Nothing Special   »   [go: up one dir, main page]

JPS62160750A - Substrate-voltage generating circuit - Google Patents

Substrate-voltage generating circuit

Info

Publication number
JPS62160750A
JPS62160750A JP61002045A JP204586A JPS62160750A JP S62160750 A JPS62160750 A JP S62160750A JP 61002045 A JP61002045 A JP 61002045A JP 204586 A JP204586 A JP 204586A JP S62160750 A JPS62160750 A JP S62160750A
Authority
JP
Japan
Prior art keywords
substrate
diode
voltage
pulse
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61002045A
Other languages
Japanese (ja)
Inventor
Mitsuo Nakajima
満雄 中嶋
Shuzo Matsumoto
脩三 松本
Kazuo Kondo
和夫 近藤
Hisanobu Tsukasaki
塚崎 久暢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61002045A priority Critical patent/JPS62160750A/en
Publication of JPS62160750A publication Critical patent/JPS62160750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce a forward voltage, to reduce the number of elements and to obtain sufficiently low voltage, by forming an excellent substrate-voltage generating circuit in a CCD, by existing unified process of a CMOS process and a CCD process. CONSTITUTION:A P-N diode 23 is formed by a CMOS well 12 and a diffused layer 13, which is formed by source and drain regions. Only when an input pulse, which is applied to a pulse input terminal 26, is at a high level, a MOS switch 24 is conducted. Thus a voltage, which is obtained from the anode side of the diode 23, is imparted to a substrate 11. The diode 23 is formed by the CMOS well 12 and the diffused layer 13 of the source and drain regions and accommodated in the same semiconductor substrate as a charge transfer device by a unified process. By using the P-N junction diode in this way, the substrate- voltage generating circuit having excellent characteristics, can be formed on the semiconductor substrate, which is the same as the CCD, with the small number of elements.

Description

【発明の詳細な説明】 本発明は電荷結合装置の基板電圧発生回路に関する。[Detailed description of the invention] The present invention relates to a substrate voltage generation circuit for a charge coupled device.

〔発明の背景〕[Background of the invention]

電荷結合装置(以下CODと略す)を5v程度の低電圧
で駆動する場合、基板がP型の時には負の電圧、N型の
時には正の電圧を基板電圧発生回路から基板に与えるこ
とにより、CODチャンネルの電界ケ太きく LCCD
の転送効率を高くすることができる。この事実はこの方
面の同業者においては周知である。
When driving a charge-coupled device (hereinafter abbreviated as COD) with a low voltage of about 5V, the COD can be activated by applying a negative voltage to the substrate when the substrate is P-type and a positive voltage when it is N-type from the substrate voltage generation circuit. Wider channel electric field LCD
transfer efficiency can be increased. This fact is well known to those in the industry.

第4図にP型基板の時の基板電圧発生回路の一例及び各
点の信号波形を示す。21.22はコンデンサ、23は
ダイオード接続のMOS)ランジスタ、24はNMOS
スイッチ、25は電圧源、26はパルスの入力端子、2
7はスイッチの制御端子、28は基板電圧を発生する端
子で基板に接続する。コンデンサ21とダイオード接続
MOSトランジスタ23及びスイッチ24の接続点’k
A点とする。
FIG. 4 shows an example of a substrate voltage generating circuit for a P-type substrate and signal waveforms at each point. 21.22 is a capacitor, 23 is a diode-connected MOS transistor, 24 is an NMOS
switch, 25 is a voltage source, 26 is a pulse input terminal, 2
7 is a control terminal of the switch, and 28 is a terminal for generating a substrate voltage, which is connected to the substrate. Connection point 'k of capacitor 21, diode-connected MOS transistor 23, and switch 24
Set it as point A.

