Nothing Special   »   [go: up one dir, main page]

JPS62167842A - Production of rare earth magnet - Google Patents

Production of rare earth magnet

Info

Publication number
JPS62167842A
JPS62167842A JP61007206A JP720686A JPS62167842A JP S62167842 A JPS62167842 A JP S62167842A JP 61007206 A JP61007206 A JP 61007206A JP 720686 A JP720686 A JP 720686A JP S62167842 A JPS62167842 A JP S62167842A
Authority
JP
Japan
Prior art keywords
stage
temp
sintering
rare earth
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61007206A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP61007206A priority Critical patent/JPS62167842A/en
Publication of JPS62167842A publication Critical patent/JPS62167842A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain additionally higher magnet characteristics by executing heat treatments in >=3 stages under specific conditions after sintering in the stage of producing permanent magnets consisting of a rare earth metal, transition metal and more particularly Nd, Fe and B by powder metallurgy. CONSTITUTION:Raw materials are melted, ground and molded in a magnetic field to form an R2T14B magnet essentially consisting of Nd.Fe.B (R is Y and rare earth metal, T is a transition metal). The molding is sintered by holding the same for about 1hr in a vacuum at, for example, about 1,080 deg.C sintering temp. holding for about 1hr in Ar and is then quickly cooled. The sintered body is subjected to >=3 stages of the aging treatments to start the treatment in a 1,000 deg.C temp. range from the sintering temp. in the first stage and to make the treatment in a 400-650 deg.C temp. range in the final stage. For example, the sintered body is held for 1hr in the above-mentioned first stage and while the temp. is lowered by about 100 deg.C each, the sintered body is held at each temp. for 1hr each and is subjected to the multi-stage aging treatment down to 500 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 Nd−Fef系永久磁石を代表とする希土
類金属(R)と遷移金属(T)とからなるR2T14B
系金属間化合物の製造方法でろって、特にNd−Fe−
Bを主成分とする永久磁石を粉末冶金法によって製造す
る場合の磁石特性の改善に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides R2T14B made of rare earth metal (R) and transition metal (T), typified by Nd-Fef permanent magnets.
In particular, Nd-Fe-
The present invention relates to improvement of magnetic properties when a permanent magnet containing B as a main component is manufactured by a powder metallurgy method.

〔従来の技術〕[Conventional technology]

R−Fe−B系磁石の製造方法については、2つの方法
に大別される。一方は、溶解している合金を超急冷した
薄帯を使用して製造される液体急冷法である。他方は、
溶解して得られた磁石合金のインゴットを微粉砕し、磁
場中で成形した後、焼結して製造される焼結型磁石であ
る。
Methods for manufacturing R-Fe-B magnets are roughly divided into two methods. One is the liquid quenching method, which uses a thin ribbon of super-quenched molten alloy. On the other hand,
This is a sintered magnet manufactured by pulverizing an ingot of a magnetic alloy obtained by melting, molding it in a magnetic field, and then sintering it.

R−Fai系磁面磁石末冶金法によって製造される焼結
型磁石に関する文献としては特開昭59−46008号
公報や日本応用磁気学会第35回研究会資料「Nd−F
e−B面断磁石」(昭和59年5月)がある。
Documents related to sintered magnets manufactured by the R-Fai magnetic surface magnet powder metallurgy method include Japanese Patent Application Laid-open No. 59-46008 and Japanese Society of Applied Magnetics 35th Research Meeting Materials “Nd-F
e-B section magnet" (May 1981).

前者には、成形体を焼結後、放冷すると記載されている
のみであり、焼結後の熱処理条件の規定はなされていな
い。また後者には成形体を焼結した後、600℃近傍の
熱処理でIHCの増加することが記載されている。一方
1日本金属学会春期大会一般講演概要(1985,4,
P、 346 ) P−Fe−B系永久磁石合金の熱処
もにおいては、1000℃以下での熱処理について記述
しである。しかしながら、これらの熱処理は、1〜2段
の時効処理に関するものでアシ、本発明とは全く異なる
ものである。
The former only states that the molded body is left to cool after sintering, but does not specify the conditions for heat treatment after sintering. The latter also describes that after sintering a molded body, heat treatment at around 600° C. increases IHC. On the other hand, 1 Summary of General Lectures at the Spring Conference of the Japan Institute of Metals (1985, April,
P, 346) Regarding heat treatment of P-Fe-B permanent magnet alloy, heat treatment at 1000°C or lower is described. However, these heat treatments relate to one or two stages of aging treatment and are completely different from the present invention.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は2種々実験を行なった結果、Nd−Fe−B
を主成分としたR2T14B系磁石焼結体を多段時効す
ることにより、更に高い磁石特性の得られることを発見
した。
As a result of two different experiments, the inventor found that Nd-Fe-B
It has been discovered that even higher magnetic properties can be obtained by subjecting an R2T14B magnet sintered body containing R2T14B as a main component to multi-stage aging.

