JPS6215811B2 - - Google Patents
Info
- Publication number
- JPS6215811B2 JPS6215811B2 JP56179072A JP17907281A JPS6215811B2 JP S6215811 B2 JPS6215811 B2 JP S6215811B2 JP 56179072 A JP56179072 A JP 56179072A JP 17907281 A JP17907281 A JP 17907281A JP S6215811 B2 JPS6215811 B2 JP S6215811B2
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- vibration
- plate
- chamber
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 19
- 238000006073 displacement reaction Methods 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 description 15
- 239000013307 optical fiber Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
- F02D41/185—Circuit arrangements for generating control signals by measuring intake air flow using a vortex flow sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/46—Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
- F02M69/48—Arrangement of air sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/325—Means for detecting quantities used as proxy variables for swirl
- G01F1/3259—Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/325—Means for detecting quantities used as proxy variables for swirl
- G01F1/3259—Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
- G01F1/3266—Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations by sensing mechanical vibrations
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、流体の流れの中に挿入される柱状
物体の下流側の側面に発生するカルマン渦列の振
動周波数を検出して流体の流速または流量を測定
するカルマン渦流量計(流速計)に関する。[Detailed Description of the Invention] [Field of Industrial Application] This invention detects the vibration frequency of a Karman vortex street generated on the downstream side of a columnar object inserted into a fluid flow to determine the fluid flow velocity. or related to Karman vortex flowmeters (current meters) that measure flow rates.
一般に、この種流量計において、柱状物体の下
流に発生するカルマン渦列は低流速域では非常に
弱くなり、そのため、渦の検出には高感度の検出
器が必要である。感度の高い熱線や超音波を用い
る方法は、いずれも微少なアナログ信号を電気的
に増幅するので、検出器および検出回路の温度特
性や安定度が計測精度や計測範囲に及ぼす影響が
大きい。すなわち、この種低流量域の渦の検出の
ために用いられる検出器は、これらの影響を受け
にくく、かつ高感度なものが要求される。
In general, in this type of flowmeter, the Karman vortex street generated downstream of a columnar object becomes very weak in the low flow velocity region, so a highly sensitive detector is required to detect the vortex. Both methods that use highly sensitive heat rays and ultrasonic waves electrically amplify minute analog signals, so the temperature characteristics and stability of the detector and detection circuit have a large effect on measurement accuracy and measurement range. That is, a detector used for detecting this kind of vortex in a low flow rate region is required to be less susceptible to these influences and to be highly sensitive.
ところで、特公昭52−25346号公報によれば、
圧力変動を管路外に取出す2つの圧力取出管と、
この2つの圧力取出管の相互間を両圧力取出管内
の流体が自由に往復できるように両圧力取出管を
連結する連通管路とを備え、その連通管路内に検
出素子を配置した流量測定装置が公知である(第
1従来例)。 By the way, according to Special Publication No. 52-25346,
two pressure extraction pipes that take pressure fluctuations out of the pipeline;
Flow rate measurement is provided with a communication pipe that connects both pressure take-off pipes so that the fluid in both pressure take-off pipes can freely reciprocate between the two pressure take-off pipes, and a detection element is placed in the communication pipe. The device is known (first conventional example).
また、この種の従来装置のうち渦の圧力で振動
板を振動させるようにしたものとして、たとえ
ば、特開昭48−30458号公報に記載された装置が
ある(第2従来例)。この装置は、特にその第3
図によれば、渦発生体の下流に発生する渦の中心
部の通過路における静圧を検出する感圧板を設け
るものである。その場合、感圧板は幅広の板ばね
支持帯によつて一体的に支持されるが、この幅広
の板ばね支持帯はばね常数が高くされ、圧力変動
による感圧板変位を小さくするように形成され
る。 Further, among conventional devices of this type, there is a device described in Japanese Patent Application Laid-open No. 48-30458 (second prior art example), which uses the pressure of a vortex to vibrate a diaphragm. This device is especially suitable for the third
According to the figure, a pressure sensitive plate is provided to detect the static pressure in the central passage of the vortex generated downstream of the vortex generator. In that case, the pressure-sensitive plate is integrally supported by a wide leaf spring support band, which has a high spring constant and is formed to reduce displacement of the pressure-sensitive plate due to pressure fluctuations. Ru.
第2従来例の装置は、渦発生体の下流に発生す
るカルマン渦列を乱さないようにするために、上
述の如く、感圧板を、ばね常数が高くされ圧力変
動による感圧板変位を小さくする幅広の板ばね支
持帯によつて一体支持するものである。この幅広
の板ばね支持帯は管路内壁に固定される。
In the second conventional device, in order not to disturb the Karman vortex street generated downstream of the vortex generating body, the pressure sensitive plate has a high spring constant as described above to reduce displacement of the pressure sensitive plate due to pressure fluctuations. It is integrally supported by a wide leaf spring support band. This wide leaf spring support band is fixed to the inner wall of the conduit.
このようにすることによつて、確かに、渦発生
体の下流に発生するカルマン渦列は感圧板変位に
よつて乱されるようなことがなくなる。 By doing this, it is certain that the Karman vortex street generated downstream of the vortex generator will not be disturbed by the displacement of the pressure sensitive plate.
しかしながら、そのためには、感圧板は幅広の
板ばね支持帯によつて、圧力変動による変位を小
さくされねばならない。 However, for this purpose, the pressure sensitive plate must have a wide leaf spring support band to reduce its displacement due to pressure fluctuations.