泣AMあ盲千子増r漣竿97ヘスカナス行会け端子26
へ入力するパルスと周期が同じで位相がわずかに進んだ
ものである。電圧源25の電圧をvB、出力端子28の
電位をVsuba入力端子に加えるパルスの振幅ヲvP
、最初のA点の電位をl/+。
Crying AM A blind Senko Masu r Ren pole 97 Hescanus line meeting terminal 26
The period is the same as that of the input pulse, but the phase is slightly advanced. The voltage of the voltage source 25 is vB, and the amplitude of the pulse that applies the potential of the output terminal 28 to the Vsuba input terminal is vP.
, the potential at the first point A is l/+.

ダイオード接続MO9)ランジスタ23の順方向の電圧
降下(スレッシヲルド電圧)kVAxとして動作を説明
する。
The operation will be explained assuming that the forward voltage drop (threshold voltage) kVAx of the diode-connected transistor 23 (MO9) transistor 23 is expressed.

時間t+に端子26へ加えたパルスがハイレベルからロ
ーレベルに立ち下がる。その時、A点の電位は、Vi 
 Vp : v2となる。電位v2が電位V subよ
りダイオード23のスレッシ冒ルド電圧以上低かったと
するとダイオード23を経てA点の電位が(Vsub 
−VAN )と等しくなるまで電流が流れコンデンサ2
2を放電し端子28の電位を下げる。
At time t+, the pulse applied to terminal 26 falls from high level to low level. At that time, the potential at point A is Vi
Vp: becomes v2. If the potential v2 is lower than the potential V sub by more than the threshold voltage of the diode 23, the potential at point A via the diode 23 becomes (Vsub
-VAN ), the current flows until it becomes equal to capacitor 2
2 to lower the potential at terminal 28.

すなわちコンデンサ21とコンデンサ22の比によりh
点の電位が上昇し端子28の電位が下がる。
In other words, depending on the ratio of capacitor 21 and capacitor 22, h
The potential at the point increases and the potential at the terminal 28 decreases.

この時のA点の電位v2は(V sub −VAK)で
ある。
The potential v2 at point A at this time is (V sub -VAK).

またMOSスイッチは端子27へ入力するパルスが端子
26のパルスが立ち下がる以前にローレベルとなるパル
スを加えるため、オフしているので電流は流れない。
Furthermore, since the MOS switch applies a pulse that makes the pulse input to the terminal 27 go low before the pulse at the terminal 26 falls, it is turned off and no current flows.

次に時間t2になシ端子27のパルスが立ち上がり、次
いで端子26のパルスが立ち上がったとする。MOSス
イッチ24はオンしている為電流が流れA点の電位をV
aKする。時間tiで再びパルスが立ち下がるとA点の
電位は(vB−Vp)  となシ。
Next, suppose that the pulse at the terminal 27 rises at time t2, and then the pulse at the terminal 26 rises. Since the MOS switch 24 is on, current flows and changes the potential at point A to V.
aK. When the pulse falls again at time ti, the potential at point A becomes (vB-Vp).

端子28の電位よりダイオード23のスレッショルド電
圧以上低いと電流が流れ端子28の電位を下げる。従ッ
テこの動作はV subが(Va+VAK−Vp)にな
るまでくシ返される。この電圧が得られる基板電圧とな
JMnで可変できる。
When the potential of the terminal 28 is lower than the threshold voltage of the diode 23, a current flows and lowers the potential of the terminal 28. This operation is repeated until Vsub becomes (Va+VAK-Vp). This voltage can be varied by changing the substrate voltage JMn.

この回路を構成するダイオード23を実現する方法とし
て公開特許公報昭56−123126号公報では、MO
Sトランジスタのゲートとドレインを接続したものを用
いている。しかしMOS)ランシスタの順方向電圧Va
Sは通常のPNダイオードに比べ大きく、低い電圧を発
生させるのが困難であった。
As a method for realizing the diode 23 constituting this circuit, Japanese Unexamined Patent Publication No. 123126/1983 discloses an MO
An S transistor whose gate and drain are connected is used. However, the forward voltage Va of the MOS) Lancistor is
S is larger than a normal PN diode, making it difficult to generate a low voltage.

