Nothing Special   »   [go: up one dir, main page]

JPS62148061A - Thickness controlling method for rapidly-cooled thin hoop - Google Patents

Thickness controlling method for rapidly-cooled thin hoop

Info

Publication number
JPS62148061A
JPS62148061A JP28686985A JP28686985A JPS62148061A JP S62148061 A JPS62148061 A JP S62148061A JP 28686985 A JP28686985 A JP 28686985A JP 28686985 A JP28686985 A JP 28686985A JP S62148061 A JPS62148061 A JP S62148061A
Authority
JP
Japan
Prior art keywords
roll
thickness
ribbon
core shaft
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28686985A
Other languages
Japanese (ja)
Inventor
Kane Miyake
三宅 苞
Masao Yukimoto
正雄 行本
Koichi Kawamura
川村 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28686985A priority Critical patent/JPS62148061A/en
Publication of JPS62148061A publication Critical patent/JPS62148061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To measure accurately a contacting length with rolls for a thin hoop and to obtain the thin hoop metal having no deviation of thickness thereof by arranging an ultrasonic detector at a core shaft in hollow part of cooling roll and measuring an intensity of reflection wave caused by oscillating ultrasonic wave toward the roll barrel shell from the detector. CONSTITUTION:The ultrasonic detector 7 arranged on the inner surface of the core shaft 1 in the hollow part of a cooling roll oscillates continuously ultrasonic wave toward a radius direction of the roll barrel shell 2 through cooling water 4 as rotating together integrally with the roll in a body and receives the reflection wave from an inner surface 2a and an outer surface 2b of the barrel shell 2. This receiving wave is transmitted to a pulse receiver 10 through a cable 8 laid and wired in the core shaft 1 and a slip ring 9 set on the core shaft 1. A signal processor 12 receives the reflection wave from the pulser receiver 10 and an angle signal from a rotated angle measuring instrument 11, to calculate a paddle height. In this way, the contacting length of roll for the thin hoop is surely measured and the thickness of thin hoop is effectively controlled by this measuring value.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、急冷薄帯の板厚制御方法に関し、とくに冷
却体として冷却ロールを用いて急冷薄帯を製造する場合
において、長手方向にわたって板厚偏差のない薄帯を有
利に得ようとするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for controlling the thickness of a quenched ribbon, and in particular, when manufacturing a quenched ribbon using a cooling roll as a cooling body, the invention relates to a method for controlling the thickness of a quenched ribbon. The purpose is to advantageously obtain a ribbon without thickness deviation.

(従来の技術) 急冷薄帯法は、従来のスラブ、熱延板などの中間製品を
つくりながら最終的に、薄帯に仕上げていく製法とは異
なり、溶融金属から直ちに薄帯製品をつ(る方法であり
、とくに溶融金属をその射出ノズルより高速で回転する
冷却ロールに連続して供給し、急冷凝固させて一気に薄
帯を得るいわゆる単ロール法や双ロール法などはその代
表的な製法である。
(Conventional technology) The quenched ribbon method is different from the conventional manufacturing method in which intermediate products such as slabs and hot-rolled plates are made and finally finished into ribbons. In particular, typical manufacturing methods include the so-called single-roll method and twin-roll method, in which molten metal is continuously supplied from an injection nozzle to a cooling roll that rotates at high speed, and is rapidly solidified to form a thin strip at once. It is.

かような急冷薄帯法によって得られる薄帯についても、
従来法による薄帯と同条長手方向にわたって所定の厚み
を有していることが製品として不可欠な条件であること
は言うまでもない。
Regarding the ribbon obtained by such a quenched ribbon method,
Needless to say, it is an essential condition for the product to have a predetermined thickness in the same longitudinal direction as the thin strip produced by the conventional method.

単ロール法や双ロール法においては、阪厚は、溶融金属
の成分や温度、ロール周速および薄帯とロールとの接触
長さなどによって決まり、特に溶融金属供給量の変動な
どによって接触長さが変化した場合にはその変化が直ち
に板厚の変動に結びつく。
In the single-roll method and twin-roll method, the thickness is determined by the composition and temperature of the molten metal, the circumferential speed of the roll, and the contact length between the ribbon and the roll. If there is a change in the plate thickness, that change will immediately lead to a change in the plate thickness.