ところが、特に低流速領域では渦の発生による
圧力変化が極めて微小である。それゆえ、このよ
うな従来装置においては、今度は逆に、圧力変動
の小さい低流速領域では、感圧板がその微小な圧
力変動に応答できなくなり、従つて低流速領域で
は測定不能になるという新たな問題が派生する。 However, especially in the low flow velocity region, the pressure change due to the generation of vortices is extremely small. Therefore, in such a conventional device, conversely, in a low flow rate region where pressure fluctuations are small, the pressure sensitive plate becomes unable to respond to minute pressure fluctuations, and therefore measurement becomes impossible in a low flow velocity region. problems arise.
さらに、第1従来例への第2従来例の組込みを
検討するに、第1従来例においては、連通管路内
の流体は自由に往復できることが条件となつてい
るので、連通管路内では感圧板の下側の流体は2
つの圧力取出管の間を自由に往復してしまい、そ
の結果、圧力変動は、感圧板に作用するよりも、
感圧板の下側の連通管路内を流通してしまい、測
定困難となる。 Furthermore, when considering the incorporation of the second conventional example into the first conventional example, in the first conventional example, the condition is that the fluid in the communicating pipe can freely reciprocate. The fluid under the pressure plate is 2
The pressure fluctuations move freely between the two pressure take-off tubes, and as a result, the pressure fluctuations, rather than acting on the pressure plate,
It flows through the communication conduit below the pressure-sensitive plate, making measurement difficult.
そこで、本発明は、このような点に鑑みてなさ
れ、圧力変動の小さい低流速領域においてもかか
る微小圧力変動に敏感に応答し得るカルマン渦流
量計を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of these points, and an object of the present invention is to provide a Karman vortex flowmeter that can respond sensitively to minute pressure fluctuations even in a low flow velocity region where pressure fluctuations are small.
このような目的を達成するために、本発明は、
振動板を一枚の板状部材の所定部を所定形状に切
り落した残りの所定部分から形成すると共に、そ
の板状部材にはさらに振動板を支持する一対のス
パンバンド部と、このスパンバンド部を支持する
枠部とを形成し、かつ前記スパンバンド部によつ
て前記振動板の回転軸を形成し、このように構成
された振動板、スパンバンド部および枠部から成
る振動子を、流体の管路の外に配置された振動室
内に、前記枠部がその振動室に固定されるように
して収納して、振動板によつて振動室を2分割
し、そして、その一方の振動室には振動板の変位
検出手段を設け、その他方の振動室には突起によ
つて振動板の回転軸を対称に2分割して2つの小
部屋を形成し、該各小部屋にそれぞれ前記圧力変
動を導入する導入口を設け、しかも、スパンバン
ド部に張力を付与する張力付与手段を設けたこと
を特徴とする。
In order to achieve such an objective, the present invention
The diaphragm is formed from a predetermined portion of a plate-like member that remains after cutting off a predetermined portion into a predetermined shape, and the plate-like member further includes a pair of span band portions that support the diaphragm, and the span band portion. The vibrator formed of the diaphragm, the span band portion, and the frame configured in this manner is The frame portion is housed in a vibration chamber arranged outside the conduit so as to be fixed to the vibration chamber, and the vibration chamber is divided into two by a vibration plate, and one of the vibration chambers is divided into two by a vibration plate. is provided with a means for detecting the displacement of the diaphragm, and the other oscillation chamber is divided into two small chambers by symmetrically dividing the axis of rotation of the diaphragm into two by a protrusion, and the pressure is applied to each of the small chambers. The present invention is characterized in that an inlet for introducing fluctuation is provided, and a tension applying means is provided for applying tension to the span band portion.
以上の如くすることにより、汚損等による影響
を少なくして渦を検出できるようにし、かつ渦発
生体の両側に生じる渦の相互干渉を少なくし、振
動板における外部振動の影響を無くすようにす
る。
By doing the above, it is possible to detect vortices while reducing the influence of contamination, etc., and also to reduce the mutual interference of vortices generated on both sides of the vortex generator, thereby eliminating the influence of external vibrations on the diaphragm. .
以下、この発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.
第1図はこの発明の実施例を示す全体構成図、
第2図は第1図における渦発生体のA―A断面
図、第3図は渦検出部を流体の流れ方向から見た
断面拡大図、第4図は振動子の平面図、第5図は
渦検出部の側断面図、第6図は振動子の変位を検
出する変位検出センサの構成図と、該センサの特
性を示す特性図、第7図は変位検出センサの他の
実施例を示す構成図である。 FIG. 1 is an overall configuration diagram showing an embodiment of the present invention;
Figure 2 is an AA cross-sectional view of the vortex generator in Figure 1, Figure 3 is an enlarged cross-sectional view of the vortex detection section viewed from the fluid flow direction, Figure 4 is a plan view of the vibrator, and Figure 5. 6 is a side sectional view of the vortex detection section, FIG. 6 is a configuration diagram of a displacement detection sensor that detects the displacement of a vibrator, and a characteristic diagram showing the characteristics of the sensor. FIG. 7 is a diagram showing another embodiment of the displacement detection sensor. FIG.
