Nothing Special   »   [go: up one dir, main page]

JPS62140359A - Electrode for cell - Google Patents

Electrode for cell

Info

Publication number
JPS62140359A
JPS62140359A JP60281317A JP28131785A JPS62140359A JP S62140359 A JPS62140359 A JP S62140359A JP 60281317 A JP60281317 A JP 60281317A JP 28131785 A JP28131785 A JP 28131785A JP S62140359 A JPS62140359 A JP S62140359A
Authority
JP
Japan
Prior art keywords
filling
active material
capacity
metal
foamed metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60281317A
Other languages
Japanese (ja)
Other versions
JP2568496B2 (en
Inventor
Hideo Kaiya
英男 海谷
Motohide Masui
増井 基秀
Shingo Tsuda
津田 信吾
Minoru Yamaga
山賀 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60281317A priority Critical patent/JP2568496B2/en
Publication of JPS62140359A publication Critical patent/JPS62140359A/en
Application granted granted Critical
Publication of JP2568496B2 publication Critical patent/JP2568496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the capacity density and reduce the unevenness of capacity, by using a foamy metal with one side of a high porousness and the other side of a low porousness as a foamy metal to fill an active substance. CONSTITUTION:A foamy metal with one side of a high porousness and the other side of a low porousness is used, and the highly porous side is placed upward. Then an active substance is filled, dried, and pressed so that falling off of the active substance is prevented, while the filling efficiency is improved by the high porousness of the one side. Since the falling efficiency of the active substance is good and the falling off of that is restricted, like this the level of the filling capacity density is improved and the unevenness of the capacity can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルカドミウム蓄電池々どの二次電池に
用いる電極に関し、さらに詳しくは多孔性の金属支持体
中に活物質を充填して構成する電池用電極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to electrodes used in secondary batteries such as nickel-cadmium storage batteries, and more particularly to electrodes for batteries constructed by filling a porous metal support with an active material. Regarding electrodes.

従来の技術 二次電池の電極は、金属製の筒状袋状、または格子の支
持体に活物質を充填したり、金属焼結体に活物質を充填
したものが一般的である。前者の筒状1袋状、格子の支
持体を使用するものは、充填容量が大きくできるという
利点があるが、高率の放電特性が悪いという欠点がある
。寸だ、後者の金属焼結体の支持体を使用するものは高
率放電特性が優れているという利点があるが、充填容量
が小さいという欠点がある。この両者の欠点を改善する
ため最近では高多孔度を有する連続した三次元的網目構
造を持った発泡メタルを支持体に使用する電池用電極が
提案されている。この発泡メタルに活物質を充填する方
法は、高容量、高率放電に適した電極が得られる。
BACKGROUND OF THE INVENTION Electrodes for secondary batteries are generally made of a metal cylindrical bag or lattice support filled with an active material, or a metal sintered body filled with an active material. The former type, which uses a cylindrical bag-like support and a lattice, has the advantage of increasing the filling capacity, but has the disadvantage of poor high-rate discharge characteristics. The latter, which uses a sintered metal support, has the advantage of excellent high-rate discharge characteristics, but has the disadvantage of a small filling capacity. In order to improve both of these drawbacks, battery electrodes have recently been proposed in which a metal foam having a continuous three-dimensional network structure with high porosity is used as a support. This method of filling the foamed metal with an active material provides an electrode suitable for high capacity and high rate discharge.

発泡メタルへの活物質の充填は、通常粉末状態の活物質
を直接充填するか、あるいは粉末状態の活物質を水など
とともに練合し、ペースト状態として充填する。上記い
ずれの場合でも発泡メタルの多孔度が高いほうが活物質
の充填は容易であり、産量においては利点が大きい。
The active material is usually filled into the foamed metal by directly filling the active material in powder form, or by kneading the active material in powder form with water or the like to form a paste. In any of the above cases, the higher the porosity of the foamed metal, the easier it is to fill with the active material, which is advantageous in terms of production volume.

発明が解決しようとする問題点 しかし通常、活物質充填後に充填密度を増大させるため
の極板の加圧工程が必要である。この加圧はペースト状
の活物質を充填した場合でも、加圧時にペースト状の活
物質が流出するのを防ぐた3 ・\−7 め、極板を乾燥した状態で行なわれる。この加圧工程あ
るいは加圧前の乾燥工程において、活物質の充填性のよ
い高多孔度の発泡メタルを使用したものは発泡メタル支
持体からの活物質粉末の脱落が大きく、電極としての容
量の低下、容量バラツキの増大、活物質の損失などの問
題があった。本発明は、発泡メタルの構造の改良により
上記の問題を改善するものである。
Problems to be Solved by the Invention However, it is usually necessary to press the electrode plate after filling the active material in order to increase the packing density. Even when a paste-like active material is filled, this pressurization is performed with the electrode plate in a dry state in order to prevent the paste-like active material from flowing out during pressurization. In this pressurizing process or the drying process before pressurizing, if a highly porous foamed metal with good active material filling properties is used, the active material powder will fall off from the foamed metal support, resulting in a reduction in the capacity of the electrode. There were problems such as a decrease in capacity, an increase in capacity variation, and a loss of active material. The present invention solves the above problems by improving the structure of the foam metal.

問題点を解決するだめの手段 本発明は、上記問題点を改善するために、片面が高多孔
度で、他面が低多孔度の発泡メタルを使用し、この発泡
メタルに活物質を粉末あるいはペースト状態で充填し乾
燥、加工したものである。
Means to Solve the Problems In order to improve the above problems, the present invention uses a foamed metal with high porosity on one side and low porosity on the other side, and coats the foamed metal with powder or active material. It is filled in a paste state, dried, and processed.

作  用 活物質の充填性は、発泡メタルの多孔度に大きく影響さ
れる。これは粉末の場合でもペースト状態の場合でも同
様である。発泡メタルの多孔度が低い場合は、活物質粒
子が発泡状の穴を通過できないため、充填性が極めて悪
い。しかし、発泡メタルの多孔度があるレベル以上に達
すると、充填性が急激に向」ニする。これd:活物質粒
子が発泡状の穴をスムースに通過するようになるためで
ある。
The filling property of the active material is greatly influenced by the porosity of the foamed metal. This is true whether it is in powder form or in paste form. If the porosity of the foamed metal is low, the active material particles cannot pass through the foamed holes, resulting in extremely poor filling performance. However, when the porosity of the foamed metal reaches a certain level or more, the filling property rapidly decreases. This is because the active material particles can smoothly pass through the foamed holes.

活物質の脱落も充填とまったく同様の関係にある。Falling off of the active material has exactly the same relationship as filling.

すなわち、発泡メタルのある・多孔度を境として高多孔
度側では非包に脱落しやすく、低多孔度側ではほとんど
脱落がない。従来?lf池川の用物質支持体として用い
ていた発泡メタルは、充jpを容易にするため、均一な
高多孔度のものを使用していた。
That is, on the high porosity side, the foamed metal tends to fall off unenclosed, and on the low porosity side, there is almost no falling off. Conventional? The foamed metal used as the material support for lf Ikegawa had a uniform high porosity to facilitate filling.

このため充填後の脱落が大きな回頭となっていた。For this reason, falling off after filling resulted in a major turning point.

本発明では、片面が高多孔度でもう一方の面が低多孔度
のものを使用することにより従来の問題を改善するもの
である。すなわち高多孔度を有する面を上にして活物質
を充填し、乾燥、加圧工程までこの方向をMf:持すれ
ば、活物質の脱落はほとんど見られない。寸だ、充填性
については、高多孔度の面を一面有しているため、充填
性は良好となる。
The present invention improves the conventional problems by using a material with high porosity on one side and low porosity on the other side. That is, if the active material is filled with the highly porous side facing up and this direction is maintained until the drying and pressurizing steps, the active material will hardly fall off. As for the filling property, since it has one surface with high porosity, the filling property is good.

実施例 以下本発明の実施例をニッケル正極の場合について述べ
る。
Examples Examples of the present invention will be described below using a nickel positive electrode.

5 ヘ−ノ ニッケル正極に用いる発泡メタルは、通常導電材として
作用するカーボンを塗布した発泡ポリウレタンにニッケ
ルメッキを行ない、後に高温で処理することにより発泡
ポリウレタンを焼消させ、発泡状の二・メタル骨格を残
すことにより製造する。
5 Foamed metal used in nickel positive electrodes is usually made by nickel plating foamed polyurethane coated with carbon, which acts as a conductive material, and then treated at high temperature to burn out the foamed polyurethane, resulting in a foamed metal skeleton. Manufactured by leaving behind.

本発明においては、通常カーボンを塗布した発泡ウレタ
ンの両側にアノードを配置してニッケルメッキを行なう
のに対し、片側にのみアノードを配置してカーボン塗布
発泡ポリウレタンにニッケルメッキを行なった。ニッケ
ルメッキは、アノードを配置した面より進行するため、
アノードを配置した側の面のニッケルメッキ量が多く(
多孔度が低く)反対の面はニッケルメッキ量が少なく(
多孔度が高く)なる。このようにして、片面の多孔度が
高く、もう−面の多孔度が低い発泡メタル1を用意した
In the present invention, nickel plating is performed by placing anodes on both sides of polyurethane foam coated with carbon, whereas nickel plating is performed on the polyurethane foam coated with carbon by placing an anode only on one side. Nickel plating progresses from the surface where the anode is placed, so
The amount of nickel plating on the side where the anode is placed is large (
The opposite side has less nickel plating (low porosity).
porosity). In this way, a foamed metal 1 having high porosity on one side and low porosity on the other side was prepared.

第1図A、B、Cは上述した本発明の発泡メタル及び従
来の電池電極用発泡メタルの断面概略図であり、B、C
はそれぞれ低多孔度、高多孔度のものである。
FIGS. 1A, B, and C are schematic cross-sectional views of the foamed metal of the present invention and the conventional foamed metal for battery electrodes, as described above;
are of low porosity and high porosity, respectively.

6へ一/ 上記A、B、Cの各発泡メタルに粉末の活物質を充填し
、通常の方法で一定の厚さに加圧加工を行った。充填か
ら加圧の工程は発泡メタルを水平方向に固定し、Aにつ
いては低多孔度の面を下側にした。
To 6/ Each of the foamed metals A, B, and C above was filled with a powdered active material, and pressurized to a constant thickness using a conventional method. During the steps from filling to pressurization, the foamed metal was fixed horizontally, and in case of A, the low porosity surface was placed on the lower side.

後にA、B、Cの各極板を6′″l X 6 Cmの大
きさに加工し、充填容量密度の計算を行った。第2図は
、それぞれA、B、Cについての充填容量密度の水準と
バラツキを表わした図である。Bは充填性が良好なため
充填容量密度のレベルは高いが、工程中で活物質脱落を
生じやすいため下方にバランく傾向がある。又Cは充填
性が悪いため、充填容量密度のレベルが低く、訃だ充填
時にバラツキが大きいため、最終極板としての容量バラ
ツキも犬となる。これらに対し本発明によるAは、活物
質の充填性も良好で脱落が生じにくいため、充填容量密
度のレベルが高く、バラツキも少ない。
Later, each electrode plate of A, B, and C was processed into a size of 6'''l x 6 cm, and the filling capacity density was calculated. Figure 2 shows the filling capacity density of A, B, and C, respectively. B is a diagram showing the level and dispersion of the filling capacity. B has good filling properties and therefore has a high level of filling capacity density, but the active material tends to fall off during the process, so it tends to unbalance downward. Due to the poor properties, the level of filling capacity density is low, and there is a large variation during the filling process, so the capacity variation as a final electrode plate is also poor.On the other hand, A according to the present invention has a good filling property of the active material. Since it is difficult for the material to fall off, the level of filling capacity density is high and there is little variation.

発明の効果 以上のように本発明によれば、発泡メタルを用いた高容
量密度を有し、かつ容量バラツキの少な7 ハ・ ・ い電池用電極を提供できる。
Effects of the Invention As described above, according to the present invention, it is possible to provide a battery electrode that uses foamed metal and has a high capacity density and less variation in capacity.

【図面の簡単な説明】[Brief explanation of drawings]

と 極板と従来の極V%充填容量密度の比較を示した図であ
る。 1・・・・・・発泡メタル。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 3 is a diagram showing a comparison between the electrode plate and the conventional electrode V% filling capacity density. 1... Foamed metal. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 連続した三次元網目構造の発泡メタルに活物質を充填し
た電池用電極であって、片面が高多孔度、他面が低多孔
度を有する発泡メタルを使用した電池用電極。
A battery electrode in which a foamed metal having a continuous three-dimensional network structure is filled with an active material, the foamed metal having a high porosity on one side and a low porosity on the other side.
JP60281317A 1985-12-13 1985-12-13 Battery electrode Expired - Lifetime JP2568496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60281317A JP2568496B2 (en) 1985-12-13 1985-12-13 Battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60281317A JP2568496B2 (en) 1985-12-13 1985-12-13 Battery electrode

Publications (2)

Publication Number Publication Date
JPS62140359A true JPS62140359A (en) 1987-06-23
JP2568496B2 JP2568496B2 (en) 1997-01-08

Family

ID=17637410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60281317A Expired - Lifetime JP2568496B2 (en) 1985-12-13 1985-12-13 Battery electrode

Country Status (1)

Country Link
JP (1) JP2568496B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742600A1 (en) * 1995-05-09 1996-11-13 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
US5721073A (en) * 1995-10-09 1998-02-24 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
US5981108A (en) * 1995-10-09 1999-11-09 Matsushita Electric Industrial Co, Ltd. Electrodes for battery and method of fabricating the same
JP2007242320A (en) * 2006-03-07 2007-09-20 Panasonic Ev Energy Co Ltd Battery and its manufacturing method
JP2014225358A (en) * 2013-05-15 2014-12-04 三菱マテリアル株式会社 Electrode sheet and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712264A (en) * 1980-06-24 1982-01-22 Mitsubishi Electric Corp Refrigerating plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712264A (en) * 1980-06-24 1982-01-22 Mitsubishi Electric Corp Refrigerating plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742600A1 (en) * 1995-05-09 1996-11-13 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
US5721073A (en) * 1995-10-09 1998-02-24 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
US5981108A (en) * 1995-10-09 1999-11-09 Matsushita Electric Industrial Co, Ltd. Electrodes for battery and method of fabricating the same
JP2007242320A (en) * 2006-03-07 2007-09-20 Panasonic Ev Energy Co Ltd Battery and its manufacturing method
JP2014225358A (en) * 2013-05-15 2014-12-04 三菱マテリアル株式会社 Electrode sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP2568496B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
US5780186A (en) High performance zinc anode for battery applications
JPS62140359A (en) Electrode for cell
US4000005A (en) Method for making a nickel positive electrode for an alkaline battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS63307665A (en) Manufacture of electrode plate for alkali storage battery
JP2581362B2 (en) Electrodes for alkaline storage batteries
JP2981537B2 (en) Negative electrode for alkaline batteries
JP2981538B2 (en) Electrodes for alkaline batteries
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH0917426A (en) Non-sintered positive electrode for alkaline storage battery and manufacture of alkaline storage battery
Casey Jr High performance zinc anode for battery applications
JPH07235303A (en) Nickel pole for alkaline storage battery and its manufacture
JPH06111816A (en) Manufacture of non-sintering type positive electrode plate for alkaline storage battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPS612272A (en) Positive plate for sealed cylindrical nickel-cadmium battery
JPH0982334A (en) Battery electrode substrate
JPS61143941A (en) Manufacture of nickel positive electrode for battery
CN113479931A (en) Titanium oxide @ C hollow composite framework and preparation method and application thereof
JPS61133563A (en) Nickel positive electrode for alkaline storage battery
JPS5983343A (en) Manufacture of nickel electrode
JPH0139192B2 (en)
JPS63170853A (en) Paste type nickel positive electrode
JPH05225970A (en) Lead-acid battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term