Nothing Special   »   [go: up one dir, main page]

JPS62150134A - Method for measuring optical fiber - Google Patents

Method for measuring optical fiber

Info

Publication number
JPS62150134A
JPS62150134A JP29478185A JP29478185A JPS62150134A JP S62150134 A JPS62150134 A JP S62150134A JP 29478185 A JP29478185 A JP 29478185A JP 29478185 A JP29478185 A JP 29478185A JP S62150134 A JPS62150134 A JP S62150134A
Authority
JP
Japan
Prior art keywords
optical fiber
optical fibers
measured
light
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29478185A
Other languages
Japanese (ja)
Other versions
JPH0658289B2 (en
Inventor
Ryozo Yamauchi
良三 山内
Yasuyuki Sugawara
菅原 康行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP60294781A priority Critical patent/JPH0658289B2/en
Publication of JPS62150134A publication Critical patent/JPS62150134A/en
Publication of JPH0658289B2 publication Critical patent/JPH0658289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To contrive shortening of a measuring time and the enhancement of accuracy by making it possible to easily perform work when a single core wire optical fiber covered on every one fiber is measured, by integrating a plurality of optical fibers to be measured so as to put the same in order in the vicinity of the terminals thereof in almost parallel manner. CONSTITUTION:A plurality of single core wire optical fibers 3 to be measure are arranged in parallel so as to put both terminals 31 in order and subsequently integrated in such a state that said terminals 31 are parallelly put in order. The integration is performed by fixing said terminals 31 by a thermoplastic, thermosetting or ultraviolet curable resin to locally form the same into a tape form and, thereafter, the end surfaces thereof are collectively cut and shaped and the coating of the terminal part of each optical fiber is removed to expose a core wire. Because both of the terminals 21, 41 of incident side optical fibers and emitting side optical fibers 4 are similarly integrated in a tape form, the incidence and emission of light to a plurality of optical fibers 3 to be measured are performed from the tape part to the tape part and, therefore, the alignment of optical axes as a hole is easy and connection also becomes easy.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、光ファイバの伝送特性や光学特性を111
1定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention improves the transmission characteristics and optical characteristics of optical fibers by
This invention relates to a method for determining

従来の技術 光ファイバの測定すべき伝送特性、光学特性には、くv
伝送損失、t25伝送帯域、匈)開口数、(4)第2モ
ードのカットオフ波長、■基本モードのモードフィール
ド直径などがある。これらを測定するには、従来より、
光ファイバの一端に測定用の光を入射し、[tつ他端か
らの出射光を受光して、その強度や空間的床がり、波長
に依存した強度(スペクトル)をIE I:Mするよう
にしている。あるいは、光ファイバの一端より光を入射
し、その光ファイバ各部からの後方散乱光を、この入射
側端末より取り出して計lll1l+する、バックスキ
ャツタ法によるJ(11定も行なわれる。
Conventional technology The transmission characteristics and optical characteristics of optical fibers to be measured include:
These include transmission loss, t25 transmission band, (4) numerical aperture, (4) cutoff wavelength of second mode, and mode field diameter of fundamental mode. To measure these, traditionally,
Inject the measurement light into one end of the optical fiber, receive the light emitted from the other end, and perform IE I:M to measure the intensity (spectrum) depending on its intensity, spatial coverage, and wavelength. I have to. Alternatively, J(11 constant) is also performed using the backscatter method, in which light is input from one end of an optical fiber, and backscattered light from each part of the optical fiber is extracted from the input side terminal to give a total of lll1l+.

たとえば伝送損失を測定する場合には、第6図のように
、光源lから出射された光ビームをレンズ6によって絞
って被測定光ファイバ3の一端に入射する。この光はフ
ァイバ3中を伝搬して他端から出射するが、この出射光
をレンズ7を介して受光器5に入射させる。受光器5の
出力信号を増幅器8により必要に応じて増幅した後電圧
計9に送り、受光光illに比例した量を表示させる。
For example, when measuring transmission loss, as shown in FIG. 6, a light beam emitted from a light source 1 is focused by a lens 6 and enters one end of an optical fiber 3 to be measured. This light propagates through the fiber 3 and is emitted from the other end, but this emitted light is made to enter the light receiver 5 via the lens 7. The output signal of the light receiver 5 is amplified by an amplifier 8 as necessary and then sent to a voltmeter 9 to display an amount proportional to the received light ill.