それを用いずに回路を構成する他の方法としてダイオー
ド接続MOSトランジスタ23の替わ9に第2のMOS
スイッチを用いる方法がある。しかしその方法では他の
駆動パルスが必要となシ素子数の増大を招く。また、リ
ース、ドレイン電圧が負のために充分にオフできない可
能性もある。
Another method of configuring a circuit without using this is to use a second MOS transistor 9 instead of the diode-connected MOS transistor 23.
There is a method using a switch. However, this method requires other drive pulses and increases the number of elements. Also, there is a possibility that the lease and drain voltages are negative and therefore cannot be turned off sufficiently.

〔発明の目的〕[Purpose of the invention]

本発明の目的は0MO8とCODの一体化プロセスによ
って、既存素子のみでCODに良好な基板電圧発生回路
を提供することにある。
An object of the present invention is to provide an excellent substrate voltage generation circuit for COD using only existing elements through an integrated process of OMO8 and COD.

〔発明の概要〕[Summary of the invention]

本発明では、基板電圧発生回路において、0MO8のウ
ェルとリース、ドレイン領域で形成する拡散層とでPN
ダイオードを構成して、従来MOSトランジスタをダイ
オード接続して使用していた時よシも順方向電圧が小さ
くでき、素子数が少なく、充分に低い電圧が得られるよ
うにする。
In the present invention, in the substrate voltage generation circuit, the 0MO8 well, the lease, and the diffusion layer formed in the drain region have a PN
By configuring a diode, the forward voltage can be made smaller than when a conventional MOS transistor is used in diode connection, the number of elements is small, and a sufficiently low voltage can be obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明において用いるダイオードの構成例を第5図に示
す。11は半導体基板、12はウェル。
FIG. 5 shows an example of the configuration of a diode used in the present invention. 11 is a semiconductor substrate, and 12 is a well.

13は拡散層である。また、16は0MO8のつ丁ル 
17L+址揚臨 1QL中)/  L−丸h  40は
CODの埋め込みチャンネル、10は入力部拡散層、1
01はゲート電極である。ダイオードを構成するウェル
12と拡散層13は、0MO8のウェル16と拡散層1
7と同時に形成できる。基板がP型半導体の場合ウェル
はN型、拡散層はP型となシ端子14がカソード、端子
15がアノードとなる。基板がN型の場合はその逆で構
成できる。
13 is a diffusion layer. Also, 16 is the number of 0MO8
17L + 1QL) / L-circle h 40 is the embedded channel of COD, 10 is the input diffusion layer, 1
01 is a gate electrode. The well 12 and diffusion layer 13 constituting the diode are the well 16 and diffusion layer 1 of 0MO8.
7 can be formed at the same time. When the substrate is a P-type semiconductor, the well is N-type, the diffusion layer is P-type, terminal 14 is a cathode, and terminal 15 is an anode. If the substrate is of N type, the configuration can be reversed.

第1図にこれを用いて第4図で示した基板電圧発生回路
を構成した構成、つまり本発明の一実施例の構成断面図
を示す。基板がP型半導体である場合について説明する
。31.32はN型拡散層。
FIG. 1 shows a configuration in which the substrate voltage generation circuit shown in FIG. 4 is constructed using this, that is, a sectional view of the configuration of an embodiment of the present invention. A case where the substrate is a P-type semiconductor will be explained. 31.32 is an N type diffusion layer.

33はMOS)ランジスタのゲート、34は遅延回路で
ゲート遅延等を用いて容易に実現できる。
33 is the gate of a MOS transistor, and 34 is a delay circuit, which can be easily realized using a gate delay or the like.