したがってロール接触長を測定することは、単ロール法
や双ロール法においては必要不可欠な技術要素ではある
が、測定場所の面からの制約で、かかる測定は従来不可
能とされていた。
Therefore, measuring the roll contact length is an indispensable technical element in the single-roll method and the twin-roll method, but such measurement has traditionally been considered impossible due to restrictions in terms of the measurement location.

このため急冷薄帯の板厚制御は、特開昭58−2355
0号公報呻開示されているように、薄帯がほぼ室温近く
まで充分冷却された場所でT線厚み計などによって板厚
を測定し、その値に基いて溶融金属供給量またはロール
周速を変更する方式が採用されていた。
For this reason, the thickness control of the quenched ribbon was developed in Japanese Patent Application Laid-Open No. 58-2355.
As disclosed in Publication No. 0, the thickness of the ribbon is measured using a T-line thickness gauge at a place where the ribbon has been sufficiently cooled to almost room temperature, and the molten metal supply amount or roll circumferential speed is determined based on the measured value. A method of change was adopted.

(発明が解決しようとする問題点) しかしながらこの方法は、計測点が制御点の遥か下流で
あるため、タイムラグが大きく迅速な応答ができないと
いうところに問題を残していた。
(Problems to be Solved by the Invention) However, this method has a problem in that since the measurement point is far downstream of the control point, there is a large time lag and a quick response cannot be achieved.

この発明は、上記の問題を有利に解決するもので、板厚
の変動に即応して、迅速にその復元を可能ならしめ得る
板厚制御方法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems, and aims to propose a sheet thickness control method that can promptly respond to changes in sheet thickness and quickly restore the thickness.

(問題点を解決するための手段) さて発明者らは、急冷薄帯製造に使用される冷却ロール
の構造に着目し、冷却ロール内からの接触長さ測定の可
能性について検討を行った。
(Means for Solving the Problems) The inventors focused on the structure of the cooling roll used in the production of quenched ribbons, and investigated the possibility of measuring the contact length from within the cooling roll.

その結果、冷却ロールの中空心軸に、該心軸の周囲で水
冷ジャケットを形成するロール胴殻と向い合わせに超音
波探触子を設置し、該探触子からロール胴殻に向けて超
音波を発信させつつ、該超音波のロール胴殻外表面から
の反射波を受信し、該反射波の強度が所定の値を下回る
時間を測定することにより、薄帯がロールと接触してい
る長さを測定し、その測定値に基いて溶湯供給量やロー
ル周速を調節することによって、板厚を有利に制御し得
ることの知見を得た。
As a result, an ultrasonic probe was installed on the hollow center shaft of the cooling roll, facing the roll shell that forms a water-cooled jacket around the center shaft, and the ultrasonic probe was directed from the probe toward the roll shell. While transmitting a sound wave, the reflected wave of the ultrasonic wave from the outer surface of the roll shell is received, and the time when the intensity of the reflected wave falls below a predetermined value is measured to determine whether the ribbon is in contact with the roll. It was found that the plate thickness can be advantageously controlled by measuring the length and adjusting the molten metal supply amount and roll circumferential speed based on the measured value.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、金属溶湯を、その射出ノズルから
、高速で回転する冷却ロール上に連続して供給し、急冷
凝固させて金属薄帯を製造するに当り、該冷却ロールの
中空ロール心軸に取付けた超音波探触子から、該ロール
心軸の外周でその心軸周面との間に水冷ジャケットを形
成するロール胴殻に向け、その半径方向に超音波を発信
しつつ、該ロール胴殻外表面からの反射波を受信し、該
反射波の強度変化から金属薄帯が冷却ロールに接触して
いる長さを測定し、この測定値が、所望の板厚に応じて
予め定めておいた設定値からずれた場合に、そのずれを
なくすように溶湯供給量および/またはロール周速を調
節することを特徴とする急冷薄帯の板厚制御方法である
In other words, the present invention provides continuous supply of molten metal from an injection nozzle onto a cooling roll rotating at high speed, and when rapidly solidifying the metal to produce a metal ribbon. While transmitting ultrasonic waves from the attached ultrasonic probe in the radial direction toward the roll shell that forms a water-cooled jacket between the outer periphery of the roll shaft and the circumferential surface of the roll shaft, The reflected wave from the outer surface of the shell is received, and the length of the metal ribbon in contact with the cooling roll is measured from the change in the intensity of the reflected wave. This measured value is determined in advance according to the desired plate thickness. This is a method for controlling the thickness of a quenched ribbon, which is characterized in that when the thickness deviates from a set value, the molten metal supply amount and/or the circumferential speed of the rolls are adjusted so as to eliminate the deviation.