ところで、通常、光ファイバは1紡糸後゛は1本1本個
別のドラムに巻かれた状態となっており、その後、光フ
ァイバケーブル構造に応じて、1本1げに被覆されたり
、81数木がまとめて、樹脂で被覆されてテープ化され
たり、リボン化されたり、丸形断面を有するユニットと
して撚り合せられたりする。
By the way, normally, after one optical fiber is spun, it is wound around an individual drum one by one, and then depending on the optical fiber cable structure, each fiber is coated one by one, or the other is coated with 81 fibers. are coated with resin and made into tapes, ribbons, or twisted into units with round cross sections.

発明が解決しようとする問題点 ′ 丑記のような従来の測定法の場合、本来の計測時間
以外に準備のための時間が多くかがり、そのため全体の
測定時間が長くなってしまうという欠点がある。すなわ
ち、ΔII+定を再現性良く行なうためには、常に一定
の条件で、被測定光ファイバに光が入射したり、被側定
光ファイバからの出射光を取り出す必要があり、そのた
め入射端において、入射光ビームスポットを1F確に被
114定光ファイバ端而に照射する必要があるだけでな
く、被測定光ファイバの端面がファイバ軸に対して垂直
で珪つ平担にカットされており、しかもごみ等の類が付
着していてはならないからである。そこで、A111定
に要する時間の多くは、しばしば、本来の光の計測時間
ではなくて、光の入−出射軸合せ、ファイバ端面の整形
等の準備のために要する時間が支配的になってしまう。
Problems to be Solved by the Invention In the case of conventional measurement methods such as Oxki, there is a disadvantage that a lot of time is required for preparation in addition to the original measurement time, which lengthens the overall measurement time. . In other words, in order to perform the ΔII + constant with good reproducibility, it is necessary to always make the light incident on the optical fiber to be measured under constant conditions, and to take out the light emitted from the optical fiber to be measured. Not only is it necessary to precisely irradiate the optical beam spot onto the end of the 114 optical fiber to be measured, but also the end face of the optical fiber to be measured is perpendicular to the fiber axis and cut flat, and there is no dust or dirt. This is because there must be no adhesion of the like. Therefore, much of the time required for A111 adjustment is often dominated by the time required for preparations such as aligning the input and output axes of the light and shaping the fiber end face, rather than the time required to measure the original light. .

特に、1′;I#:、1本が単独に被覆された単心線光
ファイバでは、光ファイバの1本毎にファイバ端面の処
理を行なって、光の入・出射の調整を行なわなければな
らないため、この問題が顕著である。
In particular, for single-core optical fibers in which each fiber is individually coated, the fiber end face must be treated for each optical fiber to adjust the input and output of light. This problem is notable because it does not.

この発明は、1本毎に被覆された単心線光ファイバを測
定する際にも作業が容易となり、全体のfl11定時間
を短縮できるとともに、精度を高めることも容易な、光
ファイバの測定法を提供することを目的とする。
This invention is an optical fiber measurement method that facilitates the work when measuring single coated single optical fibers, shortens the overall fl11 time, and easily improves accuracy. The purpose is to provide

問題点を解決するための手段 この発明の光ファイバの測定法では、複数本の被測定光
ファイバの端末付近をほぼ平行に揃えて一体化すること
が特徴となっている。
Means for Solving the Problems The method for measuring optical fibers of the present invention is characterized in that the ends of a plurality of optical fibers to be measured are aligned substantially parallel and integrated.

作    用 複数本の被1111定光ファイバの端末付近をほぼ平行
に揃えて一体化するので、端部の被覆除去およびファイ
バ端面の整形(カット)を一括に行なうことができる。
Function: Since the ends of a plurality of 1111 constant optical fibers are aligned and integrated in substantially parallel manner, the end coating can be removed and the fiber end faces can be shaped (cut) all at once.

