Nothing Special   »   [go: up one dir, main page]

JPS6217368B2 - - Google Patents

Info

Publication number
JPS6217368B2
JPS6217368B2 JP51064990A JP6499076A JPS6217368B2 JP S6217368 B2 JPS6217368 B2 JP S6217368B2 JP 51064990 A JP51064990 A JP 51064990A JP 6499076 A JP6499076 A JP 6499076A JP S6217368 B2 JPS6217368 B2 JP S6217368B2
Authority
JP
Japan
Prior art keywords
mol
semiconductor
insulator
grain boundary
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51064990A
Other languages
Japanese (ja)
Other versions
JPS52147799A (en
Inventor
Yosuke Fujita
Yoshihiro Matsuo
Masanori Fujimura
Shunichiro Kawashima
Hiromitsu Tagi
Makoto Ogawa
Masaaki Mikota
Shigeru Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6499076A priority Critical patent/JPS52147799A/en
Publication of JPS52147799A publication Critical patent/JPS52147799A/en
Publication of JPS6217368B2 publication Critical patent/JPS6217368B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は誘電率が高く、その温度変化率が非常
に小さなCaTiO3−SrTiO3系半導体磁器コンデン
サ素体の製造方法に関するものである。 電子式腕時計のトリマーには、従来より磁気コ
ンデンサが使用されて来たが、この比誘電率は
100〜200程度であつて、もつと大きな誘電率を持
つものを求める声が大きい。近年多く開発され出
した半導体コンデンサはBaTiO3系、SrTiO3系で
大容量のものがあるが、それらの誘電率の温度変
化は、20℃其準で、−25℃〜+85℃でそれぞれ±
15〜40%、±8〜15%であつて腕時計用トリマー
の要求している±5%よりはるかに大きな値であ
る。又、トリマー用には数十〜数百pFの容量で
円板の中心に穴をあける必要があるが、比誘電率
が10000以上の材料で200pF程度の容量のものを
厚み0.5mmで作るときその直径は1mm以下にしな
ければならず、穴あけの加工上困難を生ずる事と
なる。従つて、比誘電率が1000〜3500程度の値が
求められているわけで、本発明は比誘電率とその
温度変化率の要請を満たすものである。 すなわち、本発明はCaO14〜22モル%、SrO28
〜36モル%、TiO249.5〜50.5モル%の組成からな
るSrTiO3−CaTiO3固溶体系で室温での相が、立
方晶と正方晶との境界領域を母相とし、半導体化
させるために、Ta2O5およびNb2O5の内少なくと
も1種以上を0.02〜1.2モル部添加する。この場
合、金属の形で添加しても不都合はない。さらに
誘電損失を改良するために、上記基本組成100モ
ル部に対して副成分としてGeO2およびSiO2のう
ち少なくとも1種以上を0.2〜1.1モル部添加す
る。あるいはまた、比誘電率の温度変化率を改良
するために、上記基本組成100モル部に対して副
成分としてZnOを0.1〜1.9モル部添加する。次に
これらの組成物を中性又は還元雰囲気中で焼成し
て半導体磁器素体をつくる。その後、空気中で処
理する事により、その粒界層のみを絶縁体化して
コンデンサの素体とするものである。この絶縁体
化の方法は大きくわけて2つある。1つはCu、
Bi、Mnの金属、酸化物、金属塩を半導体表面に
付与し、これを空気中で熱拡散する方法で1つは
表面になにも付与せず、空気中で熱処理する方法
である。以上の方法により、みかけの比誘電率
が、1000〜3500、その温度変化率が(20℃基準、
−25℃〜+85℃で)±1〜5%、tanδ10〜55×
10-4、比抵抗1010〜3×1012Ω−cmのコンデンサ
素体を得る事ができる。 次に本発明の詳細を実施例をあげて説明する。 実施例 1 工業用原料のCaCO3、SrCO3、TiO2、Ta2O5
Nb2O5粉末を湿式で20時間混合し、乾燥後均一性
を増すためと反応を完結させるために、1200℃で
2時間仮焼を行なつた。次にこれを20時間粉砕し
て、ポリビニルアルコール水溶液をバインダとし
て加え、800Kg/cm2の圧力で、厚み0.5mm、直径
5.0mmの円板に成形した。これをバインダを飛ば
すため、800℃で空気中で熱処理し、その後、3
%H2−97%N2ガス気流中で1380゜〜1440゜で3
時間焼成をした。こうしてできた素体は黒色をし
ていて数Ω.cmの比抵抗の半導体である。この表
面に、有機物に分散させた酸化銅を素体1gr当り
1.0×10-5gr原子(30mgrの素体1ケ当り約
0.03mgr)塗布し、1100℃で2時間空気中で、熱
拡散させた。この素体に市販の銀電極を付与し諸
特性を測定した。得られた結果を第1表、第2
表、第3表に示す。第1表はTiO250モル%、添
加したTa2O50.2モル部で、CaOとSrOの量をかえ
たものである。CaTiO3−SrTiO3−Nb2O5系のセ
ラミツクに関してはすでに知られているが、その
比誘電率は280前後で、又その温度係数は最小
650ppm程度(20℃基準−25℃〜+85℃だと±4.3
%)であるが、本発明は最小±2%程度の値を達
成していて、ここに、粒界層の特徴が発揮されて
いる。これは、粒界層の歪や、不純物の濃縮効
果、拡散物の効果が複合していると考えられる。
第1表より明らかな様にCaOが14モル%以下
(SrOが36モル%以上)、CaOが22モル%以上
(SrOが28モル%以下)では温度係数が±5%を
越えて好ましくない。第2表はCaO:SrO=18:
32%Ta2O50.2モル部でTiO2の量をかえたもので