第1図において、1は管路、2はカルマン渦を
発生させるための1対の渦発生体、3は渦検出部
である。渦発生体2は第2図に示されるように、
一対の二等辺三角形の上流柱状体4と、等脚台形
の下流柱状体5とより構成されており、この二つ
の柱状体4と5は一定間隔6を隔てて流れに垂直
に挿入されている。7a,7bは下流柱状体5の
軸方向端部近傍の両側面に設けられたスリツト
で、発生した渦の圧力変化を導くためのものであ
る。第4図において、8は厚さ20μ前後の薄い金
属で形成された振動子で、渦の圧力が作用する振
動板9と、この振動板9をその重心を含む線対称
な軸上で保持して、ねじり振動を行なわせるため
の一対のスパンバンド10aおよび10bと、こ
のスパンバンドの固定端となる枠部11とをほぼ
一定厚さの一枚の金属板から一体に成形して造ら
れており、振動板9はその中心軸に対して質量の
平衡が保たれている。また、スパンバンド10a
および10bのデイメンジヨンで定まるねじりバ
ネ定数は、渦の微少な圧力変化に対しても十分な
角度だけ振動板9が変位するよう極力低くし、か
つその共振周波数もできるだけ小さく設計されて
いる。なお、11a,11bは打ち抜き部であ
る。第3図において、12はこの振動子8を収納
するハウジングで、下部プレート13と上部プレ
ート14とより構成されている。この下部プレー
ト13と上部プレート14には、振動子8の形状
に対応したほぼ同一形状の凹溝(図示なし)が対
向して設けられており、渦発生体2のフランジ1
5の上に下部プレート13、振動子8、および上
部プレート14を順次積層することにより振動子
8が保持されるとともに、振動室16とスパンバ
ンドの収納室17aおよび17bが形成される。
振動室16は、振動子8の振動板9によつて上2
6、下19a,19b二つの部屋にほぼ二等分さ
れ、更に受圧板9と下部プレート13とで形成さ
れる部屋は、下部プレート13の振動板9の回転
軸に対向した位置に設けられた突起18によつて
部屋19aと19bとの二等分されており、部屋
19aおよび19bはそれぞれ孔20aおよび2
0bを介して渦発生体2のスリツト7a,7bに
連通している。この突起18は部屋19a,19
b間の流体の流通を防止して、スリツト7aまた
は7bからの渦の圧力変化を損失なく振動板9へ
伝えることを目的とするもので、この突起18と
振動板9との隙間は、振動板9のねじり振動を阻
害しない範囲で極力小さく、例えば0.1〜0.2mm程
度とすることが望ましい。また、同様な目的か
ら、振動板9の周縁と振動室16との隙間も同程
度の値にすることが望ましい。第5図において、
21はスパンバンド10aおよび10bに張力を
加えるための調整ネジで、スパンバンド10bの
中心軸上に設けられており、該調整ネジ21によ
りスパンバンド10bの周縁の固定部と、下部プ
レート13に設けた突起22との間を押圧して張
力を加え、この張力によつて振動子8のたわみ振
動を防止するものである。第3図に示されるよう
に、23は振動子8の角度変位を検出するための
反射型の光フアイバーで、往復二つの光路24お
よび25を有し、各光軸を振動子8の振動板9の
上面にほぼ垂直に対向させて、部屋26の壁面に
開口している。すなわち、光学系は部屋26内に
全て設けられており、これによつて直接流体と接
触することが防止される。また、この光フアイバ
ーの他端には、発光素子27および受光素子28
が設けられる。なお、29はこの発光および受光
素子27および28、受光素子の出力信号の増幅
および整形回路(図示せず)等から成る検出回路
部である。 In FIG. 1, 1 is a conduit, 2 is a pair of vortex generators for generating a Karman vortex, and 3 is a vortex detector. As shown in FIG. 2, the vortex generator 2 is
It is composed of a pair of isosceles triangular upstream columnar bodies 4 and isosceles trapezoidal downstream columnar bodies 5, and these two columnar bodies 4 and 5 are inserted perpendicularly to the flow with a constant interval 6 between them. . Slits 7a and 7b are provided on both sides of the downstream columnar body 5 in the vicinity of its axial end, and are used to guide the pressure change of the generated vortex. In Fig. 4, reference numeral 8 denotes a vibrator made of thin metal with a thickness of about 20 μm, which includes a diaphragm 9 on which vortex pressure acts, and a diaphragm 9 that is held on a line-symmetrical axis that includes its center of gravity. A pair of span bands 10a and 10b for causing torsional vibration and a frame 11 serving as a fixed end of the span bands are integrally molded from a single metal plate having a substantially constant thickness. Therefore, the mass of the diaphragm 9 is kept balanced with respect to its central axis. In addition, the span band 10a
The torsional spring constant determined by the dimensions 10b and 10b is designed to be as low as possible so that the diaphragm 9 can be displaced by a sufficient angle even in response to minute pressure changes of the vortex, and its resonance frequency is also designed to be as small as possible. Note that 11a and 11b are punched parts. In FIG. 3, a housing 12 houses the vibrator 8, and is composed of a lower plate 13 and an upper plate 14. The lower plate 13 and the upper plate 14 are provided with facing grooves (not shown) having substantially the same shape corresponding to the shape of the vibrator 8.
By sequentially stacking the lower plate 13, the vibrator 8, and the upper plate 14 on top of the vibrator 5, the vibrator 8 is held, and a vibration chamber 16 and span band storage chambers 17a and 17b are formed.
The vibration chamber 16 is connected to the top 2 by the vibration plate 9 of the vibrator 8.
6. The lower chamber 19a, 19b is approximately divided into two chambers, and the chamber formed by the pressure receiving plate 9 and the lower plate 13 is provided at a position facing the rotation axis of the diaphragm 9 of the lower plate 13. The protrusion 18 bisects the chambers 19a and 19b, and the chambers 19a and 19b have holes 20a and 2, respectively.