以下、この発明に従う急冷薄帯の板厚制御要領を第1図
に基いて具体的に説明する。
Hereinafter, the procedure for controlling the thickness of the quenched ribbon according to the present invention will be explained in detail with reference to FIG.

第1図において番号1は双ロール式急冷薄帯法に用いる
冷却ロールの心軸、2はロール胴殻、3はこれらの心軸
1と胴殻2とで形成される水冷ジャケット内を流れる冷
却水であり、4は冷却ロール間に向はノズル5から流下
しつつある溶融金属、6はその凝固にて生成した薄帯で
ある。図中6aはロールが薄帯と接触を開始した点、6
bは接触を終了した点を示す。従って6a〜6bがロー
ル接触長さに相当する。
In Fig. 1, number 1 is the core shaft of the cooling roll used in the twin-roll quenched ribbon method, 2 is the roll shell, and 3 is the cooling water flowing inside the water-cooled jacket formed by the core shaft 1 and the shell 2. 4 is water, molten metal flowing down from a nozzle 5 between cooling rolls, and 6 a thin ribbon produced by solidification of the molten metal. In the figure, 6a is the point where the roll starts contacting the ribbon, 6
b indicates the point where contact ended. Therefore, 6a to 6b correspond to the roll contact length.

さて7が、この発明に従い心軸1の内周面に設置した超
音波探触子であり、この探触子7はロールと一体的に回
転しつつ冷却水4を介してロール胴殻2に向かってその
半径方向に超音波を連続的に発信し、かつ1詞殻2の内
表面2aおよび外表面2bからの反射波を受信する。こ
の受信波は、心軸1内に埋め込み配線された信号ケーブ
ル8および心軸lにはめ込んだスリップリンタ9を通し
てパルサーレシーバ−1Oに伝達される。
Now, 7 is an ultrasonic probe installed on the inner peripheral surface of the mandrel 1 according to the present invention, and this probe 7 is connected to the roll shell 2 via the cooling water 4 while rotating integrally with the roll. Ultrasonic waves are continuously transmitted in the radial direction toward the cylindrical shell 2, and reflected waves from the inner surface 2a and outer surface 2b of the one-word shell 2 are received. This received wave is transmitted to the pulser receiver 1O through a signal cable 8 embedded in the core shaft 1 and a slip linter 9 fitted into the core shaft l.

−万邦音波探触子7の回転角度位置は、心軸1に取り付
けられた回転角度測定器11によって測定される。また
12は信号処理器であって、この信号処理器12はパル
サーレシーバ−10からの反射波信号および回転角度測
定器11からの角度信号を受信し、後述の原理に基づい
てパドル高さを算出する。
- The rotational angle position of the Wanbang sonic probe 7 is measured by the rotational angle measuring device 11 attached to the core shaft 1. Further, 12 is a signal processor, which receives the reflected wave signal from the pulsar receiver 10 and the angle signal from the rotation angle measuring device 11, and calculates the paddle height based on the principle described later. do.

〔測定原理〕[Measurement principle]

一般に、超音波を含む弾性波が相異なる物質I。 Generally, materials I have different elastic waves including ultrasonic waves.

■中を伝播するとき、その境界で波の反射が生じるが、
その大きさは各物質のアクウスティックインピーダンス
とよばれる物性値の関数であることが知られていて、次
式(1)で表わされる。
■When waves propagate inside, reflections occur at the boundaries, but
It is known that the magnitude is a function of a physical property value called acoustic impedance of each material, and is expressed by the following equation (1).

ここで R:反射係数 zl、2’物質、、2のアクウスティックインピーダン
ス すなわち探触子7と向い合ったロール外殻外表面2aが
空気と接するか薄帯と接するかで、表面での反射波の強
度は異なる。従ってその差が充分に検出可能であれば、
この方法でロール接触長が精度よく測定できるわけであ
り、実際、上記した各反射波の強度には大きなひらきが
あるので、ロール接触長さを高精度の下に測定できるの
である。
Here, R: reflection coefficient zl, 2' Acoustic impedance of the material, 2, that is, the reflection on the surface depends on whether the outer surface 2a of the roll shell facing the probe 7 is in contact with air or a thin strip. The strength of the waves is different. Therefore, if the difference is sufficiently detectable,
With this method, the roll contact length can be measured with high precision.In fact, since the intensity of each of the reflected waves described above varies greatly, the roll contact length can be measured with high precision.