ある。結果から明らかな様にTiO2の量が、49.5
モル%以下だと比誘電率が急激に下つて好ましく
なく、一方50.5モル%以上だとtanδが大きくな
り好ましくない。第3表はCaO18モル%、SrO32
モル%、TiO250モル%で添加したTa2O5の量を0
〜1.5モル部まで変えたものの結果であつて、1.2
モル部以上では比誘電率が急激に下がり好ましく
なく、0.02モル部以下ではtanδが大きく好まし
くない。
The present invention relates to a method for manufacturing a CaTiO 3 --SrTiO 3 semiconductor ceramic capacitor body having a high dielectric constant and a very small temperature change rate. Magnetic capacitors have traditionally been used in the trimmers of electronic watches, but the relative permittivity of these capacitors is
There is a strong demand for a material with a large dielectric constant of about 100 to 200. Many semiconductor capacitors that have been developed in recent years are BaTiO 3 -based and SrTiO 3 -based with large capacities, but their dielectric constants change with temperature at 20°C and -25°C to +85°C, respectively.
This value is 15 to 40%, ±8 to 15%, which is much larger than the ±5% required by watch trimmers. Also, for trimmers, it is necessary to make a hole in the center of the disc with a capacity of several tens to hundreds of pF, but when making a hole with a thickness of 0.5 mm of about 200 pF and a material with a dielectric constant of 10,000 or more. Its diameter must be 1 mm or less, which causes difficulty in drilling. Therefore, a value of the dielectric constant of about 1000 to 3500 is required, and the present invention satisfies the requirements for the dielectric constant and its rate of change with temperature. That is, the present invention uses CaO14 to 22 mol%, SrO28
In the SrTiO 3 -CaTiO 3 solid solution system with a composition of ~36 mol% and TiO 2 49.5-50.5 mol%, the phase at room temperature is the boundary region between cubic and tetragonal crystals, and in order to convert it into a semiconductor, At least one of Ta 2 O 5 and Nb 2 O 5 is added in an amount of 0.02 to 1.2 molar parts. In this case, there is no problem in adding it in the form of metal. Furthermore, in order to improve the dielectric loss, 0.2 to 1.1 mole parts of at least one of GeO 2 and SiO 2 is added as an accessory component to 100 mole parts of the basic composition. Alternatively, in order to improve the temperature change rate of the dielectric constant, 0.1 to 1.9 parts by mole of ZnO is added as a subcomponent to 100 parts by mole of the basic composition. Next, these compositions are fired in a neutral or reducing atmosphere to produce a semiconductor ceramic body. Thereafter, by processing in air, only the grain boundary layer is made into an insulator, which is then used as the element body of the capacitor. There are roughly two methods for making this insulator. One is Cu,
One method is to apply metals, oxides, and metal salts of Bi and Mn to the semiconductor surface and then thermally diffuse them in the air.One method is to apply no metal to the surface and heat-treat it in the air. By the above method, the apparent dielectric constant is 1000 to 3500, and its temperature change rate is (20℃ standard,