また、光の入・出射の調整も複数本が一体化されている
ため容易である。このように作業が容易になるので、全
体のJ1111定が短縮yれるとともに、 Jll+定
精度を高めることも容易になる。
In addition, adjustment of light input and output is easy because multiple lines are integrated. Since the work becomes easier in this way, the overall J1111 constant can be shortened, and it is also easy to increase the Jll+ constant accuracy.

実施例 まず、第1図のように、複数本の被測定単心線光ファイ
バ3の両端末31をそろえて平行にならべる。一般的に
は、被測定光ファイバ3の各々は、それらがケーブル化
しても差しつかえない良好な特性を有しているかどうか
を判定されるために1MI4定されるので、それぞれの
長さがまちまちになっていることが多く、そのため、ド
ラム30から適宜な長さに繰り出して、両端を上記のよ
うに揃える。この場合、光ファイバ3は、ガラスがむき
出しになっているのでなく、所λ1フブライマリコート
や2次被覆により覆われている。
Embodiment First, as shown in FIG. 1, both ends 31 of a plurality of single optical fibers 3 to be measured are aligned and arranged in parallel. Generally, each of the optical fibers to be measured 3 is rated at 1MI4 to determine whether they have good characteristics that can be made into a cable, so the length of each optical fiber 3 varies. Therefore, an appropriate length is fed out from the drum 30 and both ends are aligned as described above. In this case, the glass of the optical fiber 3 is not exposed, but is covered with a λ1 foil recoat or a secondary coating.

次にこの端末31が平行に揃えられたままの状態で一体
化される。一体化の方法としては、熱iTf・η!性、
熱硬化性あるいは紫外線硬化性の樹脂で固めたり、低融
点金属で固める。または、2枚のテープの間に平行に揃
えられた端末31を挟んで貼り合せたすしてもよい。こ
の実施例では、i2図に示すように、紫外線架橋型樹脂
32で一体化している。ガイド34の部分にノズル35
より紫外線架橋型樹脂を注入しながら光ファイバ3の東
を」一方に引き上げ、このとき紫外線ランプ37からの
紫外線を紫外線ガイド用ファイババンドル36で導いて
この樹脂32に照射して樹脂32を硬化させて一体化し
局所的にテープ状としている。
Next, the terminals 31 are integrated while being aligned in parallel. As a method of integration, heat iTf・η! sex,
Harden with thermosetting or ultraviolet curable resin, or harden with low melting point metal. Alternatively, the parallel terminals 31 may be sandwiched between two pieces of tape and bonded together. In this embodiment, as shown in Fig. i2, they are integrated using an ultraviolet crosslinking resin 32. Nozzle 35 in the guide 34 part
While injecting more ultraviolet cross-linked resin, the east side of the optical fiber 3 is pulled up to one side, and at this time ultraviolet light from the ultraviolet lamp 37 is guided through the ultraviolet guide fiber bundle 36 and irradiated onto this resin 32 to harden the resin 32. It is integrated into a tape-like form locally.

この場合、一体化する光ファイバの長さは測定すべき項
目や、その後の処理に必要なファイバ長さにもよるが、
一般には200mm〜1m程度でよい。
In this case, the length of the optical fibers to be integrated depends on the items to be measured and the fiber length required for subsequent processing.
Generally, the length may be about 200 mm to 1 m.

こうして、複数本の被測定光ファイバ3の端末31が樹
脂32でテープ状に一体化されることになるのでその後
の扱いがきわめて容易になる。そこで、これらの複数本
の一体化された光ファイバ3を一括にf−担にカットし
、端面の整形を一括に行なう。こうしてカットされた後
の状態が第3図に示されている。
In this way, the ends 31 of the plurality of optical fibers 3 to be measured are integrated into a tape shape with the resin 32, so that subsequent handling becomes extremely easy. Therefore, the plurality of integrated optical fibers 3 are cut into f-length fibers at once, and the end faces are shaped at once. The state after being cut in this way is shown in FIG.

次に、各光ファイバ3の端末部分の被覆を除去し、第4
図のようにファイバ心m33が露出した状態にするにの
被覆除去作業は、樹脂32で一体化されているため、複
数本の光ファイバ3につき一括に行なうことがiiJ能
となる。
Next, the coating on the end portion of each optical fiber 3 is removed, and the fourth
As shown in the figure, since the coating removal work to expose the fiber core m33 is integrated with the resin 32, it is possible to perform it on a plurality of optical fibers 3 at once.