それを以下の数値計算によって証明する。This is proved by the following numerical calculations.

急冷薄帯6として一般鋼、ロール外殻2としてCu系合
金を選び、以下のインピーダンス値を採用する。
General steel is selected as the quenched ribbon 6, Cu-based alloy is selected as the roll shell 2, and the following impedance values are adopted.

この場合に反射係数Rは、 (i)ロールが空気と接している時、 (11)ロールが薄帯と接している時、すなわちロール
が薄帯と接している時は、空気識別は充分可能である。
In this case, the reflection coefficient R is: (i) When the roll is in contact with air; (11) When the roll is in contact with the ribbon, that is, when the roll is in contact with the ribbon, air identification is sufficient. It is.

次にこの識別法を第2図によって詳細に説明する。Next, this identification method will be explained in detail with reference to FIG.

同図(a)は、ロールが空気と接している時、(b)は
薄帯と接している時の反射波信号である。
(a) shows the reflected wave signal when the roll is in contact with air, and (b) shows the reflected wave signal when the roll is in contact with the ribbon.

図中Aは、探触子表面からの反射波、B、はロール外殻
内表面2aからの反射波、そして[12−1と82−2
が同外表面2bからの反射波である。B2−2の高さは
上述したように82−1の約1/lOになる。なおり2
の現れる位置は探触子の位置に関係なく一定である。
In the figure, A is the reflected wave from the probe surface, B is the reflected wave from the roll outer shell inner surface 2a, and [12-1 and 82-2
is the reflected wave from the outer surface 2b. As mentioned above, the height of B2-2 is approximately 1/1O of that of 82-1. Naori 2
The position where it appears is constant regardless of the position of the probe.

したがって82付近のみ観察するようにゲートGど 程度に定め、信号がH以下になる時間をパルスカウンタ
ーなどで測定すればロールが薄帯と接している時間(1
)を精度よく求めることができ、またこの接触時間tと
ロール周速Vとの債からロール接触長さが求まることに
なる。
Therefore, if you set the gate G so that only the vicinity of 82 is observed, and measure the time when the signal becomes H or less with a pulse counter, the time during which the roll is in contact with the ribbon (1
) can be determined with high accuracy, and the roll contact length can be determined from the relationship between the contact time t and the roll circumferential speed V.

ここに急冷薄帯の板厚は、前述したとおりロール接触長
さに強く依存するから、予め所望の板厚に応じて設定値
を定めておき、上述の如き手法によって測定したロール
接触長さがこの設定値からずれた場合に、そのずれがな
くなるように溶湯供給量やロール周速を調節してやれば
、長手方向にわたって一定の板厚をもつ急冷薄帯が得ら
れわけである。
As mentioned above, the thickness of the quenched ribbon strongly depends on the roll contact length, so the set value is determined in advance according to the desired thickness, and the roll contact length measured by the method described above is determined in advance. If the molten metal supply amount and roll circumferential speed are adjusted to eliminate the deviation from this set value, a quenched ribbon having a constant thickness in the longitudinal direction can be obtained.

なお、第1図においては超音波探触子7を双ロールの1
つにのみ設置した場合について説明したが、パドル高さ
の測定精度を上げるためには、もう一方のロールに設置
したり、あるいはロール軸方向に複数個の探触子を並べ
て配設して複数個所でパドル高さを測定することが有効
であることはいうまでもない。
In addition, in FIG. 1, the ultrasonic probe 7 is mounted on a twin roll.
Although we have explained the case where the probes are installed only on one roll, in order to improve the measurement accuracy of the paddle height, it is possible to install them on the other roll, or to arrange multiple probes side by side in the roll axis direction. It goes without saying that it is effective to measure the paddle height at certain points.

(実施例) 実験は、前掲第1図に示した装置を用いて行った。(Example) The experiment was conducted using the apparatus shown in FIG. 1 above.

中心周波数IMHzの超音波探触子7を第1図のように
取付けた。主な実験条件は以下の通りである。
An ultrasonic probe 7 with a center frequency of IMHz was installed as shown in FIG. The main experimental conditions are as follows.