It communicates with the slits 7a and 7b of the vortex generating body 2 via 0b. This protrusion 18 has chambers 19a, 19
The purpose is to prevent fluid flow between the protrusions 18 and diaphragm 9 and to transmit the pressure change of the vortex from the slit 7a or 7b to the diaphragm 9 without loss. It is desirable that the thickness be as small as possible without inhibiting the torsional vibration of the plate 9, for example, about 0.1 to 0.2 mm. Furthermore, for the same purpose, it is desirable that the gap between the periphery of the diaphragm 9 and the oscillation chamber 16 is also approximately the same value. In Figure 5,
Reference numeral 21 denotes an adjustment screw for applying tension to the span bands 10a and 10b, which is provided on the central axis of the span band 10b. A tension force is applied by pressing between the vibrator 8 and the protrusion 22, and this tension prevents the vibrator 8 from flexural vibration. As shown in FIG. 3, reference numeral 23 is a reflective optical fiber for detecting the angular displacement of the vibrator 8, and has two reciprocating optical paths 24 and 25, with each optical axis connected to the diaphragm of the vibrator 8. It opens into the wall of the room 26, facing almost perpendicularly to the upper surface of the room 9. That is, the optical system is entirely located within the chamber 26, thereby preventing direct contact with the fluid. Further, at the other end of this optical fiber, a light emitting element 27 and a light receiving element 28 are provided.
will be provided. Note that 29 is a detection circuit section comprising the light emitting and light receiving elements 27 and 28, an amplification and shaping circuit (not shown) for the output signal of the light receiving element, and the like.
次に動作を説明する。 Next, the operation will be explained.
例えば、第2図において、渦発生体2の上側
(スリツト7b側)に渦30が生じると、スリツ
ト7bの付近の圧力は反対側のスリツト7aの付
近よりも低下するので、このスリツト7bに連通
した部屋19bの圧力も反対側のスリツト7aに
連通した部屋19aの圧力よりも低くなる。ここ
で、例えば第3図を参照して振動板9の回転軸の
回りの力の平衡を考えると、振動板9の上面に加
わる圧力はその全面でほぼ一定であり、振動板9
の下面に加わる圧力は、この場合は部屋19bの
方が部屋19aよりも低くなつているので、結局
振動板9には部屋19aと部屋19bとの圧力差
に対応した時計方向のモーメントが作用し、これ
によつて振動板9が時計方向に回転するが、この
回転は振動室16の底面と上面とにより、その振
幅が規制される。次いで、渦発生体の反対側に渦
ができると、今度は部屋19aの圧力が部屋19
bの圧力よりも低下するので、振動板9は反時計
方向に変位するが、この場合も上記と同様に振動
室16の底面と上面とによつてその振幅が規制さ
れる。すなわち、振動子8は一対の渦の発生に伴
なつて一往復のねじり振動を行なうが、その振幅
は振動室16の壁面で規制されるため、渦の圧力
が変化してもほぼ一定振幅に保たれることにな
る。ここで、振動板9はその回転中心軸の回りに
ほぼ質量の平衡が保たれているので、外部振動に
よる慣性力は回転軸の回りでは打ち消され、ねじ
り振動を生じることはない。また、スパンバンド
10aおよび10bには常時張力を加えているの
で、振動子8は垂直方向の外部振動に対しても殆
んど追随せず、この点からも外部振動の影響を無
くすことが可能となる。なお、このようにスパン
バンドに張力を加えても、そのねじりバネ定数に
は殆んど影響しないので、渦の検出感度を低下さ
せることなく耐振性を向上できる効果がある。 For example, in FIG. 2, when a vortex 30 is generated above the vortex generating body 2 (on the slit 7b side), the pressure near the slit 7b is lower than that near the slit 7a on the opposite side, so the pressure is communicated with the slit 7b. The pressure in the chamber 19b that is open is also lower than the pressure in the chamber 19a that communicates with the slit 7a on the opposite side. For example, if we consider the balance of forces around the rotational axis of the diaphragm 9 with reference to FIG.
In this case, the pressure applied to the lower surface of the chamber 19b is lower than that of the chamber 19a, so a clockwise moment corresponding to the pressure difference between the chambers 19a and 19b acts on the diaphragm 9. This causes the diaphragm 9 to rotate clockwise, but the amplitude of this rotation is regulated by the bottom and top surfaces of the oscillation chamber 16. Next, when a vortex is formed on the opposite side of the vortex generator, the pressure in the chamber 19a increases
Since the pressure is lower than the pressure b, the diaphragm 9 is displaced counterclockwise, but in this case as well, the amplitude is regulated by the bottom and top surfaces of the oscillation chamber 16, as described above. That is, the vibrator 8 performs one round of torsional vibration as a pair of vortices is generated, but the amplitude is regulated by the wall surface of the vibration chamber 16, so even if the pressure of the vortices changes, the amplitude remains almost constant. It will be preserved. Here, since the mass of the diaphragm 9 is substantially balanced around its central axis of rotation, inertial force due to external vibration is canceled out around the axis of rotation, and torsional vibration does not occur. In addition, since tension is constantly applied to the span bands 10a and 10b, the vibrator 8 hardly follows external vibrations in the vertical direction, and from this point as well, it is possible to eliminate the influence of external vibrations. becomes. Note that even if tension is applied to the span band in this manner, the torsional spring constant thereof is hardly affected, so that the vibration resistance can be improved without reducing the vortex detection sensitivity.