35はパルスの入力端子、36はCODの入力部拡散層
、37はCODの埋め込みチャンネル、3日はCODの
ゲート電極である。COD部分については省略して示す
35 is a pulse input terminal, 36 is an input diffusion layer of the COD, 37 is a buried channel of the COD, and 3 is a gate electrode of the COD. The COD portion is omitted.

第4図及び第5図と同一符号のものは同一機能を有する
。パルス入力端子35を介して端子26及び27へ加え
るパルスとしては、遅延回路34により端子26へ加わ
るパルスの方が端子27へ加わるパルスよシ位相が遅く
なるようにする。回路の動作は先に説明した通シであ、
9CMO3のウェルと拡散層を用いPN接合ダイオード
を構成することにより特性の良好な基板電圧発生回路を
CODと同一の半導体基板上に少ない素子数で実現でき
る。またMOSスイッチ24のスイッチング特性を高め
るためにブイプレシラン型にすることもできる。その場
合はCODゲート電極3Bの下部の埋め込みチャンネル
37t−形成する時に同時にゲート33の下に形成しM
OSスイッチ24をディプレジ曹ン型にできる。
Components with the same reference numerals as in FIGS. 4 and 5 have the same functions. Regarding the pulses applied to the terminals 26 and 27 via the pulse input terminal 35, the delay circuit 34 causes the pulse applied to the terminal 26 to have a later phase than the pulse applied to the terminal 27. The operation of the circuit is as explained above.
By constructing a PN junction diode using a 9CMO3 well and a diffusion layer, a substrate voltage generation circuit with good characteristics can be realized with a small number of elements on the same semiconductor substrate as the COD. Further, in order to improve the switching characteristics of the MOS switch 24, it can be made into a buoy presilane type. In that case, when forming the buried channel 37t under the COD gate electrode 3B, it should be formed under the gate 33 at the same time.
The OS switch 24 can be of a dipleg type.

この構成に於いて端子35のパルスが立ち下がった時ウ
ェル12と拡散層31が低い電位となり基板11から電
流が流れ込む可能性がある。
In this configuration, when the pulse at the terminal 35 falls, the potential of the well 12 and the diffusion layer 31 becomes low, and current may flow from the substrate 11.

しかしその電流はコンデンサ22から端子28を経て基
板11を通シウエル12または拡散層31に流れるもの
で、ウェル12と拡散層13で形成するPNダイオード
と同じ機能であること及び基板電圧が充分下がった時点
に於いて電位差はかなシ小さい値となることよシ悪影響
はない。
However, the current flows from the capacitor 22 through the terminal 28 and through the substrate 11 to the well 12 or the diffusion layer 31, so it has the same function as a PN diode formed by the well 12 and the diffusion layer 13, and the substrate voltage has been sufficiently lowered. There is no adverse effect other than that the potential difference at that point becomes a small value.

またMOSスイッチ24の替わりにダイオードを用いる
こともできる。回路図t−第2図に示す。
Furthermore, a diode can be used instead of the MOS switch 24. The circuit diagram is shown in FIG.

41かMOSスイッチに替わって設けたダイオードであ
る。
41 is a diode provided in place of the MOS switch.

第3図にはこの回路の半導体基板上の構成、っまシ本発
明の他の実施例を示す。P型半導体基板の例であり51
はN型ウェル、52はP型拡散層である。第1図と同一
符号のものは同一機能を有する。動作はMOSスイッチ
で制御していたところがダイオードの両端の電位差によ
り自動的に電流を流すようにしたものである。従ってス
イッチングパルスは不要となり素子数を減らすことがで
きる。
FIG. 3 shows the structure of this circuit on a semiconductor substrate, another embodiment of the present invention. This is an example of a P-type semiconductor substrate.51
52 is an N-type well, and 52 is a P-type diffusion layer. Components with the same symbols as in FIG. 1 have the same functions. The operation was previously controlled by a MOS switch, but current is now automatically caused to flow based on the potential difference between both ends of the diode. Therefore, switching pulses are not required, and the number of elements can be reduced.