他方第1図に示すように、入射側では、光源lに接h′
Cされた複数本の光ファイバ2がその端末21で1.記
と同様にテープ状に一体化されている。
On the other hand, as shown in Fig. 1, on the incident side, h'
A plurality of optical fibers 2 that have been connected to each other are connected at their terminals 21 to 1. Similar to the above, it is integrated into a tape shape.

また出射側でも、受光器5に接続された複数本の光ファ
イバ4の端末41が同様にテープ状に一体化されている
。そこで、複数本の被測定光ファイバ3番こ対する光の
入・出射は、テープ状のものからテープ状のものへと行
なわれるので、1本ずつの光軸合せは実質的には不安に
なり、全体として光軸合せはきわめて容易である。また
、この場合、必要とあれば各光ファイバ同士の接続は融
着接続で行なうことも容易であり、これによって低損失
に接続でき、確実で且つ精度の高い31一定を保証でき
る。
Also, on the output side, the terminals 41 of the plurality of optical fibers 4 connected to the light receiver 5 are similarly integrated into a tape shape. Therefore, since the input and output of light to and from the plurality of optical fibers to be measured is performed from tape-shaped fiber to tape-shaped fiber, alignment of the optical axes of each fiber becomes unstable. , overall optical axis alignment is extremely easy. Further, in this case, if necessary, each optical fiber can be easily connected to each other by fusion splicing, which allows connection with low loss and guarantees a reliable and highly accurate 31 constant.

このように、端末31を一体化しているため、複数本の
ファイバ3の端面を平担にカットすることが1回で済み
、また複数本のファイバ3の被覆除去作業が1回で済み
、しかも、入・出射の光軸合せが容易なため、具体的に
、たとえば、中心線光ファイバの挿入損失測定を個別に
行なった場合、5本測定するのに約50分かかったのが
、20分でJlll定できるようになり、全体のall
定時間の短縮効果が著しい。
Since the terminals 31 are integrated in this way, it is only necessary to cut the end faces of the plurality of fibers 3 flat once, and the work of removing the coating from the plurality of fibers 3 is only required once. Since it is easy to align the input and output optical axes, for example, when measuring the insertion loss of centerline optical fibers individually, it takes 20 minutes instead of about 50 minutes to measure five centerline optical fibers. You can now specify Jllll, and the entire all
The effect of shortening the fixed time is remarkable.

第5図は第2の実施例を示す。この実施例では光ファイ
バの測定法としてバックスキャツタ法を採用している。
FIG. 5 shows a second embodiment. In this embodiment, the backscatter method is adopted as the optical fiber measurement method.

複数本の被測定単心線光ファイバ3の一方の端末31が
揃えられて平行に並べられている。他方の端末は開放端
とされる。そして平行に並べられた一方の端末付近が、
樹脂等で固められて一体化され、一括に平担にカットさ
れ、被YΩが除去されていることは上記の実施例と同様
である。また、人命出射用の複数本の光ファイバ2の端
末21も上記と同様にテープ状に−・体化されている。
One end 31 of a plurality of single optical fibers 3 to be measured is aligned and arranged in parallel. The other terminal is an open end. And near one terminal lined up in parallel,
It is the same as the above embodiment in that it is hardened with resin, etc., is integrated, is cut into a flat piece, and the YΩ layer is removed. Further, the terminals 21 of the plurality of optical fibers 2 for ejecting human life are also formed into a tape shape in the same manner as described above.

この複数の光ファイバ2の−・端には、光源と受光器と
を含み、光ファイバ2の一端に光を入射するとともに、
この一端から出射される光ファイバ2の各部からの後方
散乱光を受光して11111定する4111定器11が
それぞれ接続されている。複数の光ファイ/<2と複数
の被測定光ファイノへ3とが、テープ状に成形された端
末21と31とを突き合せるようにして接続されており
、Δ]1定器11から入射された光が光ファイバ2およ
び光ファイバ3中に伝搬され、その各部での散乱光や反
射光が逆方向に進行して入射端側に再び戻ってくる。
The ends of the plurality of optical fibers 2 include a light source and a light receiver, and light is input to one end of the optical fibers 2, and
A 4111 detector 11 for receiving and 11111 the backscattered light emitted from each part of the optical fiber 2 emitted from this one end is connected to each end. A plurality of optical fibers/<2 and a plurality of optical fibers to be measured 3 are connected with tape-shaped terminals 21 and 31 butted against each other, and the Δ]1 is incident from the fixed device 11. The light is propagated into the optical fiber 2 and the optical fiber 3, and the scattered light and reflected light at each part travel in the opposite direction and return to the input end side again.

