍔22が設けられ排
ガス中の微粉末により0リング21が傷つかぬようにな
っている。プレフィルタで処理できなかった排ガスは、
三方パルプ12通過後フィルタハウジング13内に導入
され濾過される。一方、未分解のAsH,ガスは、排ガ
ス処理装置で除毒後放出される。The pyrolysis gas that was thermally decomposed near the substrate 2 and did not participate in the growth, undecomposed As11, and a portion of the gas are deposited on the inner wall of the growth furnace 1, etc. Most of the remaining exhaust gas passes through a hole 19 bored in the upper surface of a pre-filter container 8 disposed at the bottom of the growth furnace. The fine powder contained in the exhaust gas is trapped by a fibrous insulator 9 made of glass wool, and then passes through a hole 20 bored in the outer wall of the container. Most of the fine powder is collected by the pre-filter. Since this pre-filter is made of fibrous insulator, there is almost no pressure loss. Further, since the holes bored in the container 8 are provided isotropically with respect to the central axis of the growth furnace, non-uniformity in film thickness due to drifted flow does not occur. In addition, ○ ring 2 provided at the lower end of the lower chamber
1, a collar 22 is provided on the shaft 4 to prevent the O-ring 21 from being damaged by fine powder in the exhaust gas. Exhaust gas that cannot be treated by the pre-filter is
After passing through the three-way pulp 12, it is introduced into the filter housing 13 and filtered. On the other hand, undecomposed AsH and gas are released after being detoxified by an exhaust gas treatment device.
本発明による装置を使用して結晶成長を行なった場合で
は、成長炉直後で排ガス中の微粉末を捕集するので排ガ
ス配管内の堆積物が少なくまた。When crystal growth is performed using the apparatus according to the present invention, the fine powder in the exhaust gas is collected immediately after the growth furnace, so there is less deposit in the exhaust gas piping.
フィルタの交換頻度を少なくすることができる。The frequency of filter replacement can be reduced.
さらに、フィルタ及び排ガス配管内の目詰りが起りにく
いので成長炉の圧力上昇がみられず成長層に異常層がみ
られなかった。また、第4図に示すようにプレフィルタ
をカートリッジ式にすれば砒素を含むダストの処分が簡
便に行なうことができる。Furthermore, since clogging of the filter and exhaust gas piping was less likely to occur, no pressure increase in the growth furnace was observed and no abnormal layer was observed in the growth layer. Further, if the pre-filter is of a cartridge type as shown in FIG. 4, the dust containing arsenic can be easily disposed of.
なお、本発明は上述した実施例に限定されるものではな
い。上記実施例では、有機金属と砒素の水素化合物とに
よるGaAQAsの気相成長に適用したが、他の物質に
よるGaAlAsの気相成長法或いは、GaAlAs以
外の化合物半導体の気相成長に適用することも可能であ
る。その他、本発明の要旨を逸脱しない範囲で種々変形
しても実施することができる。Note that the present invention is not limited to the embodiments described above. In the above embodiment, the method was applied to the vapor phase growth of GaAQAs using an organic metal and a hydrogen compound of arsenic, but it may also be applied to the vapor phase growth of GaAlAs using other substances or to the vapor phase growth of compound semiconductors other than GaAlAs. It is possible. In addition, various modifications can be made without departing from the gist of the present invention.
本発明によれば、排ガス中の微粉末は成長炉下部に設け
られたプレフィルタで効率的に集塵され。According to the present invention, fine powder in the exhaust gas is efficiently collected by the pre-filter provided at the bottom of the growth furnace.
処理しきれなかったもののみが後方に設けられたフィル
タにより除塵されるので、フィルタの目詰り、排ガス配
管内への堆積物の量を低減することができ、反応炉内の
圧力上昇を抑制し、膜厚分布の少ない高品質の薄膜結晶
を得ることができる。Only the dust that cannot be processed is removed by the filter installed at the rear, which reduces filter clogging and the amount of deposits in the exhaust gas piping, suppressing the pressure rise in the reactor. , it is possible to obtain high quality thin film crystals with a small film thickness distribution.