-25℃ to +85℃) ±1 to 5%, tan δ10 to 55×
10 -4 and a specific resistance of 10 10 to 3×10 12 Ω-cm can be obtained. Next, the details of the present invention will be explained by giving examples. Example 1 Industrial raw materials CaCO 3 , SrCO 3 , TiO 2 , Ta 2 O 5 ,
Nb 2 O 5 powder was mixed wet for 20 hours, and after drying, calcining was performed at 1200° C. for 2 hours to increase uniformity and to complete the reaction. Next, this was crushed for 20 hours, a polyvinyl alcohol aqueous solution was added as a binder, and the powder was crushed at a pressure of 800 kg/cm 2 to a thickness of 0.5 mm and a diameter of 0.5 mm.
It was molded into a 5.0 mm disc. This was heat treated in air at 800℃ to remove the binder, and then
%H 2 −97%N 2 3 at 1380° to 1440° in gas flow
I baked it for an hour. The element thus created is black and has a resistance of several ohms. It is a semiconductor with a resistivity of cm. Copper oxide dispersed in organic matter is applied to this surface per 1gr of element body.
1.0×10 -5 gr atoms (approximately per 30 mgr element)
0.03 mgr) and thermally diffused in air at 1100°C for 2 hours. A commercially available silver electrode was applied to this element body, and various properties were measured. The obtained results are shown in Tables 1 and 2.
Table 3 shows the results. Table 1 shows 50 mol % of TiO 2 , 0.2 mol part of added Ta 2 O 5 and different amounts of CaO and SrO. CaTiO 3 −SrTiO 3 −Nb 2 O 5 ceramics are already known, but their dielectric constant is around 280, and their temperature coefficient is the lowest.
Approximately 650ppm (20℃ standard -25℃ to +85℃ is ±4.3
%), but the present invention achieves a minimum value of approximately ±2%, and here the characteristics of the grain boundary layer are exhibited. This is thought to be due to a combination of distortion in the grain boundary layer, impurity concentration effect, and diffused substance effect.
As is clear from Table 1, when CaO is 14 mol% or less (SrO is 36 mol% or more) and CaO is 22 mol% or more (SrO is 28 mol% or less), the temperature coefficient exceeds ±5%, which is not preferable. Table 2 shows CaO:SrO=18:
The amount of TiO 2 was changed by 0.2 mole part of 32% Ta 2 O 5 . As is clear from the results, the amount of TiO 2 is 49.5
If it is less than mol %, the dielectric constant will drop rapidly, which is undesirable. On the other hand, if it is more than 50.5 mol %, tan δ will become large, which is undesirable. Table 3 shows CaO18 mol%, SrO32
mol%, the amount of Ta 2 O 5 added at 50 mol% of TiO 2 is 0
This is the result of changing up to ~1.5 mole part, and 1.2
If it is more than 0.02 molar part, the dielectric constant will drop rapidly, which is undesirable, and if it is less than 0.02 molar part, tan δ will be large, which is undesirable.