しかし回路の動作が充分進んでいない過渡時に於いてダ
イオード41が導通し電流が拡散層52からウェル51
へ流れた時、基板との間でPNPトランジスタが形成さ
れているため基板に向って電流が流れラッチアップを起
こす可能性がある。
However, during a transient period when the operation of the circuit is not sufficiently advanced, the diode 41 conducts and the current flows from the diffusion layer 52 to the well 51.
When current flows to the substrate, since a PNP transistor is formed between the substrate and the substrate, the current may flow toward the substrate and cause latch-up.

それに対しては基板の電位変動を防ぐためにウェル51
の周辺に端子28との抵抗の低い接点を設は基板に流れ
る電流を端子に吸収すること及びダイオード41の周辺
からN型の領域を離すことKよfi、PN接合ダイオー
ドが可能となる。
For this purpose, the well 51 is used to prevent potential fluctuations in the substrate.
By providing a low-resistance contact with the terminal 28 around the periphery of the diode 41, it is possible to absorb the current flowing through the substrate into the terminal and to separate the N-type region from the periphery of the diode 41, making it possible to form a PN junction diode.

以上P型半導体基板を用いた例について説明したがN型
基板の場合も同様にして基板電圧発生回路が構成できる
Although an example using a P-type semiconductor substrate has been described above, the substrate voltage generation circuit can be constructed in the same manner in the case of an N-type substrate.

〔発明の効果j 本発明によればCMOSプロセスとCCDプロセスの既
存の一体化プロセスによ、9CCDとCODに良好な基
板電圧発生回路を得ることができる。
[Effects of the Invention j] According to the present invention, it is possible to obtain a substrate voltage generation circuit having good performance in 9CCD and COD by using the existing integrated process of CMOS process and CCD process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成断面図、第2図は基板
発生回路の回路例を示す回路図、第3図は本発明の他の
実施例の構成断面図。第4図−)は従来知られた基板電
圧発生回路の一例を示す回路図、第4図(blは同回路
における各都電圧の波形図、M5図は本発明において用
いるダイオードの構成11・・・半導体基板、12.5
1・・・ウェル、13゜52・・・拡散層、21.22
・・・コンデンサ、23゜41・・・ダイオード、24
・・・MOSスイッチ。 什卯人瀬11I11本 爪 111  隨 団’A  
1 図 ’J2  口 篤 5 (¥] !34図 (Q) Cb) 議 5 図 ′+枳本乱入
FIG. 1 is a sectional view of the structure of one embodiment of the present invention, FIG. 2 is a circuit diagram showing an example of a substrate generation circuit, and FIG. 3 is a sectional view of the structure of another embodiment of the invention. FIG. 4-) is a circuit diagram showing an example of a conventionally known substrate voltage generation circuit, FIG.・Semiconductor substrate, 12.5
1... Well, 13°52... Diffusion layer, 21.22
...Capacitor, 23゜41...Diode, 24
...MOS switch. Jiuhitose 11I 11 nails 111 隨 dan'A
1 Figure 'J2 Kuchi Atsushi 5 (¥] !34 Figure (Q) Cb) Discussion 5 Figure '+ Hikimoto intrusion

Claims (1)