第1図は本発明の一実施例に係わる気相成長装置の成長
炉の断面を示す図、第2図は排ガス処理の系統を表わす
概略図、第3図はプレフィルタの構成を示す上面図と断
面図、第4図は他の実施例のプレフィルタの断面図であ
る。
1・・・成長炉 2・・試料
3・・・試料支持台 4・・・シャフト8・・・容
器 9・・・繊維状絶縁物10・・・下部室
11・・・ガス導出ダクト12・・・ガス導
入ダクト 17・・・RFコイル代理人 弁理士 則
近 憲 佑
同 大胡典夫
第 1 図FIG. 1 is a cross-sectional view of a growth furnace of a vapor phase growth apparatus according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing an exhaust gas treatment system, and FIG. 3 is a top view showing the configuration of a pre-filter. FIG. 4 is a cross-sectional view of a prefilter of another embodiment. 1... Growth furnace 2... Sample 3... Sample support stand 4... Shaft 8... Container 9... Fibrous insulator 10... Lower chamber 11... Gas outlet duct 12. ...Gas introduction duct 17...RF coil agent Patent attorney Noriyuki Chika Yudo Norio Ogo Figure 1
Claims (5)
を有する成長炉内に原料ガスを導入し熱分解を行ない、
成長炉内に配置された結晶基板上に単結晶を成長させる
縦型有機金属熱分解気相成長装置において、 前記成長炉の下部に容器および容器に充填された繊維状
絶縁物とからなるフィルタを備え、ガスを前記フィルタ
を介して排出させることを特徴とする縦型有機金属熱分
解気相成長装置。(1) Introducing the raw material gas into a growth furnace that has a raw material gas introduction duct at the top and a gas exhaust section at the bottom to perform thermal decomposition;
In a vertical metal organic pyrolysis vapor phase growth apparatus for growing a single crystal on a crystal substrate placed in a growth furnace, a filter consisting of a container and a fibrous insulator filled in the container is provided at the bottom of the growth furnace. A vertical metal organic pyrolysis vapor phase growth apparatus, characterized in that the gas is discharged through the filter.
有し、前記外周面と前記上面とにそれぞれ開孔が形成さ
れていることを特徴とする特許請求の範囲第1項記載の
縦型有機金属熱分解気相成長装置。(2) The container has an outer circumferential surface and an upper surface in contact with the inside of the growth furnace, and an opening is formed in each of the outer circumferential surface and the upper surface. Vertical metal organic pyrolysis vapor phase growth apparatus.
して等方的に配置されていることを特徴とする特許請求
の範囲第2項記載の縦型有機金属熱分解気相成長装置。(3) The vertical organometallic pyrolysis gas phase according to claim 2, wherein the openings of the container are arranged isotropically with respect to the central axis of the growth furnace. growth equipment.
らなることを特徴とする特許請求の範囲第2項記載の縦
型有機金属熱分解気相成長装置。(4) The vertical metal organic pyrolysis vapor phase growth apparatus according to claim 2, wherein the container comprises a double cylindrical bottomed container and an upper lid.
とを特徴とする特許請求の範囲第1項記載の縦型有機金
属熱分解気相成長装置。(5) The vertical metal organic pyrolysis vapor phase growth apparatus according to claim 1, wherein the container is made of a material that is not corroded by aqua regia.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2878186A JPS62188217A (en) | 1986-02-14 | 1986-02-14 | Vertical type organic metal thermal decomposition vapor growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2878186A JPS62188217A (en) | 1986-02-14 | 1986-02-14 | Vertical type organic metal thermal decomposition vapor growth equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62188217A true JPS62188217A (en) | 1987-08-17 |
Family
ID=12257952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2878186A Pending JPS62188217A (en) | 1986-02-14 | 1986-02-14 | Vertical type organic metal thermal decomposition vapor growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62188217A (en) |
-
1986
- 1986-02-14 JP JP2878186A patent/JPS62188217A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6066204A (en) | High pressure MOCVD reactor system | |
US4146774A (en) | Planar reactive evaporation apparatus for the deposition of compound semiconducting films | |
GB2282825A (en) | Chemical vapour deposition apparatus | |
JPH09293681A (en) | Vapor growth device | |
JPS62188217A (en) | Vertical type organic metal thermal decomposition vapor growth equipment | |
JPS59223294A (en) | Vapor phase growth device | |
JPS6285422A (en) | Vertical organic metal thermal decomposition vapor growth apparatus | |
JP3221318B2 (en) | Vapor phase growth method of III-V compound semiconductor | |
JP2001220288A (en) | Vapor phase growth method and vapor phase growth device | |
JP4427694B2 (en) | Film forming apparatus and film forming method | |
JPH0323624A (en) | Method and apparatus for vapor growth | |
JPS61242011A (en) | Vapor-phase growth device | |
JPH053159A (en) | Chemical compound semiconductor crystal vapor growth device | |
JPS5948789B2 (en) | Vapor phase epitaxial growth equipment | |
JP2805865B2 (en) | Vapor phase growth method of phosphorus compound semiconductor crystal | |
JPH0235814Y2 (en) | ||
JP2514359Y2 (en) | Vacuum baking device for susceptor purification | |
JPH08310896A (en) | Vapor growth apparatus | |
JPS6071596A (en) | Vapor-phase growth apparatus | |
JPH05217910A (en) | Vapor growing apparatus for compound semiconductor and vapor growing method | |
JPH05251360A (en) | Film-forming device | |
JP2574328Y2 (en) | Vacuum baking equipment for susceptor purification | |
JPS63190327A (en) | Vapor growth device | |
JPH0715133Y2 (en) | Reaction tube of semiconductor thin film forming equipment | |
JPS61242994A (en) | Vertical unit for vapor growth |