この光が′A11l定器11の受光器に受光され、その
各部での散乱光や反射光の状jEが表示袋2i12によ
って示される。
This light is received by the light receiver of the 'A11l detector 11, and the state of scattered light and reflected light jE at each part is shown by the display bag 2i12.

このようなバックスキャツタ法の場合も、端末31が一
体化されているので、扱いが容易であり、作業が簡単に
なって全体のJlll定時間が短縮される。
Even in the case of such a backscatter method, since the terminal 31 is integrated, it is easy to handle, the work is simple, and the overall Jllll fixed time is shortened.

発明の効果 この発明によれば、1木イσに被rQされた?i心線光
ファイバを測定する際にも、複数本のファイバの端面の
整形(カット)および被覆除去作業を一括に行なうこと
ができ1作業が容易になる。光の人ψ出射の光軸調整も
複数本が一体化されているため容易である。このように
作業が容易になるので、全体のX1ll定時間が短縮さ
れる。また、測定精度を高めることも容易である。
Effects of the invention According to this invention, 1 tree iσ is covered by rQ? Even when measuring i-core optical fibers, the end faces of a plurality of fibers can be shaped (cut) and the coating removed at once, making one operation easier. Adjustment of the optical axis of the human ψ emission of light is also easy because multiple lines are integrated. Since the work becomes easier in this way, the overall X1ll regular time is shortened. Furthermore, it is easy to improve measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の模式図、第2図、第3図
およびi4図は各工程での光ファイバの端末部分を示す
斜視図、第5図は他の実施例の模式図、第6図は従来例
の模式図である。 l・・・光&;i2・・・入射用光ファイバ3・・・被
測定光ファイバ 4・・・出射用光ファイバ5・・・受
光器      32・・・樹脂34・・・ガイド  
    35・・・ノズル36・・・ファイババンドル
 37・・・紫外線ランプ6.7・・・レンズ    
8・・・増幅器9・・・電圧計      11・・・
1llll定器12・・・表示装置
Fig. 1 is a schematic diagram of one embodiment of the present invention, Figs. 2, 3 and i4 are perspective views showing the terminal portion of the optical fiber at each step, and Fig. 5 is a schematic diagram of another embodiment. , FIG. 6 is a schematic diagram of a conventional example. l... Light &; i2... Optical fiber for incidence 3... Optical fiber to be measured 4... Optical fiber for output 5... Light receiver 32... Resin 34... Guide
35... Nozzle 36... Fiber bundle 37... Ultraviolet lamp 6.7... Lens
8...Amplifier 9...Voltmeter 11...
1llllll meter 12...display device

Claims (3)

【特許請求の範囲】[Claims] (1)被測定光ファイバの端末に光を入射し、その光フ
ァイバ中を伝搬した光を端末からの出射させ、その出射
光を計測する光ファイバの測定法において、複数本の被
測定光ファイバの端末付近をほぼ平行に揃えて一体化す
る工程を含むことを特徴とする光ファイバの測定法。
(1) In an optical fiber measurement method in which light is input to the terminal of an optical fiber to be measured, the light that has propagated through the optical fiber is emitted from the terminal, and the emitted light is measured. A method for measuring an optical fiber, comprising the step of aligning and integrating the terminal portions of the fibers so that they are approximately parallel to each other.
(2)光を入射する端末は被測定光ファイバの一方の端
末であり、他方の端末より出射される、該光ファイバ中
を伝搬した光を計測することを特徴とする特許請求の範
囲第1項記載の光ファイバの測定法。
(2) The terminal into which the light enters is one terminal of the optical fiber to be measured, and the light propagated through the optical fiber that is emitted from the other terminal is measured. Optical fiber measurement method described in section.
(3)光を入射する端末は被測定光ファイバの一方の端
末であり、この一方の端末より出射される、該光ファイ
バ各部からの後方散乱光を、この入射側の端末より取り
出して計測することを特徴とする特許請求の範囲第1項
記載の光ファイバの測定法。
(3) The terminal into which light enters is one terminal of the optical fiber to be measured, and the backscattered light emitted from each part of the optical fiber is extracted from this terminal on the input side and measured. A method for measuring an optical fiber according to claim 1, characterized in that:
JP60294781A 1985-12-25 1985-12-25 Optical fiber measurement method Expired - Fee Related JPH0658289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60294781A JPH0658289B2 (en) 1985-12-25 1985-12-25 Optical fiber measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60294781A JPH0658289B2 (en) 1985-12-25 1985-12-25 Optical fiber measurement method