【特許請求の範囲】[Claims] 1)電荷転送装置を構成する基板へ与える電圧を発生す
るための基板電圧発生回路において、一端をパルス入力
端子とし、他端にダイオードのカソードとスイッチの一
端を接続して成るコンデンサと、前記スイッチの他端に
接続された電圧源と、前記ダイオードのアノードに接続
された平滑用コンデンサと、を具備し、前記パルス入力
端子に印加された入力パルスがハイレベルのときのみ、
前記スイッチが導通するようにして、前記ダイオードの
アノード側から得られる電圧を基板へ与えるようにする
と共に、前記ダイオードを、CMOSのウェルとソース
・ドレイン領域の拡散層により構成し、前記電荷転送装
置と同一の半導体基板に一体化プロセスによって納めた
ことを特徴とする基板電圧発生回路。
1) A substrate voltage generation circuit for generating a voltage to be applied to a substrate constituting a charge transfer device, which includes a capacitor having one end as a pulse input terminal and the other end connected to the cathode of a diode and one end of a switch, and the switch. a voltage source connected to the other end, and a smoothing capacitor connected to the anode of the diode, and only when the input pulse applied to the pulse input terminal is at a high level;
The switch is made conductive so that a voltage obtained from the anode side of the diode is applied to the substrate, and the diode is constituted by a CMOS well and a diffusion layer of a source/drain region, and the charge transfer device A substrate voltage generation circuit characterized in that it is housed on the same semiconductor substrate through an integration process.
JP61002045A 1986-01-10 1986-01-10 Substrate-voltage generating circuit Pending JPS62160750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61002045A JPS62160750A (en) 1986-01-10 1986-01-10 Substrate-voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61002045A JPS62160750A (en) 1986-01-10 1986-01-10 Substrate-voltage generating circuit

Publications (1)

Publication Number Publication Date
JPS62160750A true JPS62160750A (en) 1987-07-16

Family

ID=11518354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61002045A Pending JPS62160750A (en) 1986-01-10 1986-01-10 Substrate-voltage generating circuit

Country Status (1)

Country Link
JP (1) JPS62160750A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625210A (en) * 1995-04-13 1997-04-29 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US5903021A (en) * 1997-01-17 1999-05-11 Eastman Kodak Company Partially pinned photodiode for solid state image sensors
US6297070B1 (en) 1996-12-20 2001-10-02 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US6320617B1 (en) 1995-11-07 2001-11-20 Eastman Kodak Company CMOS active pixel sensor using a pinned photo diode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625210A (en) * 1995-04-13 1997-04-29 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US6027955A (en) * 1995-04-13 2000-02-22 Eastman Kodak Company Method of making an active pixel sensor integrated with a pinned photodiode
US6320617B1 (en) 1995-11-07 2001-11-20 Eastman Kodak Company CMOS active pixel sensor using a pinned photo diode
US6297070B1 (en) 1996-12-20 2001-10-02 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US5903021A (en) * 1997-01-17 1999-05-11 Eastman Kodak Company Partially pinned photodiode for solid state image sensors

Similar Documents

Publication Publication Date Title
US4559548A (en) CMOS Charge pump free of parasitic injection
JP2771729B2 (en) Charge pump circuit
US4994886A (en) Composite MOS transistor and application to a free-wheel diode
EP0319063B1 (en) Voltage multiplier circuit and rectifier element
EP0485016A2 (en) Integrated charge pump circuit with back bias voltage reduction
JPH0632228B2 (en) Integrated circuit voltage multiplier
EP0231204A1 (en) Back bias generator.
JPH051621B2 (en)
JP2710113B2 (en) Integrated circuits using complementary circuit technology
US6570435B1 (en) Integrated circuit with current limited charge pump and method
US4701637A (en) Substrate bias generators
JPS62160750A (en) Substrate-voltage generating circuit
JPH03232269A (en) Input circuit of semiconductor device
JPH06325569A (en) Middle voltage generating circuit for semiconductor integrated circuit
JP3354709B2 (en) Semiconductor booster circuit
JP3624629B2 (en) Bipolar level shift circuit
JP2978346B2 (en) Input circuit of semiconductor integrated circuit device
JPS5937585B2 (en) Complementary MIS logic circuit
JPH10256483A (en) Mos semiconductor integrated circuit
US4496852A (en) Low power clock generator
JPH0245380B2 (en)
JPH0897366A (en) Semiconductor device
JP2994691B2 (en) Semiconductor integrated circuit device
JP2979716B2 (en) CMOS integrated circuit
JPS5940293B2 (en) semiconductor equipment