このように、振動子8は渦の発生に伴なつて振
動室16内でねじり振動を行なうのであるが、こ
の振動を例えば10Hz〜1KHzにも及ぶ広い渦周波
数範囲で規則的に行なわせるためには、渦の圧力
変化を損失なく直接振動板9に作用させることが
重要である。このために、この発明では渦発生体
2の軸方向端部にスリツト7a,7bを設けて最
短距離で渦の圧力変化を部屋19aおよび19b
に導入するとともに、突起18によつて部屋19
aと部屋19b間の洩れを極めて小さくし、さら
に振動板9の周縁と振動室16との壁面との隙間
で部屋26と部屋19aおよび19bとの間の洩
れをも少なくしたので、損失なく受圧板(振動
板)に渦の圧力が作用し、これにより安定に渦を
検出することができる。 In this way, the vibrator 8 performs torsional vibration within the vibration chamber 16 as vortices are generated. It is important that the pressure change of the vortex be applied directly to the diaphragm 9 without loss. For this purpose, in the present invention, slits 7a and 7b are provided at the axial ends of the vortex generating body 2, so that the pressure change of the vortex can be controlled over the shortest distance between the chambers 19a and 19b.
is introduced into the chamber 19 by the protrusion 18.
The leakage between the chamber 26 and the chambers 19a and 19b is extremely small, and the gap between the periphery of the diaphragm 9 and the wall of the vibration chamber 16 also reduces the leakage between the chamber 26 and the chambers 19a and 19b, so that pressure can be received without loss. The pressure of the vortex acts on the plate (diaphragm), thereby making it possible to stably detect the vortex.
次に、振動子8の変位回数、すなわち振動周波
数の検出について第3図、第6図および第7図を
参照して説明する。 Next, detection of the number of displacements of the vibrator 8, that is, the vibration frequency, will be explained with reference to FIGS. 3, 6, and 7.
振動周波数の検出は、この場合は光フアイバー
23により、振動板9の上面の反射光量の変化を
検出して行なう。すなわち、光フアイバー23は
二つの光路24および25を有しており、振動板
9に対向した端面31にはこの二つの光路をラン
ダムに配列させてあり、かつこの光軸を振動板9
にほぼ垂直に対向して設けてある。振動板9から
の反射光量は第6図bに示すように、振動板の反
射面の回転に伴なつて減少するので、振動子の一
往復の振動に伴ない二つの光パルス出力が得られ
る。ここで、振動子8の変位はほぼ一定であるの
で、光出力もほぼ一定となり、したがつて簡単な
回路構成で渦周波数を検出することができる。こ
のように、反射光を検出する方法は構造が簡単
で、しかも光軸調整も不用である等、その実用的
効果が大きい。なお、上述の如くこの光フアイバ
ー23および反射面からなる光学系は振動室16
の部屋26内に在り、直接流体に接触することが
ないので、光学系の汚損を防止することができ
る。 The vibration frequency is detected by detecting a change in the amount of light reflected from the upper surface of the diaphragm 9 using the optical fiber 23 in this case. That is, the optical fiber 23 has two optical paths 24 and 25, and these two optical paths are randomly arranged on the end face 31 facing the diaphragm 9, and the optical axis is aligned with the diaphragm 9.
They are placed almost perpendicularly to each other. As shown in FIG. 6b, the amount of reflected light from the diaphragm 9 decreases as the reflective surface of the diaphragm rotates, so two optical pulse outputs are obtained with each reciprocating vibration of the oscillator. . Here, since the displacement of the vibrator 8 is substantially constant, the optical output is also substantially constant, and therefore the vortex frequency can be detected with a simple circuit configuration. As described above, the method of detecting reflected light has a simple structure, does not require optical axis adjustment, and has great practical effects. Note that, as described above, the optical system consisting of the optical fiber 23 and the reflective surface is connected to the vibration chamber 16.
Since the optical system is located in the room 26 and does not come into direct contact with the fluid, it is possible to prevent the optical system from being contaminated.
上記の検出機構では、光フアイバー23の光軸
を振動板9とほぼ直交して設けるようにしたが、
第7図の如く光フアイバー23の光軸を振動板9
の法線から振動板9の最大の角度振幅θmだけ予
め振動面上で偏位させて設けるようにしてもよ
い。この方法は、第6図bの曲線のほぼ傾きが一
様な部分を使用するので、図より明らかなよう
に、微少な角変位に対しても検出感度が良く、ほ
ぼ正弦波状の出力信号が得られるため、信号処理
が容易となる利点がある。この場合、反射光量の
ピーク値は第6図bの右側に移動することはいう
迄もない。なお、この光フアイバーの構成は本実
施例に限定されるものではなく、要は、反射光量
の変化を有効に検出できるものであればどのよう
な構成のものでも良い。 In the above detection mechanism, the optical axis of the optical fiber 23 is provided almost perpendicular to the diaphragm 9;
As shown in FIG. 7, the optical axis of the optical fiber 23 is connected to the diaphragm 9.
The vibration plate 9 may be provided so as to be deviated in advance from the normal line by the maximum angular amplitude θm on the vibration surface. This method uses the part of the curve in Figure 6b where the slope is almost uniform, so as is clear from the figure, the detection sensitivity is good even for minute angular displacements, and the output signal is almost sinusoidal. This has the advantage of facilitating signal processing. In this case, it goes without saying that the peak value of the amount of reflected light moves to the right in FIG. 6b. Note that the configuration of this optical fiber is not limited to this embodiment, and any configuration may be used as long as it can effectively detect changes in the amount of reflected light.
以上に説明したように、本発明によれば、次の
利点が奏される。
As explained above, according to the present invention, the following advantages are achieved.
(1) 本発明においては、振動板9は一枚の板状部
材の所定部を所定形状に切り落した残りの所定
部分から形成されると共に、その板状部材には
さらに振動板9を支持する一対のスパンバンド
部10a,10bと、このスパンバンド部10
a,10bを支持する枠部11とが形成され、
かつ、スパンバンド部10a,10bによつて
振動板9の回転軸が形成されている。(1) In the present invention, the diaphragm 9 is formed from a predetermined portion of a single plate-like member that is cut off into a predetermined shape, and the diaphragm 9 is further supported on the plate-like member. A pair of span band parts 10a and 10b, and this span band part 10
A frame portion 11 that supports a and 10b is formed,
In addition, a rotation axis of the diaphragm 9 is formed by the span band parts 10a and 10b.
このようにすることによつて、振動板9は、
ばね常数の極めて小さいスパンバンド部10
a,10bによつて支持されるので、カルマン
渦に起因する圧力変動に良好に応答することが
できる。 By doing so, the diaphragm 9
Spun band section 10 with extremely small spring constant
a and 10b, it can respond favorably to pressure fluctuations caused by Karman vortices.
それゆえ、本発明によれば、圧力変動の小さ
い低流速領域においても充分な敏感さでもつて
測定可能となる。 Therefore, according to the present invention, measurement can be performed with sufficient sensitivity even in a low flow rate region with small pressure fluctuations.
(2) 本発明においては、振動板9は、スパンバン
ド部10a,10bによつて支持されている。(2) In the present invention, the diaphragm 9 is supported by the span band parts 10a and 10b.
このようにすることによつて、スパンバンド
部10a,10bのばね常数は小さいので、振
動板9の共振周波数は小さくなる。 By doing this, the spring constant of the span band portions 10a, 10b is small, so the resonant frequency of the diaphragm 9 becomes small.
一方、上記第2従来例の装置においては、感
圧板はばね常数の高い板ばね支持帯によつて支
持されているので、感圧板の共振周波数は非常
に大きい。 On the other hand, in the device of the second conventional example, the pressure sensitive plate is supported by a leaf spring support band having a high spring constant, so the resonance frequency of the pressure sensitive plate is very large.
ところが、周知のように、カルマン渦に起因
する圧力変動はかかるカルマン渦の発生周波数
に二乗に比例して大きくなる。 However, as is well known, pressure fluctuations caused by Karman vortices increase in proportion to the square of the frequency at which such Karman vortices occur.
従つて、本発明においては、振動板9の共振
周波数が小さいので、振動板9の共振点は低周
波数領域にあり、それゆえ振動板9に作用する
圧力は小さい。よつて、本発明においては、共
振時に振動板9が作用圧力によつて破壊される
ようなことはない。 Therefore, in the present invention, since the resonance frequency of the diaphragm 9 is small, the resonance point of the diaphragm 9 is in a low frequency region, and therefore the pressure acting on the diaphragm 9 is small. Therefore, in the present invention, the diaphragm 9 is not destroyed by the applied pressure during resonance.
一方、第2従来例の装置においては、感圧板
の共振周波数が非常に大きいので、感圧板の共
振点は高周波数領域にあり、それゆえ感圧板に
作用する圧力は大きい。よつて、第2従来例の
装置においては、共振時に感圧板が作用圧力に
よつて破壊される虞がある。このことは第1従
来例と第2従来例との組合わせにおいても生じ
る。 On the other hand, in the device of the second conventional example, the resonance frequency of the pressure sensitive plate is very high, so the resonance point of the pressure sensitive plate is in a high frequency region, and therefore the pressure acting on the pressure sensitive plate is large. Therefore, in the device of the second conventional example, there is a risk that the pressure sensitive plate may be destroyed by the applied pressure during resonance. This also occurs in the combination of the first conventional example and the second conventional example.
(3) 本発明においては、振動板9、スパンバンド
部10a,10bおよび枠部11から成る振動
子8は、流体の管路1の外に配置された振動室
16内に、枠部11がその振動室16に固定さ
れるようにして収納されて、前記振動室16を
2分割し、そして、その一方の振動室には振動
板9の変位検出手段が設けられ、その他方の振
動室には圧力変動を導入する導入口20a,2
0bが設けられている。(3) In the present invention, the vibrator 8 consisting of the diaphragm 9, the span band parts 10a and 10b, and the frame part 11 has the frame part 11 in the vibration chamber 16 disposed outside the fluid conduit 1. The vibrating chamber 16 is fixedly housed in the vibrating chamber 16, and the vibrating chamber 16 is divided into two parts, and one vibrating chamber is provided with displacement detecting means for the vibrating plate 9, and the other vibrating chamber is provided with a displacement detecting means for the vibrating plate 9. are inlet ports 20a, 2 that introduce pressure fluctuations.
0b is provided.
このようにすることによつて、渦の圧力変化
の作用部(導入口20a,20b)と振動板9
の変位検出手段とが、振動板9自身で隔離され
る。 By doing this, the vortex pressure change acting part (inlet ports 20a, 20b) and the diaphragm 9
displacement detection means are isolated by the diaphragm 9 itself.
それゆえ、本発明によれば、振動板9の変位
検出手段が直接流体に接触することが少なくな
り、汚損等による影響を少なくして渦を検出す
ることができる。 Therefore, according to the present invention, the displacement detecting means of the diaphragm 9 is less likely to come into direct contact with the fluid, and vortices can be detected with less influence from contamination and the like.
(4) 本発明においては、その場合に、他方の振動
室は突起18によつて振動板9の回転軸を対称
に2分割されて2つの小部屋19a,19bが
形成され、そして、各小部屋19a,19bに
それぞれ圧力変動を導入する導入口20a,2
0bが設けられている。(4) In the present invention, in that case, the other vibration chamber is divided into two by the projection 18 symmetrically about the rotation axis of the diaphragm 9 to form two small rooms 19a and 19b, and each small Inlet ports 20a and 2 for introducing pressure fluctuations into the chambers 19a and 19b, respectively
0b is provided.
このようにすることによつて、渦発生体2の
両側に生ずる渦はそれぞれ各小部屋19a,1
9bに独立的に導入される。しかも、その渦に
起因する圧力変動はたとえば一方の導入口20
aから他方の導入口20bに流通するのが突起
18によつて完全に阻止される。 By doing this, the vortices generated on both sides of the vortex generator 2 can be transmitted to each small room 19a, 1.
9b is introduced independently. Moreover, the pressure fluctuation caused by the vortex is caused by, for example, one of the inlet ports 20
Flow from a to the other inlet 20b is completely prevented by the protrusion 18.
それゆえ、本発明によれば、渦発生体2の両
側に生ずる渦は相互干渉が少なくなり、しか
も、その渦に起因する圧力変動は振動板9に全
面的に作用するようになり、よつて高い検出感
度にて測定を行なうことができる。 Therefore, according to the present invention, the vortices generated on both sides of the vortex generator 2 have less mutual interference, and the pressure fluctuations caused by the vortices affect the entire diaphragm 9. Measurements can be performed with high detection sensitivity.
(5) 本発明においては、スパンバンド部10bに
張力を付与する張力付与手段(実施例では、ネ
ジ21および突起22にて構成)が設けられて
いる。(5) In the present invention, a tension applying means (consisting of screws 21 and protrusions 22 in the embodiment) is provided for applying tension to the span band portion 10b.
このようにすることによつて、振動子8(す
なわち振動板9)のたわみ振動が防止される。 By doing this, deflection vibration of the vibrator 8 (ie, the diaphragm 9) is prevented.
それゆえ、本発明によれば、外部振動の影響を
無くすことができる。 Therefore, according to the present invention, the influence of external vibrations can be eliminated.
第1図はこの発明の実施例を示す全体構成図、
第2図は第1図の渦発生体のA―A断面図、第3
図は渦検出部を流体の流れ方向から見た断面拡大
図、第4図は振動子を示す平面図、第5図は渦検
出部の側断面図、第6図は振動子の変位を検出す
る変位検出センサの構成図とその特性を示す特性
図、第7図は変位検出センサの他の実施例を示す
構成図である。
符号説明 1…管路、2…渦発生体、3…渦検
出部、4…上流柱状体、5…下流柱状体、6…間
隙、7a,7b…スリツト、8…振動子、9…振
動板、10a,10b…スパンバンド、11…枠
部、11a,11b…打ち抜き部、12…ハウジ
ング、13…下部プレート、14…上部プレー
ト、15…フランジ、16…振動室、17a,1
7b…スパンバンド収納室、19a,19b,2
6…部屋、18,22…突起、20a,20b…
孔、21…ネジ、23…光フアイバー、24,2
5…光路、27…発光素子、28…受光素子、2
9…検出回路部、30…渦、31…光フアイバー
端面。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention;
Figure 2 is a sectional view taken along line AA of the vortex generator in Figure 1;
The figure is an enlarged cross-sectional view of the vortex detection unit viewed from the fluid flow direction, Figure 4 is a plan view showing the oscillator, Figure 5 is a side sectional view of the vortex detection unit, and Figure 6 is for detecting displacement of the oscillator. FIG. 7 is a configuration diagram showing another embodiment of the displacement detection sensor. Description of symbols 1...Pipe line, 2...Vortex generator, 3...Vortex detection section, 4...Upstream columnar body, 5...Downstream columnar body, 6...Gap, 7a, 7b...Slit, 8...Vibrator, 9...Vibration plate , 10a, 10b... Spun band, 11... Frame part, 11a, 11b... Punching part, 12... Housing, 13... Lower plate, 14... Upper plate, 15... Flange, 16... Vibration chamber, 17a, 1
7b... Spun band storage room, 19a, 19b, 2
6...Room, 18, 22...Protrusion, 20a, 20b...
Hole, 21...Screw, 23...Optical fiber, 24,2
5... Optical path, 27... Light emitting element, 28... Light receiving element, 2
9...Detection circuit section, 30...Vortex, 31...Optical fiber end face.
Claims (1)
体の両側面近傍に交互に生じる圧力変動を受けて
振動する振動板を備え、この振動板の振動周波数
から前記流体の流量を測定するカルマン渦流量計
において、 前記振動板9を一枚の板状部材の所定部を所定
形状に切り落した残りの所定部分から形成すると
共に、その板状部材にはさらに前記振動板を支持
する一対のスパンバンド部10a,10bと、こ
のスパンバンド部を支持する枠部11とを形成
し、かつ前記スパンバンド部によつて前記振動板
の回転軸を形成し、 このように構成された振動板、スパンバンド部
および枠部から成る振動子8を、前記流体の管路
の外に配置された振動室16内に、前記枠部がそ
の振動室に固定されるようにして収納して、前記
振動板によつて前記振動室を2分割し、 そして、その一方の振動室には前記振動板の変
位検出手段を設け、その他方の振動室には突起1
8によつて前記振動板の回転軸を対称に2分割し
て2つの小部屋19a,19bを形成し、該各小
部屋にそれぞれ前記圧力変動を導入する導入口を
設け、 しかも、前記スパンバンド部に張力を付与する
張力付与手段を設けた、 ことを特徴とするカルマン渦流量計。[Claims] 1. A diaphragm that vibrates in response to pressure fluctuations that alternately occurs near both sides of a Karman vortex generator inserted into a fluid flow, and the vibration frequency of the diaphragm is used to determine the flow of the fluid. In a Karman vortex flowmeter for measuring flow rate, the diaphragm 9 is formed from a predetermined portion of a plate-shaped member that is cut off into a predetermined shape, and the diaphragm is further attached to the plate-shaped member. A pair of supporting span band parts 10a and 10b and a frame part 11 supporting the span band parts are formed, and the rotating shaft of the diaphragm is formed by the span band parts, and is configured in this way. A vibrator 8 consisting of a vibrating plate, a span band portion, and a frame portion is housed in a vibrating chamber 16 disposed outside the fluid conduit such that the frame portion is fixed to the vibrating chamber. The vibration chamber is divided into two parts by the vibration plate, and one vibration chamber is provided with displacement detection means for the vibration plate, and the other vibration chamber is provided with a protrusion 1.
8 symmetrically divides the rotational axis of the diaphragm into two to form two small chambers 19a and 19b, and each of the small chambers is provided with an inlet for introducing the pressure fluctuation, and the span band A Karman vortex flowmeter characterized by comprising a tension applying means for applying tension to the section.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56179072A JPS5880525A (en) | 1981-11-10 | 1981-11-10 | Karman vortex flowmeter |
US06/439,900 US4584883A (en) | 1981-11-10 | 1982-11-08 | Karman vortex flowmeter |
DE19823241988 DE3241988A1 (en) | 1981-11-10 | 1982-11-10 | FLOWMETER WITH KARMAN'SCHER VERBELSTRASSE |
GB08502843A GB2159946B (en) | 1981-11-10 | 1982-11-10 | Karmen vortex flowmeters |
GB08232154A GB2112938B (en) | 1981-11-10 | 1982-11-10 | Karman vortex flowmeters |
GB08502845A GB2160314B (en) | 1981-11-10 | 1985-02-05 | Karman vortex flowmeters |
GB08502847A GB2160316B (en) | 1981-11-10 | 1985-02-05 | Karman vortex flowmeters |
GB08502849A GB2160318B (en) | 1981-11-10 | 1985-02-05 | Karman vortex flowmeters |
GB08502846A GB2160315B (en) | 1981-11-10 | 1985-02-05 | Karman vortex flowmeters |
GB08502844A GB2160313B (en) | 1981-11-10 | 1985-02-05 | Karman vortex flowmeters |
GB08502848A GB2160317B (en) | 1981-11-10 | 1985-02-05 | Karman vortex flowmeters |
US06/823,998 US4648280A (en) | 1981-11-10 | 1986-01-29 | Karman vortex flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56179072A JPS5880525A (en) | 1981-11-10 | 1981-11-10 | Karman vortex flowmeter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5880525A JPS5880525A (en) | 1983-05-14 |
JPS6215811B2 true JPS6215811B2 (en) | 1987-04-09 |
Family
ID=16059596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56179072A Granted JPS5880525A (en) | 1981-11-10 | 1981-11-10 | Karman vortex flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5880525A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58219417A (en) * | 1982-06-15 | 1983-12-20 | Fuji Electric Co Ltd | Intake air flowmeter of engine |
JPS58219415A (en) * | 1982-06-15 | 1983-12-20 | Fuji Electric Co Ltd | Karman's vortex street flowmeter |
DE3623262A1 (en) * | 1985-07-16 | 1987-01-29 | Toyota Motor Co Ltd | FLOW MEASURING SYSTEM WITH A KARMAN SWIRL FLOW METER |
US5214260A (en) * | 1991-04-03 | 1993-05-25 | Fort Wayne Wire Die, Inc. | Electrical discharge machine wire electrode guiding device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830458A (en) * | 1971-08-24 | 1973-04-21 | ||
JPS5225346A (en) * | 1975-08-19 | 1977-02-25 | Okura Yusoki Co Ltd | Floor conveyer |
-
1981
- 1981-11-10 JP JP56179072A patent/JPS5880525A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830458A (en) * | 1971-08-24 | 1973-04-21 | ||
JPS5225346A (en) * | 1975-08-19 | 1977-02-25 | Okura Yusoki Co Ltd | Floor conveyer |
Also Published As
Publication number | Publication date |
---|---|
JPS5880525A (en) | 1983-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4186599A (en) | Vortex shedding flowmeter assembly | |
JP3249133B2 (en) | Mass flow meter | |
JPH08297011A (en) | Sensor and method for measuring distance to medium and physical property of medium thereof | |
JPH03500206A (en) | oscillating beam vortex sensor | |
US6722209B1 (en) | Coriolis force type flow meter using optical interferometer | |
JPS6215811B2 (en) | ||
GB2160318A (en) | Karman vortex flowmeters | |
JPS6215810B2 (en) | ||
JPS632451B2 (en) | ||
JP3096181B2 (en) | Coriolis flow meter | |
JPS6257207B2 (en) | ||
JPS6220489B2 (en) | ||
US4756196A (en) | Flow measuring apparatus | |
JPS6257206B2 (en) | ||
RU2681225C1 (en) | Sensitive element of vortex flow meter | |
JPS6127695B2 (en) | ||
JPH01240822A (en) | Optical vibration plate vortex current meter | |
JPH0979882A (en) | Vibration type measuring device | |
JPS6127694B2 (en) | ||
JP3038497B2 (en) | Piezoelectric differential pressure vortex sensor | |
JPH06174509A (en) | Karman vortex flowmeter | |
JPH06235652A (en) | Mass flowmeter | |
JPS6231852Y2 (en) | ||
RU2467290C2 (en) | Vortex flow meter with plate of sensor of vortex oscillations | |
JPH0524185Y2 (en) |