一般に1本系磁石の粉末冶金法による製造工程は、溶解
、粉砕、磁界中配向、圧縮成形、焼結。
Generally, the manufacturing process of single magnets using powder metallurgy includes melting, crushing, orientation in a magnetic field, compression molding, and sintering.

時効の順に進められる。溶解は、アーク高周波等の真空
または不活性雰囲気中で1通常行なわれる。
They proceed in the order of the statute of limitations. Melting is usually carried out in a vacuum or inert atmosphere, such as with a high frequency arc.

粉砕は、粗粉砕と微粉砕にわけられ、粗粉砕はショーク
ラッシャー、鉄乳鉢、ディスクミルやロールミル等で行
なわれる。微粉砕は、ゴールミル。
Grinding is divided into coarse grinding and fine grinding, and coarse grinding is performed using a show crusher, iron mortar, disk mill, roll mill, etc. Fine grinding is done using a goal mill.

振動ミル、ジェットミル等で行なわれる。磁場配向及び
圧縮成形は、金型を用いて磁場中で同時に行なわれるの
が通例である。焼結は1000〜1150℃の範囲で、
不活性雰囲気中で行われる。
This is done using a vibration mill, jet mill, etc. Magnetic field orientation and compression molding are usually performed simultaneously in a magnetic field using a mold. Sintering is in the range of 1000 to 1150°C,
It is carried out in an inert atmosphere.

時効は600℃近傍の温度で行なわれる。Aging is performed at a temperature around 600°C.

本発明者等は、磁石焼結体の時効条件を適正に制御する
ことにより、高い磁石特性を得るものであること本発明
者は発見した。
The present inventors have discovered that high magnetic properties can be obtained by appropriately controlling the aging conditions of the magnet sintered body.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はNd−Fe−Bを主成分とするR2T14B系
磁石(但しRはイツトリウムおよび希土類元素、Tは遷
移金属)において原料を溶解、粉砕機で粉砕し。
In the present invention, raw materials are melted in an R2T14B magnet whose main component is Nd-Fe-B (where R is yttrium and a rare earth element, and T is a transition metal), and then pulverized using a pulverizer.

ついでこれを磁界中成形後時効処理を少くとも3段以上
行う多段時効処理を行うもので、この時効処゛埋の初段
の開始温度を1000℃以上(焼結温度以下)、最終段
を400℃から650℃で行い保持力IHCが9 KO
e以上、エネルギー積(OH)maxが37 MGau
ss Oe以上を得た。
This is then subjected to a multi-stage aging treatment in which aging treatment is performed in at least three stages after forming in a magnetic field, with the starting temperature of the first stage of aging treatment being 1000°C or higher (below the sintering temperature) and the final stage being 400°C. The holding power IHC was 9 KO.
e or more, energy product (OH) max is 37 MGau
Obtained ss Oe or higher.

〔実施例〕〔Example〕

1、 純度98%のNdと、高純度のFe4″e便用し
1. Uses 98% pure Nd and high purity Fe4''e.

Ndが34wt%、Bが1.1 wj%、残部Feとな
るように、Ar雰囲気中で高周波加熱によりインゴット
を作製した。
An ingot was produced by high-frequency heating in an Ar atmosphere so that Nd was 34 wt%, B was 1.1 wj%, and the balance was Fe.

次にこの合金を粗粉砕した後、ボールミルにて平均粒径
約3μmに粉砕した。この粉末を10 KOeの磁界中
1ton/Jの圧力で成形した。この成形体を焼結温度
1080℃で真空中1時間保持した後。
Next, this alloy was coarsely ground, and then ground to an average particle size of about 3 μm using a ball mill. This powder was compacted at a pressure of 1 ton/J in a magnetic field of 10 KOe. After holding this molded body in vacuum at a sintering temperature of 1080°C for 1 hour.

Ar中1時間保持し、焼結し、急冷した。It was held in Ar for 1 hour, sintered, and quenched.

次にこの焼結体を、900℃、950℃、 ioo。Next, this sintered body was heated at 900°C and 950°C.