【表】【table】

【表】【table】

【表】【table】

【表】 第4表にはTa2O5の一部又は全部をNb2O5で置
きかえたものの結果を示す。この結果Ta2O5
Nb2O5は殆ど同等である事がわかる。 実施例 2 CaO18モル%、SrO32モル%、TiO250モル
%、Ta2O5を0.2モル部に、GeO2、SiO2、ZnOを
添加し、仮焼後バインダ除去をして管状炉にし込
んだ。炉内の空気をロータリーポンプで除去した
後、N2ガスを流しながら、1370℃〜1430℃で3
時間焼成し、実施例1と同様な工程をへて特性の
測定を行なつた。第5表にその結果を示す。
[Table] Table 4 shows the results when part or all of Ta 2 O 5 was replaced with Nb 2 O 5 . This results in Ta 2 O 5 and
It can be seen that Nb 2 O 5 is almost the same. Example 2 GeO 2 , SiO 2 , and ZnO were added to 18 mol% CaO, 2 mol% SrO, 50 mol% TiO 2 , and 0.2 mol part of Ta 2 O 5 , and after calcination, the binder was removed and the mixture was placed in a tube furnace. is. After removing the air in the furnace with a rotary pump, it was heated at 1370℃ to 1430℃ for 3 times while flowing N2 gas.
The product was baked for a period of time, and the same steps as in Example 1 were carried out to measure the characteristics. Table 5 shows the results.

【表】【table】

【表】【table】

【表】 GeO2及びSiO2はほぼ同等の効果で、比誘電率
が少し低いかわりにtanδが改良される特徴があ
る。添加量が0.2モル部以下では効果がなく、1.2
モル部以上では比誘電率が1000以下となり好まし
くない。ZnOについては0.1モル部以下では効果
がなく、0.9モル部以上ではtanδが急激に悪くな
り好ましくない。ZnOの特徴は、温度特性が良い
事である。 実施例 3 CaO18モル%、SrO32モル%、TiO250モル
%、Ta2O50.2モル部の組成物を仮焼後、成形、
バインダアウトし、1380゜〜1420℃で1%H2
99%N2ガス中で3時間焼成した。この半導体素
体に、Cu、Bi、Mnの酸化物を有機物に分散さ
せ、一部は金属を蒸着し、一部はシユウ酸塩の形
で付与して950℃〜1350℃の温度で空気中で2時
間拡散させた。なお、Cu酸化物の塗布量は
30mgrの素体1ケ当り0.003mgr〜0.9mgrの範
囲、Bi酸化物の塗布量は0.005mgr〜10mgrの範
囲、Mn酸化物の塗布量は0.003mgr〜2.4mgrの範
囲であつた。この結果を第6表に示す。拡散温度
をCuでは1100℃、Biでは1150℃、Mnでは1150℃
にした場合Cuの付与量が20×10-4gr原子以上で
はtanδが悪くなり好ましくなく、Biが、1.0×
10-3gr原子以上だと、tanδが悪くなり好ましく
なく、Mnが4.0×10-4gr原子以上だと比誘電率が
下がり好ましくない。表中のM及びSのつけたも
のは、それぞれ金属とシユウ酸塩であつて、同等
の効果がある事がわかる。それぞれの元素の特徴
はCuでは比較的誘電率が高くMnは温度特性が良
い事であつて、Biはその中間に位置している。2
種以上を組み合わせて付与すれば、その間の望み
の特性が得られる。又、拡散温度に関しては
Cu、Bi、Mnそれぞれ950℃、1000℃、1000℃以
下では比抵抗が低くて好ましくなく、それぞれ
1250℃、1300℃、1300℃以上では比誘電率が低く
なり好ましくない。
[Table] GeO 2 and SiO 2 have almost the same effect, and have a characteristic that tan δ is improved, although the dielectric constant is slightly lower. There is no effect if the amount added is less than 0.2 mol part, and 1.2
If it is more than a molar part, the dielectric constant becomes less than 1000, which is not preferable. Regarding ZnO, if it is less than 0.1 mole part, it has no effect, and if it is more than 0.9 mole part, the tan δ will deteriorate rapidly, which is not preferable. ZnO is characterized by good temperature characteristics. Example 3 A composition containing 18 mol% of CaO, 2 mol% of SrO, 50 mol% of TiO 2 and 0.2 mol of Ta 2 O 5 was calcined, then molded.
Binder out and 1% H 2 − at 1380°~1420°C
Calcined in 99% N2 gas for 3 hours. Oxides of Cu, Bi, and Mn are dispersed in organic matter, some are deposited with metal, and some are added in the form of oxalate to this semiconductor element, and the mixture is exposed to air at a temperature of 950℃ to 1350℃. It was diffused for 2 hours. The amount of Cu oxide applied is
The coating amount of Bi oxide was in the range of 0.005 mgr to 10 mgr, and the coating amount of Mn oxide was in the range of 0.003 mgr to 2.4 mgr per 30 mgr element body. The results are shown in Table 6. Set the diffusion temperature to 1100℃ for Cu, 1150℃ for Bi, and 1150℃ for Mn.
If the amount of Cu applied is 20 × 10 -4 gr atoms or more, tanδ will deteriorate, which is undesirable, and if Bi is 1.0 ×
If it is more than 10 -3 gr atoms, the tan δ will be bad, which is undesirable, and if Mn is more than 4.0×10 -4 gr atoms, the dielectric constant will be undesirable. It can be seen that the substances marked with M and S in the table are metals and oxalates, respectively, and have equivalent effects. The characteristics of each element are that Cu has a relatively high dielectric constant, Mn has good temperature characteristics, and Bi is in the middle. 2
By applying a combination of species or more, you can obtain the desired characteristics between them. Also, regarding the diffusion temperature
Cu, Bi, and Mn below 950℃, 1000℃, and 1000℃ are undesirable because their specific resistance is low.
At temperatures above 1250°C, 1300°C, and 1300°C, the dielectric constant becomes low, which is not preferable.