Publications (2)

Publication Number Publication Date
JPS62150134A true JPS62150134A (en) 1987-07-04
JPH0658289B2 JPH0658289B2 (en) 1994-08-03

Family

ID=17812199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60294781A Expired - Fee Related JPH0658289B2 (en) 1985-12-25 1985-12-25 Optical fiber measurement method

Country Status (1)

Country Link
JP (1) JPH0658289B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541725A (en) * 1992-02-05 1996-07-30 Siemens Aktiengesellschaft Method and device for testing a plurality of optical waveguides
JP2007033255A (en) * 2005-07-27 2007-02-08 Chugoku Electric Power Co Inc:The Inspection system for optical fiber
JP5564586B1 (en) * 2013-02-04 2014-07-30 ソフトバンクテレコム株式会社 measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600477B1 (en) * 2015-07-03 2016-03-07 광일종합건설 주식회사 Top down construction method for developping stability through improved process of piller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220250U (en) * 1975-07-30 1977-02-14
JPS55118209U (en) * 1979-02-14 1980-08-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220250U (en) * 1975-07-30 1977-02-14
JPS55118209U (en) * 1979-02-14 1980-08-21

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541725A (en) * 1992-02-05 1996-07-30 Siemens Aktiengesellschaft Method and device for testing a plurality of optical waveguides
JP2007033255A (en) * 2005-07-27 2007-02-08 Chugoku Electric Power Co Inc:The Inspection system for optical fiber
JP5564586B1 (en) * 2013-02-04 2014-07-30 ソフトバンクテレコム株式会社 measuring device

Also Published As

Publication number Publication date
JPH0658289B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JP5910087B2 (en) Light receiving method and separation device for light output from multi-core optical fiber
KR102162811B1 (en) Low-mode high power fiber combiner
US5479543A (en) Precision light-guiding terminal for optical fibers
EP0625270B1 (en) Optical coupler comprising an optical mode mixer
JPH023A (en) Method of accessing optical fiber circuit and connector plug thereof
GB2143965A (en) Optical waveguide splicing method and apparatus
JPH087295B2 (en) Method of manufacturing optical branch coupler
US4431261A (en) Fiber optic splitter
JPH0617923B2 (en) Optical fiber heating measurement method
JPH0364818B2 (en)
JPS6247604A (en) Terminal part for multicore fiber
US5285516A (en) Fused fiber optic attenuator having axially overlapping fiber end portions
JPS62150134A (en) Method for measuring optical fiber
JPH0357450B2 (en)
Szarka et al. A review of biconical taper couplers
JPH07225325A (en) Non-reflection terminal part of optical fiber
CN207764484U (en) A kind of laser display system and its dodging device
JPH03144337A (en) Measuring method for characteristic of optical fiber
JPS6343111A (en) Optical fiber branching device
CN108020926A (en) A kind of laser display system and its dodging device
NL2025873B1 (en) Fast reliable superconducting single-photon detector and cost effective and high yield method for manufacturing such
JPH08240484A (en) Infrared spectrum measuring device and optical fiber probe to constitute infrared spectrum measuring device and manufacture of optical fiber probe
JPH06317721A (en) Fiber creep method for coated optical fiber ribbon
JPH037061B2 (en)
JPH01293308A (en) Connector plug for optical fiber tape line access

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees