Nothing Special   »   [go: up one dir, main page]

JPS62140099A - Corrosion protective film formation method of nuclear power plant and device thereof - Google Patents

Corrosion protective film formation method of nuclear power plant and device thereof

Info

Publication number
JPS62140099A
JPS62140099A JP60282638A JP28263885A JPS62140099A JP S62140099 A JPS62140099 A JP S62140099A JP 60282638 A JP60282638 A JP 60282638A JP 28263885 A JP28263885 A JP 28263885A JP S62140099 A JPS62140099 A JP S62140099A
Authority
JP
Japan
Prior art keywords
reactor
cooling system
water
dissolved oxygen
primary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60282638A
Other languages
Japanese (ja)
Other versions
JPH0636066B2 (en
Inventor
前田 克治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60282638A priority Critical patent/JPH0636066B2/en
Publication of JPS62140099A publication Critical patent/JPS62140099A/en
Publication of JPH0636066B2 publication Critical patent/JPH0636066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Magnetic Heads (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば、沸騰水型の原子力発電所における原
子炉の配管等に酸化皮膜を生成する原子力発電プラント
の防蝕皮膜生成方法くブレフィルミング運転方法)及び
ぞの装「9に関づる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a corrosion-resistant film in a nuclear power plant, such as boiling water nuclear power plant, which produces an oxide film on reactor piping, etc. Driving method) and equipment related to 9.

(発明の技術的前日〕 一般に、原子力発電プラン1〜に+3ける原子炉内は、
中性子による放射化によって放射性核種を生成する。こ
の放射性核種は、一次冷却系配管やこれに接続される機
器の配管に酸化皮膜を生成していく段階でその酸化皮膜
中に取り込まれ、その結果、上記一次冷rJl系や上記
機器の周刀の放α1性線線m率が増大し、これに起因し
て、定期点検時、原子力発電プラントに従事する作業者
の被曝が予測される。
(Technical day before the invention) In general, the inside of the nuclear reactor in nuclear power generation plans 1 to +3 is as follows:
Produces radionuclides by activation with neutrons. These radionuclides are incorporated into the oxide film during the formation of the oxide film on the primary cooling system piping and the piping of the equipment connected to it, and as a result, the surrounding area of the primary cooling rJl system and the equipment connected to it. As a result of this, it is predicted that workers working in nuclear power plants will be exposed to radiation during periodic inspections.

原子力発電設備の安全性及び信頼性を向上1゛るために
は、上記従業者の被曝低減を図ることがきわめて重要で
ある。そこで、従業者の被曝防止手段として、原子炉内
に持ち込まれて放射化される不純物を低減すると共に、
上記一次冷却系配管及び上記機器配管の酸化皮膜に取り
込まれる放射性核種の線m率を低減することが望まれて
いる。
In order to improve the safety and reliability of nuclear power generation facilities, it is extremely important to reduce the exposure of the above-mentioned workers. Therefore, as a means to prevent workers from being exposed to radiation, we reduce the amount of impurities that are brought into the reactor and become radioactive.
It is desired to reduce the linear m rate of radionuclides taken into the oxide film of the primary cooling system piping and the equipment piping.

又一方、上記一次冷却系やこれに接続される機器に使用
されるステンレス材による管体は、初期に、その表面に
クロムに富む皮膜を生じ、その後。
On the other hand, the stainless steel pipes used in the primary cooling system and equipment connected thereto initially develop a chromium-rich film on their surfaces, and then develop a chromium-rich coating on their surfaces.

この皮1摸の外がわに向って生じるイオンの拡散とその
皮膜の内がわに向って生じる酸素の拡散とによって腐蝕
が進行する。又、上記クロム皮膜層は、マグネタイトと
君われるFe5o4の酸化物を生成して防蝕性を増すと
言われているけれども、上記マグネタイ[・は、下記の
式に示ず反応により、ニッケル、コバルト等を取り込ん
でスピネル酸化物となる。
Corrosion progresses due to the diffusion of ions toward the outside of the skin and the diffusion of oxygen toward the inside of the film. Furthermore, it is said that the chromium film layer increases corrosion resistance by producing an oxide of Fe5o4 called magnetite. into spinel oxide.

2ト2I Fe  O+COCo−Fe2O4+「e原子炉が運転
を始めると、原子炉の一次冷却系に使用されるステンレ
ス材による管体の内面には、原子炉の運転温度条件に一
致した酸化皮膜の生成が始まると同時に、原子炉の水中
には、中性子の照射により、例えば、Co−58,Co
−60等の放射性核種が生成して増加する。
2 To 2 I Fe O + COCo - Fe2O4 + "e When a nuclear reactor starts operating, an oxide film is formed on the inner surface of the stainless steel tube used in the reactor's primary cooling system, which matches the operating temperature conditions of the reactor. At the same time, the water in the nuclear reactor is irradiated with neutrons, causing, for example, Co-58, Co
Radioactive nuclides such as -60 are produced and increase.

即ら、ステンレス材の表面のマグネタイト(Fe304
)皮膜の生成に合せて、原子炉水中(7) Ill ’
JJ 性核種−c アルCO58、C0608カスビネ
ル酸化物として皮膜中に取り込まれるので、上記一次冷
却系を上記ステンレス材の配管としたとき、この一次冷
却系の放射線線ω率が増加し、原子炉プラン1−の定期
点検時、上記一次冷Ul系やこれに接続した機器の分解
点検に従事する者の被曝が予測される。
That is, magnetite (Fe304
) In the reactor water (7) Ill' as the film is formed.
JJ Sexual nuclide-c Al CO58, C0608 is incorporated into the film as Kasbinel oxide, so when the primary cooling system is made of the stainless steel piping, the radiation ω rate of this primary cooling system increases, and the reactor plan During the periodic inspection of 1-, it is predicted that those engaged in overhauling and inspecting the primary cooling Ul system and equipment connected to it will be exposed to radiation.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した事情に鑑みてなされたものであって
、原子炉一次冷却系やこれらの関連機器の放射性核様の
生成を防止し、線m率を低減して安全性及び信頼性の向
上を図ることができる原子炉プラントの防蝕皮膜生成方
法及びその装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and improves safety and reliability by preventing the generation of radioactive nuclei in the reactor primary cooling system and related equipment, and reducing the linear m rate. It is an object of the present invention to provide a method and apparatus for producing a corrosion-resistant coating for a nuclear reactor plant, which can improve the corrosion resistance of a nuclear reactor plant.

〔発明の概要〕[Summary of the invention]

本発明は、原子炉の核加熱前に溶存酸素供給源からの圧
力流体を一定の酸素濃度にして、これを制御棒駆動水冷
Jul系を通して原子炉及び一次冷却系へ圧送すると共
に、原子炉の再循環ポンプを駆動し、この再循環ポンプ
によるジュール熱で原子炉水を高温度に加熱することに
より、上記一次冷ノ」系及び関連機器に酸化皮膜を生成
させる方法である。
The present invention makes the pressure fluid from the dissolved oxygen supply source have a constant oxygen concentration before heating the nuclear reactor core, and pumps it through the control rod drive water-cooled Jul system to the reactor and primary cooling system. This method generates an oxide film on the primary cooling system and related equipment by driving a recirculation pump and heating the reactor water to a high temperature using Joule heat generated by the recirculation pump.

さらに、本発明は、原子炉に再循環ポンプを備えた再循
環系を設置プ、これに一次冷fJI系を接続し、この一
次冷却系に溶存酸素12ンサをイ」設し、上記原子炉と
溶存酸素供給源とを制御棒駆動水冷却系で接続し、この
制御棒駆動水冷NI系に原子炉の圧力を検出して制御さ
れる流量調整弁及びC,R。
Furthermore, the present invention installs a recirculation system equipped with a recirculation pump in a nuclear reactor, connects a primary cooling fJI system to this, and installs a dissolved oxygen 12 sensor in this primary cooling system. and a dissolved oxygen supply source are connected by a control rod drive water cooling system, and the control rod drive water cooling NI system is connected to a flow rate regulating valve and C, R that are controlled by detecting the pressure of the reactor.

Dポンプを設け、原子炉の核加熱前に再循環ポンプ及び
C,R,Dポンプを駆動し、この再循環ポンプによるジ
ュール熱で炉水を加熱すると共に、C,R,Dポンプで
加圧して一定の酸素濃度で酸化皮膜を生成するように構
成したものである。
A D pump is installed, and the recirculation pump and C, R, and D pumps are driven before the nuclear heating of the reactor, and the reactor water is heated with Joule heat from this recirculation pump, and the C, R, and D pumps pressurize it. The structure is such that an oxide film is formed at a constant oxygen concentration.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の一実施例について説明する。 Hereinafter, the present invention will be described with reference to an illustrated embodiment.

第1図にJ3いて、符号1は、原子力発電プラン1〜に
J5Lノる沸騰水型の原子炉であって、この原子炉1に
は、再循環ポンプ2を備えた再循環系3が設けられてお
り、この再循環系3には、原子炉1の一次冷却系4が接
続されている。又、この一次冷却系4には、原子炉水溶
存酸素計5aと原子炉溶存酸素制御系5bとで構成され
た溶存酸素センサが5が付設されてJ3す、この溶存酸
素センサは、脱」−水供給管6に設置された脱塩水供給
弁7と電気的に接続されている。さらに、上記原子炉1
の下部に設りられた制御棒駆動機構(図示省略)と復水
貯蔵タンクによる溶存酸素供給源8とは、制御棒駆動水
冷却系9及びV!述づる回収ライン23によって接続さ
れており、この溶存酸素供給源8は、溶存酸素を充分に
含んだ水を貯蔵している。
In FIG. 1, reference numeral 1 in J3 is a boiling water reactor designated by J5L in nuclear power generation plans 1 to 1, and this reactor 1 is equipped with a recirculation system 3 equipped with a recirculation pump 2. A primary cooling system 4 of the nuclear reactor 1 is connected to this recirculation system 3. Additionally, a dissolved oxygen sensor 5 is attached to the primary cooling system 4, which is composed of a reactor water dissolved oxygen meter 5a and a reactor dissolved oxygen control system 5b. - electrically connected to the demineralized water supply valve 7 installed in the water supply pipe 6; Furthermore, the above nuclear reactor 1
A control rod drive mechanism (not shown) installed at the bottom of the control rod drive mechanism (not shown) and a dissolved oxygen supply source 8 consisting of a condensate storage tank are connected to a control rod drive water cooling system 9 and a V! The dissolved oxygen supply source 8 stores water sufficiently containing dissolved oxygen.

さらに又、上記制御棒駆動水冷却系9には、流量調整弁
10、溶存酸素計5a及びC,R,Dポンプ(制御棒駆
vJ装置用ポンプ)11が設【プられており、上記原子
炉1に付設された圧力センサ12は、上記流量調整弁1
0に炉内圧力を検出するようにして接続されている。又
、上記制御棒駆動水冷却系9には、脱塩水供給管6が接
続されており、この脱塩水供給管6の脱塩水は、脱塩水
供給弁7が開弁じたとき、上記制御棒駆動水冷却系9の
溶存酸素を含んだ水と合流して原子炉へ供給されるよう
になっている。
Furthermore, the control rod drive water cooling system 9 is provided with a flow rate adjustment valve 10, a dissolved oxygen meter 5a, and a C, R, D pump (pump for control rod drive vJ device) 11. A pressure sensor 12 attached to the furnace 1 is connected to the flow rate regulating valve 1.
0 to detect the pressure inside the furnace. A desalinated water supply pipe 6 is connected to the control rod driving water cooling system 9, and when the desalted water supply valve 7 is opened, the desalted water in the desalted water supply pipe 6 is supplied to the control rod driving water cooling system 9. It joins the water containing dissolved oxygen in the water cooling system 9 and is supplied to the nuclear reactor.

一方、上記−水冷却系4には、原子炉冷却材浄化系のン
用過説塩塔13が設置されており、この濾過脱塩塔13
の近傍の上記−水冷却系4には、酸素ガス供給源14が
開閉弁15を介して接続されている。
On the other hand, in the water cooling system 4, a salt tower 13 for use in the reactor coolant purification system is installed, and this filtration and desalination tower 13 is installed.
An oxygen gas supply source 14 is connected to the water cooling system 4 near the water cooling system 4 via an on-off valve 15 .

又、上記原子炉1と蒸気タービン16とは主蒸気管2つ
で接続されており、この蒸気タービン16には、復水器
17が接続されており、この復水器17の復水器ホット
ウェル17aと上記一次冷ノ」系4とは廃棄物処理系1
8を備えた原子炉水ダンプ配管19で接続されている。
The nuclear reactor 1 and the steam turbine 16 are connected by two main steam pipes, and a condenser 17 is connected to the steam turbine 16. The well 17a and the primary cooling system 4 are the waste treatment system 1.
8 is connected by a reactor water dump pipe 19.

さらに、上記復水器ホットウェル17aの下部と原子炉
1とは、給水再循環系20と開閉弁28aを有する給水
ライン28で接続されており、しかも、この給水再循環
系20の一端は、上記復水器17の上部に接続されてい
る。ざらに又、上記給水再循環系20には、復水ポンプ
20a、復水フィルタ21及び復水器JS2j!522
が順に配設されており、この復水脱塩塔22の吐出がわ
の給水再循環系20には余剰復水を回収する回収ライン
23が接続されている。又、この回収ライン23の他端
は、前記復水器ホットウェル17aに接続されており、
この回収ライン23には、前記溶存酸素供給源8及び復
水移送ポンプ24が設置されている。
Furthermore, the lower part of the condenser hot well 17a and the reactor 1 are connected by a feed water recirculation system 20 and a water supply line 28 having an on-off valve 28a, and one end of this feed water recirculation system 20 is It is connected to the upper part of the condenser 17. In addition, the water supply recirculation system 20 includes a condensate pump 20a, a condensate filter 21, and a condenser JS2j! 522
are arranged in this order, and a recovery line 23 for recovering excess condensate is connected to the feed water recirculation system 20 at the discharge side of the condensate demineralization tower 22. Further, the other end of this recovery line 23 is connected to the condenser hot well 17a,
In this recovery line 23, the dissolved oxygen supply source 8 and the condensate transfer pump 24 are installed.

なお、上記復水器17には、真空エゼクタ−25を備え
た排ガス系26が接続されており、この復水器17は、
真空エゼクタ−25によって所定の真空度を保つように
なっている。又、上記給水ライン28の開閉弁28aは
、原子炉1の通常運転時では開弁している。
Note that an exhaust gas system 26 equipped with a vacuum ejector 25 is connected to the condenser 17, and this condenser 17
A predetermined degree of vacuum is maintained by a vacuum ejector 25. Further, the on-off valve 28a of the water supply line 28 is open during normal operation of the nuclear reactor 1.

以下、本発明の作用について説明する。Hereinafter, the effects of the present invention will be explained.

今、原子炉の晟初の起動以前に、ブレフィルミング運転
を実施して防蝕皮膜を生成する場合。
Now, before the reactor is started for the first time in the evening, a bleed film operation is performed to generate a corrosion-resistant coating.

予め、原子炉1を満水状態しておく。次に、再循環ポン
プ2及びC,R,Dポンプ11を駆動し、上記原子炉の
圧力を高圧に11待したま)、再循環ポンプ2の回転数
を上昇させ、この再循環ポンプ2のジュール熱を利用し
て上記原子炉水温度を上界させる。原子炉水温度上界に
伴い、炉水の熱膨張による原子炉圧力が上界すると、圧
力センサ12からの信号により、流量調整弁10が絞り
込まれ、原子炉1の圧力を一定に維持しつ)、原子炉水
温度が上昇する。
The reactor 1 is filled with water in advance. Next, the recirculation pump 2 and the C, R, D pumps 11 are driven, and while the pressure in the reactor is raised to a high pressure (11), the rotation speed of the recirculation pump 2 is increased, and the rotation speed of the recirculation pump 2 is increased. Joule heat is used to raise the temperature of the reactor water. When the reactor pressure due to thermal expansion of the reactor water reaches its upper limit due to the upper limit of the reactor water temperature, the flow rate adjustment valve 10 is throttled by a signal from the pressure sensor 12 to maintain the pressure in the reactor 1 constant. ), the reactor water temperature increases.

原子炉水温度を通常原子炉の運転時の約280℃程度に
維持するためには、原子炉1では、飽和温度が280℃
以上になるように、高圧状(ぷを維持する必要があるが
、このような高温・高圧状態では、原子炉1の一次冷却
系4を構成するステンレス材の配管に対する高い溶存酸
素下の応力腐蝕割れの見地から、原子炉水溶存酸素を制
御することが不可欠であり、しかも、緻密な防蝕性に富
む酸化皮膜を形成する上で、原子炉水溶存酸素濃度を可
能な限り高く維持することが望まれる。
In order to maintain the reactor water temperature at about 280°C during normal reactor operation, in reactor 1, the saturation temperature must be 280°C.
As mentioned above, it is necessary to maintain a high pressure state (P), but in such a high temperature and high pressure state, stress corrosion due to high dissolved oxygen on the stainless steel pipes that make up the primary cooling system 4 of the reactor 1 can occur. From the viewpoint of cracking, it is essential to control the dissolved oxygen in the reactor water, and in addition, it is necessary to maintain the dissolved oxygen concentration in the reactor water as high as possible in order to form a dense, corrosion-resistant oxide film. desired.

一方、通常原子炉運転中にJ5いて、原子炉水溶存酸素
は、冷却水の放射線分解作用で約200〜300 PP
bとなっており、ステンレス材による応力IO!4蝕割
れを防止するための維持基準直は400PPb以下とな
っている。
On the other hand, during normal reactor operation in J5, the dissolved oxygen in the reactor water is approximately 200 to 300 PP due to the radiolysis effect of the cooling water.
b, and the stress IO due to stainless steel material! 4 The maintenance standard for preventing corrosion cracking is 400PPb or less.

そこで、上述した点を考慮し、原子炉溶存酸素を400
PI”11に維持するためには、原子炉1へ供給される
制陣棒駆動系冷fJl水の溶#酸素濃度を制i2++ 
シ、これによって原子炉水溶存酸素を制御する。
Therefore, considering the above points, the reactor dissolved oxygen was reduced to 400
In order to maintain PI"11, the concentration of dissolved oxygen in the control rod drive system cold fJl water supplied to reactor 1 must be controlled i2++
This controls dissolved oxygen in the reactor water.

即も、真空エゼクタ25を用いて復水器ホットウェル1
7aを真空状態に維持し、脱気水を生成すると共に、復
水ポンプ20aを駆動して、復水を復水フィルタ21及
び復水脱塩塔12で浄化し、給水再循環系20を経て連
続的に再循環浄化しておく。
Immediately, use the vacuum ejector 25 to remove the condenser hot well 1.
7a is maintained in a vacuum state to generate degassed water, the condensate pump 20a is driven, the condensate is purified by the condensate filter 21 and the condensate demineralization tower 12, and then passed through the feedwater recirculation system 20. Continuously recirculate and purify.

次に、復水IB2 塩浴22の吐出がわに接続した回収
ライン23を用いて浄化脱気水の一部をC,R,Dポン
プ11の水源とすると共に、このC,R,Dポンプ11
の吸込みがわに飽和溶存酸素の脱塩水を脱塩水供給管9
から供給し、上記脱気水と飽和溶存酸素の脱塩水とを混
合して原子炉1へ供給すると同時に、原子炉水溶存酸素
計5aでその溶存酸素濃度を監視する。又一方、原子炉
水溶存酸素濃度は溶存酸素センサ5によって連続的に監
視すると共に、原子炉水酸素を400 PPbに維持す
るように、上記溶存酸素センサ5からの検出信号によっ
て脱塩水供給弁7を制御し、これによって原子炉水溶存
酸素を4 Q Q PPbに制御する。
Next, using the recovery line 23 connected to the discharge side of the condensate IB2 salt bath 22, a part of the purified deaerated water is used as a water source for the C, R, D pumps 11, and the C, R, D pumps 11
The demineralized water with saturated dissolved oxygen is fed into the demineralized water supply pipe 9.
The degassed water and demineralized water with saturated dissolved oxygen are mixed and supplied to the reactor 1, and at the same time, the dissolved oxygen concentration is monitored by the reactor water dissolved oxygen meter 5a. On the other hand, the dissolved oxygen concentration in the reactor water is continuously monitored by the dissolved oxygen sensor 5, and the demineralized water supply valve 7 is controlled based on the detection signal from the dissolved oxygen sensor 5 to maintain the reactor water oxygen at 400 PPb. This controls the dissolved oxygen in the reactor water to 4 Q Q PPb.

なお、こ)で、上記一次冷却系4やこれに接続された機
器に緻密な防蝕性酸化皮膜を生成するために、原子炉水
中の溶存酸素が消費され、原子炉溶存酸素濃度を4 Q
 Q PPbに維持できなくなったとさ−には、開閉弁
15を開弁じて酸素ガス供給源14の酸素を一次冷却系
4を通して原子炉1へ供給し、原子炉水溶存酸索淵瓜を
4 Q Q PPbに制御する。
In addition, in this step, dissolved oxygen in the reactor water is consumed to form a dense anti-corrosion oxide film on the primary cooling system 4 and the equipment connected to it, increasing the reactor dissolved oxygen concentration to 4Q.
Q When it is no longer possible to maintain the level of PPb, open the on-off valve 15 to supply oxygen from the oxygen gas supply source 14 to the reactor 1 through the primary cooling system 4, and remove the dissolved acid in the reactor water from the reactor water. Q Control to PPb.

このようにしで、本発明は、C,R,Dポンプ11を駆
動して原子炉1を加圧すると同時に、再循環ポンプ2の
ジュール熱を利用して原子炉1を加熱し、高温・高圧状
態を維持すると共に、制ta棒駆動水冷却系9の溶存酸
素濃度を制御することによって、原子炉溶存酸素を一定
に維持し、原子炉1の核加熱以前に、一次冷却系4やこ
れらに連結された機器に防蝕性に富む緻密な酸化皮膜を
生成する。
In this way, the present invention drives the C, R, and D pumps 11 to pressurize the nuclear reactor 1, and at the same time heats the reactor 1 using Joule heat of the recirculation pump 2 to achieve high temperature and high pressure. At the same time, by controlling the dissolved oxygen concentration in the control rod drive water cooling system 9, the reactor dissolved oxygen is maintained constant, and the primary cooling system 4 and these are Creates a dense, corrosion-resistant oxide film on connected equipment.

従って、本発明は、核加熱以後、一次冷却系やこれらの
機器の内面に形成された酸化皮膜によって放射性核種を
低減することができると共に、配管や機器の線ω率の上
界を抑制し、従事者の被曝を防止することができる。
Therefore, the present invention can reduce radionuclides by the oxide film formed on the primary cooling system and the inner surface of these devices after nuclear heating, and also suppress the upper limit of the linear ω factor of piping and devices, It is possible to prevent workers from being exposed to radiation.

囚に、本発明によるプレフレミング運転方法は、核加熱
前に限定されるものではなく、例えば、核加熱初期時の
放射能濃度の低い時期に防蝕性酸化皮唆生成運転をして
もよいこと勿論である。
Furthermore, the pre-flaming operation method according to the present invention is not limited to the operation before nuclear heating; for example, the corrosion-resistant oxide skin-inducing operation may be performed during the early stage of nuclear heating when the radioactivity concentration is low. Of course.

又一方、本発明は、一次冷却系4やこれらに接続された
m器に酸化皮膜を生成することにより、第2図のグラフ
に示されるようになる。即ち、酸化皮膜を生成しない未
処理状態の付着放射能量曲線工に対し、本発明によるブ
レフィルミング処理を施して酸化皮膜による防蝕皮膜を
生成したものは、付着放射能量曲線■のように、付着放
射能はを約2000時間経過しても増加することなく一
定に維持される。
On the other hand, in the present invention, an oxide film is formed on the primary cooling system 4 and the m-units connected thereto, as shown in the graph of FIG. 2. In other words, when the untreated adhesion radioactivity curve that does not generate an oxide film is subjected to the brefilming treatment according to the present invention to produce a corrosion-protective oxide film, the adhesion radioactivity amount curve (■) The radioactivity remains constant without increasing even after approximately 2000 hours.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、原子炉の核加熱前に
再循環ポンプ2及びC,R,I)ポンプ11を駆動して
原子炉1内の圧力を高圧に維持し、再循環ポンプ2のジ
ュール熱で原子炉水を加熱し、一定の溶存酸素濃度で酸
化皮膜を生成するようになっているので、放射性核種を
低減することができるばかりでなく、原子炉の配管や機
器の線は率の上界を抑制して作業者の被曝を低減して安
全性の向上を図ることができる。
As described above, according to the present invention, the pressure inside the reactor 1 is maintained at a high pressure by driving the recirculation pump 2 and the C, R, I) pump 11 before nuclear heating in the reactor, and the recirculation pump The reactor water is heated with 2 Joule heat and an oxide film is generated at a certain dissolved oxygen concentration, which not only reduces radioactive nuclides, but also reduces the number of lines in the reactor piping and equipment. It is possible to improve safety by suppressing the upper bound of the radiation rate and reducing radiation exposure for workers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の原子力発電プラン1〜の防蝕皮膜生
成装置の回路図、第2図は、付着放射能量と浸漬時間と
の関係を示すグラフである。 1・・・原子炉、2・・・再循環ポンプ、4・・・一次
冷却系、5・・・溶存酸素センサ、6・・・脱塩水供給
管、7・・・脱塩水供給弁、8・・・溶存酸素供給源、
9・・・制陣捧駆動水冷7J]系、10・・・流量調整
弁、11・・・C,R,D・・・ポンプ、12・・・圧
カレンサ、14・・・酸素供給源、23・・・回収ライ
ン。
FIG. 1 is a circuit diagram of the anti-corrosion film generating apparatus of nuclear power generation plans 1 to 1 of the present invention, and FIG. 2 is a graph showing the relationship between the amount of attached radioactivity and the immersion time. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 2... Recirculation pump, 4... Primary cooling system, 5... Dissolved oxygen sensor, 6... Desalinated water supply pipe, 7... Desalinated water supply valve, 8 ...dissolved oxygen source,
9... Control drive water cooling 7J] system, 10... Flow rate adjustment valve, 11... C, R, D... Pump, 12... Pressure cylinder, 14... Oxygen supply source, 23...Collection line.

Claims (1)

【特許請求の範囲】 1、原子炉の核加熱前に溶存酸素供給源からの圧力流体
を一定の酸素濃度にして、これを制御棒駆動水冷却系を
通して原子炉及び一次冷却系へ圧送すると共に、原子炉
の再循環ポンプを駆動し、この再循環ポンプによるジュ
ール熱で原子炉水を高温度に加熱することにより、上記
一次冷却系及びこれに接続した機器に酸化皮膜を生成す
るようにしたことを特徴とする原子力発電プラントの防
蝕皮膜生成方法。 2、原子炉に再循環ポンプを備えた再循環系を設け、こ
れに一次冷却系を接続し、この一次冷却系に溶存酸素セ
ンサを付設し、上記原子炉と溶存酸素供給源とを制御棒
駆動水冷却系で接続し、この制御棒駆動水冷却系に上記
原子炉の圧力を検出して制御される流量調整弁及びC、
R、Dポンプを設け、原子炉の核加熱前に再循環ポンプ
及びC、R、Dポンプを駆動し、この再循環ポンプによ
るジュール熱で炉水を加熱すると共に、 C、R、Dポンプで加圧して一定の酸素濃度で酸化皮膜
を生成するようにしたことを特徴とする原子力発電プラ
ントの防蝕皮膜生成装置。
[Claims] 1. Before nuclear heating in a nuclear reactor, pressurized fluid from a dissolved oxygen supply source is made to have a constant oxygen concentration, and this is pumped through a control rod drive water cooling system to the reactor and primary cooling system. By driving the reactor's recirculation pump and heating the reactor water to a high temperature using Joule heat generated by the recirculation pump, an oxide film was generated on the primary cooling system and equipment connected to it. A method for producing a corrosion-resistant coating for a nuclear power plant, characterized by the following. 2. A recirculation system equipped with a recirculation pump is provided in the reactor, a primary cooling system is connected to this, a dissolved oxygen sensor is attached to this primary cooling system, and a control rod connects the reactor and the dissolved oxygen supply source. a flow rate regulating valve connected to the drive water cooling system and controlled by detecting the pressure of the reactor to the control rod drive water cooling system;
R and D pumps are installed, and the recirculation pump and C, R, D pump are driven before nuclear heating of the reactor, and the reactor water is heated with Joule heat from the recirculation pump, and the C, R, and D pumps are used to heat the reactor water. A corrosion-resistant film generation device for a nuclear power plant, characterized in that it generates an oxide film under pressure at a constant oxygen concentration.
JP60282638A 1985-12-16 1985-12-16 Method and apparatus for producing anticorrosion coating for nuclear power plant Expired - Lifetime JPH0636066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60282638A JPH0636066B2 (en) 1985-12-16 1985-12-16 Method and apparatus for producing anticorrosion coating for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60282638A JPH0636066B2 (en) 1985-12-16 1985-12-16 Method and apparatus for producing anticorrosion coating for nuclear power plant

Publications (2)

Publication Number Publication Date
JPS62140099A true JPS62140099A (en) 1987-06-23
JPH0636066B2 JPH0636066B2 (en) 1994-05-11

Family

ID=17655120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60282638A Expired - Lifetime JPH0636066B2 (en) 1985-12-16 1985-12-16 Method and apparatus for producing anticorrosion coating for nuclear power plant

Country Status (1)

Country Link
JP (1) JPH0636066B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981641A (en) * 1987-12-23 1991-01-01 United Kingdom Atomic Energy Authority Inhibition of nuclear-reactor coolant-circuit contamination
JP2013068614A (en) * 2011-09-23 2013-04-18 Ge-Hitachi Nuclear Energy Americas Llc Method for controlling oxygen concentration of reactor cooling water sample by using desalinated water
JP2017500558A (en) * 2013-12-10 2017-01-05 ジョイント ストック カンパニー“アクメ−エンジニアリング” Internal contour passivation method for steel surface of nuclear reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981641A (en) * 1987-12-23 1991-01-01 United Kingdom Atomic Energy Authority Inhibition of nuclear-reactor coolant-circuit contamination
JP2013068614A (en) * 2011-09-23 2013-04-18 Ge-Hitachi Nuclear Energy Americas Llc Method for controlling oxygen concentration of reactor cooling water sample by using desalinated water
US9443621B2 (en) 2011-09-23 2016-09-13 Ge-Hitachi Nuclear Energy Americas Llc Method of adjusting oxygen concentration of reactor water samples using demineralized water
JP2017500558A (en) * 2013-12-10 2017-01-05 ジョイント ストック カンパニー“アクメ−エンジニアリング” Internal contour passivation method for steel surface of nuclear reactor

Also Published As

Publication number Publication date
JPH0636066B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JPH0658437B2 (en) Radioactivity reduction methods for nuclear power plants
JPS6323519B2 (en)
JPS62140099A (en) Corrosion protective film formation method of nuclear power plant and device thereof
JPS5879196A (en) Method of controlling radioactive ion adhesion
US10204712B2 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JPS6053897A (en) Method of inhibiting eluation of cobalt of feedwater heater tube
JPS6295498A (en) Constitutional member of nuclear power plant
JPH0424434B2 (en)
JPH0479439B2 (en)
JP2865726B2 (en) Nuclear power plant
JPS59119296A (en) Oxygen injection system for bwr type power plant
JPS59143996A (en) Method of operating early oxydation of atomic power plant
JPH0631815B2 (en) Nuclear power plant water supply system
JP2023161666A (en) Chemical decontamination method for carbon steel member of nuclear power plant
JPS642919B2 (en)
JP3266485B2 (en) Boiling water nuclear power plant, method of operating the same, and method of forming oxide film on wetted surface of its component
JPH04104092A (en) Method for controlling quality of reactor water
JPS61129598A (en) Method of inhibiting storage of radioactivity to nuclear reactor primary system
JPS60198493A (en) Method of treating feedwater to nuclear reactor
JPS60152991A (en) Purifier for condensate from steam turbine plant
JPS61104298A (en) Radioactivity accumulation reducer for nuclear reactor primary cooling system
JPS6051677B2 (en) Plant water deaeration treatment method and equipment
JPS5912390A (en) Method of forming oxide layer
JPS59112292A (en) Condensed water cleanup device