【表】【table】

【表】 実施例 4 実施例3と同一の工程で作つた半導体素体を表
面になにも付与せず、空気中で2時間熱処理をし
て、粒界を絶縁体化させた後、銀電極を付与し、
特性を測定した。その結果を第7表に示す。処理
温度が1000℃以下では比抵抗が低く、tanδも高
くて好ましくなく、1300℃以上では比誘電率が低
くなり好ましくない。
[Table] Example 4 A semiconductor element made in the same process as Example 3 was heat-treated in air for 2 hours without applying anything to the surface to make the grain boundaries an insulator. Apply electrodes,
Characteristics were measured. The results are shown in Table 7. If the treatment temperature is 1000° C. or lower, the specific resistance will be low and the tan δ will be high, which is undesirable, and if the treatment temperature is 1300° C. or higher, the dielectric constant will be low, which is undesirable.

【表】 なお、上記の第1〜第7表において比誘電率と
taoδは20℃、1KHzの値で、比誘電率の温度変化
は1KHzで、20℃を基準に−25℃〜+85℃間の最
大変化率を示す。また比抵抗は1mm当り直流
100Vを印加した時の値である。又、表No.につけ
た※は本発明の範囲外の参考データである。 以上の通り本発明によれば誘電率が高く、しか
も温度変化率が非常に小さな半導体磁器コンデン
サ素体を得ることができるものである。
[Table] In Tables 1 to 7 above, the relative permittivity and
taoδ is a value at 20°C and 1KHz, and the relative dielectric constant changes with temperature at 1KHz, showing a maximum rate of change between -25°C and +85°C with 20°C as a reference. Also, the specific resistance is DC per 1 mm.
This is the value when 100V is applied. Also, the * marked in the table number is reference data that is outside the scope of the present invention. As described above, according to the present invention, it is possible to obtain a semiconductor ceramic capacitor body having a high dielectric constant and a very small rate of temperature change.

Claims (1)