℃、1050℃、1080℃の各温度を時効開始温度と
して夫々1時間保持した後、約100℃ずつ温度を降下
させながら、各温度で1時間ずつ保持し、500℃まで
多段時効処理を行なった。その結果を第1図に示す。ま
た第3図に本実施例の時効開始温度1080℃の多段時
効処理の加熱冷却・ぞター/を示す。また、比較のため
に、同様の方法で作製した焼結体を、良好とされている
600℃で1時間時効を行なった時の特性は、第1図に
示すようにBr 12.8KG 、 IHC7,OKO
e 、 (BH)max。
℃, 1050℃, and 1080℃ as aging starting temperatures for 1 hour, and then decreasing the temperature by about 100℃ and holding each temperature for 1 hour to perform multi-stage aging treatment up to 500℃. . The results are shown in FIG. Further, FIG. 3 shows the heating, cooling and drying of the multi-stage aging treatment at an aging start temperature of 1080° C. in this example. For comparison, a sintered body produced by the same method was aged for 1 hour at 600°C, which is considered to be good. As shown in Figure 1, the properties were Br 12.8KG, IHC7 ,OKO
e, (BH)max.

35、0 M−G・Oeでhつだ。35, 0 M-G・Oe and h.

多段時効開始温度を1000℃から焼結温度の範囲に設
定することにより、磁石特性は著しく向上している。
By setting the multi-stage aging start temperature in the range from 1000° C. to the sintering temperature, the magnetic properties are significantly improved.

2、実施例1で作製した焼結体を使用し、焼結温度であ
る1080℃から多段時効を開始し、約100℃ずつ温
度を降下させながら、各温度で1時間ずつ保持し、最終
多段時効処理温度を400℃から800℃までの範囲で
変化させて多段時効を行なりた。その時の最終多段時効
処理温度と磁石特性の関係を第2図に示す。
2. Using the sintered body produced in Example 1, start multi-stage aging from the sintering temperature of 1080°C, lower the temperature by approximately 100°C, hold each temperature for 1 hour, and complete the final multi-stage aging. Multi-stage aging was performed by changing the aging treatment temperature in the range from 400°C to 800°C. The relationship between the final multi-stage aging treatment temperature and the magnet properties is shown in FIG. 2.

最終多段時効温度が400℃から600℃の範囲で、磁
石特性が著しく向上している。
When the final multi-stage aging temperature ranges from 400°C to 600°C, the magnetic properties are significantly improved.

以上の実施例はNd−Fe−B系と多段時効の効果につ
いて述べたものであるが、これらの結果はNd−Fe4
を主成分とするR2T14B系合金であれば十分に期待
できるものであることは容易に推察できる。
The above examples describe the effects of the Nd-Fe-B system and multi-stage aging, but these results do not apply to Nd-Fe4
It can be easily inferred that an R2T14B alloy containing as a main component is highly promising.

また多段時効の保持温度間隔、保持時間についてはこの
実施例では約100℃、1時間を実施したが、他の温度
間隔、保持時間でもよく、また一定の温度間隔、一定の
保持時間でなく時効処−1過程で温度の昇降等を行った
としても、処理温度が前記した本発明の範囲内であれば
本発明の効果が充分に期待できることは容易に推察でき
る。
In addition, regarding the holding temperature interval and holding time of multi-stage aging, in this example, it was carried out at about 100°C for 1 hour, but other temperature intervals and holding times may be used. It can be easily inferred that even if the temperature is raised or lowered in the process-1, the effects of the present invention can be fully expected as long as the treatment temperature is within the range of the present invention described above.

さらに本実施例では段階的に温度を降下させて行ったが
1回の時効の度に急加熱急冷を繰り返しても同様の効果
が現れた。また多段時効の回数については好ましくは3
段以上が効果的であった。
Further, in this example, the temperature was lowered stepwise, but the same effect was obtained even if rapid heating and cooling were repeated for each aging. Also, the number of multi-stage aging is preferably 3.
Levels above were effective.

〔発明の効果〕〔Effect of the invention〕

本発明については以上詳細に説明したが。 The present invention has been described in detail above.

Nd−Fe−Bを主成分とするR2T14B系磁石を粉
末冶金法において製造するに当り焼結体を焼結温度から
1000℃の温度範囲で時効を開始し1400℃
When manufacturing R2T14B magnets containing Nd-Fe-B as the main component by powder metallurgy, the sintered body is aged at a temperature range of 1000°C from the sintering temperature and then heated to 1400°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1におけるNd−Fe4系磁石焼結体
の多段時効開始温度と磁石特性の関係を示す。 第2図は、実施例2におけるNd−Fe−B系磁石焼結
体の最終多段時効処理温度と磁石特性の関係を示すO 第3図は実施例1における開始温度を1080℃とした
時の多段時効処理の加熱冷却・リーンを示す。 第1図 多8詩9j′J開始温度(・C) 第3図
FIG. 1 shows the relationship between the multi-stage aging start temperature and magnetic properties of the Nd-Fe4 magnet sintered body in Example 1. Figure 2 shows the relationship between the final multi-stage aging treatment temperature and magnet properties of the Nd-Fe-B magnet sintered body in Example 2. Figure 3 shows the relationship between the starting temperature in Example 1 and 1080°C. Showing heating/cooling/lean in multi-stage aging treatment. Figure 1: 9j'J starting temperature (・C) Figure 3