【特許請求の範囲】 1 CaO14〜22モル%、SrO28〜36モル%、
TiO249.5〜50.5モル%からなる組成物100モル部
に、Ta2O5、Nb2O5の内少なくとも1種以上を
0.02〜1.2モル部添加した組成物を主成分とし
て、中性又は還元雰囲気中で焼成し半導体磁器と
した後、その結晶粒界層のみを絶縁体化すること
を特徴とする半導体磁器コンデンサ素体の製造方
法。 2 半導体磁器に1gr当り25×10-4gr原子以下の
Cuの金属、酸化物または金属塩を付与し、空気
雰囲気中で950゜〜1250℃で熱処理して粒界層の
みを絶縁体化することを特徴とする特許請求の範
囲第1項記載の半導体磁器コンデンサ素体の製造
方法。 3 焼成した半導体磁器に1gr当り10×10-3gr原
子以下のBiの金属、酸化物、または金属塩を付与
し、空気雰囲気中で、1000゜〜1300℃で熱処理し
て粒界層のみを絶縁体化することを特徴とする特
許請求の範囲第1項記載の半導体磁器コンデンサ
素体の製造方法。 4 半導体磁器に1gr当り4.0×10-4gr原子以下の
Mnの金属、酸化物または金属塩を付与し、空気
雰囲気中で、1000゜〜1300℃で熱処理して粒界層
のみを絶縁体化することを特徴とする特許請求の
範囲第1項記載の半導体磁器コンデンサ素体の製
造方法。 5 焼成した半導体磁器に1gr当り10×10-3gr原
子以下のCu、Bi、又はMnの金属、酸化物又は金
属塩の内少なくとも2種以上を付与し、空気雰囲
気中で1000゜〜1300℃で熱処理し、粒界層のみを
絶縁体化することを特徴とする特許請求の範囲第
1項記載の半導体磁器コンデンサ素体の製造方
法。 6 半導体磁器を、さらに空気雰囲気中において
1000゜〜1300℃で熱処理し、粒界層を絶縁体化す
ることを特徴とする特許請求の範囲第1項記載の
半導体磁器コンデンサ素体の製造方法。 7 CaO14〜22モル%、SrO28〜36モル%、
TiO249.5〜50.5モル%からなる組成物100モル部
にTa2O5、Nb2O5の内少なくとも1種以上を0.02
〜1.2モル部、さらにGeO2、SiO2のうち少なくと
も1種以上を0.2〜1.2モル部添加した組成物を、
中性又は還元雰囲気中で焼成し半導体磁器とした
後、その結晶粒界層のみを絶縁体化することを特
徴とする半導体磁器コンデンサ素体の製造方法。 8 CaO14〜22モル%、SrO28〜36モル%、
TiO249.5〜50.5モル%からなる組成物100モル部
に、Ta2O5、Nb2O5の内少なくとも1種以上を
0.02〜1.2モル部、さらにZnOを0.1〜1.9モル部添
加した組成物を、中性又は還元雰囲気中で焼成し
半導体磁器とした後、その結晶粒界層のみを絶縁
体化することを特徴とする半導体磁器コンデンサ
素体の製造方法。
[Claims] 1 CaO 14-22 mol%, SrO 28-36 mol%,
At least one of Ta 2 O 5 and Nb 2 O 5 is added to 100 mol parts of a composition consisting of 49.5 to 50.5 mol % of TiO 2 .
A semiconductor porcelain capacitor element body, characterized in that the main component is a composition to which 0.02 to 1.2 mole parts is added, which is fired in a neutral or reducing atmosphere to form a semiconductor porcelain, and then only the grain boundary layer of the semiconductor porcelain is made into an insulator. manufacturing method. 2. Less than 25 × 10 -4 gr atoms per 1 gr in semiconductor porcelain
The semiconductor according to claim 1, wherein only the grain boundary layer is made into an insulator by applying Cu metal, oxide, or metal salt and heat-treating at 950° to 1250°C in an air atmosphere. A method of manufacturing a ceramic capacitor body. 3 Add Bi metal, oxide, or metal salt of 10×10 -3 gr atoms or less per gram to the fired semiconductor porcelain, and heat-treat it at 1000° to 1300°C in an air atmosphere to remove only the grain boundary layer. A method of manufacturing a semiconductor ceramic capacitor element according to claim 1, characterized in that the element is made into an insulator. 4 Less than 4.0×10 -4 gr atoms per 1 gr in semiconductor porcelain
Claim 1, characterized in that a metal, oxide or metal salt of Mn is applied, and heat treatment is performed at 1000° to 1300°C in an air atmosphere to convert only the grain boundary layer into an insulator. A method for manufacturing a semiconductor ceramic capacitor body. 5 At least two or more of Cu, Bi, or Mn metals, oxides, or metal salts with an amount of 10 × 10 -3 gr atoms or less per gram are added to the fired semiconductor porcelain, and heated at 1000° to 1300°C in an air atmosphere. 2. The method of manufacturing a semiconductor ceramic capacitor element according to claim 1, wherein only the grain boundary layer is made into an insulator by heat treatment. 6 The semiconductor porcelain is further placed in an air atmosphere.
A method for manufacturing a semiconductor ceramic capacitor element according to claim 1, characterized in that the grain boundary layer is made into an insulator by heat treatment at 1000° to 1300°C. 7 CaO14-22 mol%, SrO28-36 mol%,
0.02 of at least one of Ta 2 O 5 and Nb 2 O 5 to 100 mol parts of a composition consisting of 49.5 to 50.5 mol % of TiO 2
~1.2 mol parts, and further added 0.2 to 1.2 mol parts of at least one of GeO 2 and SiO 2 ,
A method for manufacturing a semiconductor ceramic capacitor body, which comprises firing in a neutral or reducing atmosphere to form a semiconductor ceramic, and then converting only the grain boundary layer of the semiconductor ceramic into an insulator. 8 CaO14-22 mol%, SrO28-36 mol%,
At least one of Ta 2 O 5 and Nb 2 O 5 is added to 100 mol parts of a composition consisting of 49.5 to 50.5 mol % of TiO 2 .
A composition containing 0.02 to 1.2 mole parts and further 0.1 to 1.9 mole parts of ZnO is fired in a neutral or reducing atmosphere to produce semiconductor porcelain, and then only the grain boundary layer thereof is made into an insulator. A method for manufacturing a semiconductor ceramic capacitor body.
JP6499076A 1976-06-02 1976-06-02 Method of manufacturing semiconductor ceramic capacitor element Granted JPS52147799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6499076A JPS52147799A (en) 1976-06-02 1976-06-02 Method of manufacturing semiconductor ceramic capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6499076A JPS52147799A (en) 1976-06-02 1976-06-02 Method of manufacturing semiconductor ceramic capacitor element

Publications (2)

Publication Number Publication Date
JPS52147799A JPS52147799A (en) 1977-12-08
JPS6217368B2 true JPS6217368B2 (en) 1987-04-17

Family

ID=13273991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6499076A Granted JPS52147799A (en) 1976-06-02 1976-06-02 Method of manufacturing semiconductor ceramic capacitor element

Country Status (1)

Country Link
JP (1) JPS52147799A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529098Y2 (en) * 1987-05-12 1993-07-26
JPH0529099Y2 (en) * 1987-05-12 1993-07-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627570B2 (en) 2000-02-09 2003-09-30 Tdk Corporation Dielectric ceramic composition, electronic device, and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529098Y2 (en) * 1987-05-12 1993-07-26
JPH0529099Y2 (en) * 1987-05-12 1993-07-26

Also Published As

Publication number Publication date
JPS52147799A (en) 1977-12-08

Similar Documents

Publication Publication Date Title
JPH0524646B2 (en)
JPH0226775B2 (en)
JPS6217368B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPS623569B2 (en)
JPS606535B2 (en) porcelain composition
JPS6126208B2 (en)
JPH06102573B2 (en) Composition for reduction / reoxidation type semiconductor ceramic capacitor
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPH0672046B2 (en) Semiconductor porcelain dielectric composition, semiconductor porcelain dielectric, and method for producing the dielectric
JPS6258128B2 (en)
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JPH0815005B2 (en) Dielectric porcelain composition
JPS584448B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
JP2638599B2 (en) Voltage non-linear resistor ceramic composition
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JPH0734416B2 (en) Grain boundary insulating porcelain composition
JPS6053451B2 (en) Manufacturing method of dielectric porcelain
JPS6020344B2 (en) Grain boundary insulated semiconductor ceramic composition
JPS6020345B2 (en) Grain boundary insulated semiconductor ceramic composition
JPS6115529B2 (en)
JPH0426545A (en) Semiconductive porcelain and its manufacture
JPS584447B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
JPS6230483B2 (en)
JPH08295560A (en) Nonreducible dielectric porcelain composition