Claims (1)

【特許請求の範囲】 1、Nd、Fe、Bを主成分とするR_2T_1_4B
系磁石合金を粉末冶金法によって製造する方法において
時効処理を少くとも3段以上行い、初段は焼結体を焼結
温度から1000℃の温度範囲で開始し、最終段は40
0℃から650℃の温度範囲で行うことを特徴とする希
土類磁石の製造方法 (但しR_2T_1_4BのRはイットリウムおよび希
土類元素、Tは遷移金属を表わす)
[Claims] R_2T_1_4B containing 1, Nd, Fe, and B as main components
In the method of manufacturing magnet alloys by powder metallurgy, aging treatment is performed in at least three stages, with the first stage starting the sintered body at a temperature range of 1000°C from the sintering temperature, and the final stage at 40°C.
A method for producing a rare earth magnet, characterized in that it is carried out at a temperature range of 0°C to 650°C (wherein R in R_2T_1_4B represents yttrium and a rare earth element, and T represents a transition metal).
JP61007206A 1986-01-18 1986-01-18 Production of rare earth magnet Pending JPS62167842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61007206A JPS62167842A (en) 1986-01-18 1986-01-18 Production of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61007206A JPS62167842A (en) 1986-01-18 1986-01-18 Production of rare earth magnet

Publications (1)

Publication Number Publication Date
JPS62167842A true JPS62167842A (en) 1987-07-24

Family

ID=11659539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61007206A Pending JPS62167842A (en) 1986-01-18 1986-01-18 Production of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS62167842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294401A (en) * 1989-05-09 1990-12-05 Fuji Elelctrochem Co Ltd Production of magnet powder
JP2019220689A (en) * 2018-06-15 2019-12-26 スターグループ インダストリアル カンパニー リミテッド MANUFACTURING METHOD OF HEAVY RARE EARTH GRAIN BOUNDARY DIFFUSION TYPE RE-Fe-B BASED RARE EARTH MAGNET AND HEAVY RARE EARTH GRAIN BOUNDARY DIFFUSION TYPE RE-Fe-B BASED RARE EARTH MAGNET MANUFACTURED BY THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294401A (en) * 1989-05-09 1990-12-05 Fuji Elelctrochem Co Ltd Production of magnet powder
JP2019220689A (en) * 2018-06-15 2019-12-26 スターグループ インダストリアル カンパニー リミテッド MANUFACTURING METHOD OF HEAVY RARE EARTH GRAIN BOUNDARY DIFFUSION TYPE RE-Fe-B BASED RARE EARTH MAGNET AND HEAVY RARE EARTH GRAIN BOUNDARY DIFFUSION TYPE RE-Fe-B BASED RARE EARTH MAGNET MANUFACTURED BY THE SAME

Similar Documents

Publication Publication Date Title
JPS62291904A (en) Mafufacture of permanent magnet
JPH0216368B2 (en)
JPH0680608B2 (en) Rare earth magnet manufacturing method
JPS62167842A (en) Production of rare earth magnet
JPS6233402A (en) Manufacture of rare-earth magnet
JPH0568841B2 (en)
JPS6230843A (en) Production of magnet containing rare earth element
JPS61252604A (en) Manufacture of rare earth magnet
JPS61214402A (en) Manufacture of sintered magnet
JPS60165702A (en) Manufacture of permanent magnet
JPH08148317A (en) Production of rare earth magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS6293908A (en) Manufacture of rare-earth magnet
JPS6293337A (en) Manufacture of rare earth magnet
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPS6263645A (en) Production of permanent magnet material
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JP3138927B2 (en) Rare earth magnet manufacturing method
JPS6242403A (en) Manufacture of rare-earth magnet
JPH08279406A (en) R-tm-b permanent magnet and manufacture thereof
JPS6342102A (en) Manufacture of sintered rare-earth magnet
JPS5874005A (en) Permanent magnet
JPS6140738B2 (en)
JPS61270316A (en) Production of raw material powder for resin bonded permanent alloy