(1)ロール胴殻:材 質   Cu−Be合金スリー
ブ厚み    15mm 外径 400 mmφ 周速 3 m/s 冷却水量  20 m3/h (2)鋼種:5% けい素鋼 (3)ロール接触長さ設定値:  40n+n+溶鋼供
給量を故意に変動させた。その間のロール接触長の測定
値と、製造された薄帯のマイクロメーターで測定した厚
みとの関係は第3図に示したとおりであった。
(1) Roll body shell: Material Cu-Be alloy sleeve thickness 15 mm Outer diameter 400 mmφ Circumferential speed 3 m/s Cooling water amount 20 m3/h (2) Steel type: 5% Silicon steel (3) Roll contact length setting Value: 40n+n+The amount of molten steel supplied was intentionally varied. The relationship between the measured roll contact length and the thickness of the produced ribbon measured with a micrometer is as shown in FIG.

第3図に示したとおり、板厚とロール接触長とは、原点
を通る直線でよく近似される比例関係にある。
As shown in FIG. 3, the plate thickness and roll contact length have a proportional relationship that is well approximated by a straight line passing through the origin.

従ってロール接触長さが一定であれば、薄帯板厚も一定
になるはずであり、実際、溶鋼の供給量を変動させてロ
ール接触長を変化させた場合に、供給量を元にもどすか
、ロール周速を調節してロール接触長を設定値40 m
mに調整したところ、所望板厚250μmの金属薄帯が
安定して得られた。
Therefore, if the roll contact length is constant, the strip thickness should also be constant.In fact, if the roll contact length is changed by varying the supply amount of molten steel, is it possible to return the supply amount to the original value? , adjust the roll circumferential speed to set the roll contact length to a set value of 40 m.
When the thickness was adjusted to m, a metal ribbon having the desired thickness of 250 μm was stably obtained.

以上実施例では、急冷薄帯の製造法として双ロール法を
用いた場合について主に説明したが、単ロール法を利用
した場合においても同様の結果が得られることが確めら
れている。
In the above examples, the case where the twin roll method was used as the method for manufacturing the quenched ribbon was mainly explained, but it has been confirmed that similar results can be obtained when the single roll method is used.

(発明の効果) かくしてこの発明によれば、冷却ロールを用いて急冷薄
帯を製造する場合において、急冷薄帯の厚み制御用信号
としての薄帯ロール接触長さを正確に測定することがで
き、ひいてはこの測定値に基いて薄帯厚みを効果的に制
御することができるので、長手方向に板厚偏差のない金
属薄帯を得る上で極めて有用である。
(Effects of the Invention) Thus, according to the present invention, when manufacturing a quenched ribbon using a cooling roll, it is possible to accurately measure the contact length of the ribbon roll as a signal for controlling the thickness of the quenched ribbon. Furthermore, since the ribbon thickness can be effectively controlled based on this measured value, it is extremely useful in obtaining a metal ribbon without thickness deviation in the longitudinal direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う急冷薄帯の板厚制御要領説明
図、 第2図a、bはそれぞれ、超音波探触子からの反射波信
号波形を示した図、 第3図は、ロール接触長さと薄帯の板厚との関係を示し
たグラフである。
Figure 1 is an explanatory diagram of the method for controlling the thickness of the quenched ribbon according to the present invention. Figures 2a and b are diagrams showing the reflected wave signal waveforms from the ultrasonic probe, respectively. Figure 3 is the roll It is a graph showing the relationship between the contact length and the plate thickness of the ribbon.

Claims (1)

【特許請求の範囲】 1、金属溶湯を、その射出ノズルから、高速で回転する
冷却ロール上に連続して供給し、急冷凝固させて金属薄
帯を製造するに当り、 該冷却ロールの中空ロール心軸に取付けた 超音波探触子から、該ロール心軸の外周でその心軸周面
との間に水冷ジャケットを形成するロール胴殻に向け、
その半径方向に超音波を発信しつつ、該ロール胴殻外表
面からの反射波を受信し、該反射波の強度変化から金属
薄帯が冷却ロールに接触している長さを測定し、この測
定値が、所望の板厚に応じて予め定めておいた設定値か
らずれた場合に、そのずれをなくすように溶湯供給量お
よび/またはロール周速を調節することを特徴とする急
冷薄帯の板厚制御方法。
[Claims] 1. In producing a metal ribbon by continuously supplying molten metal from its injection nozzle onto a cooling roll rotating at high speed and rapidly solidifying it, the cooling roll is a hollow roll. from an ultrasonic probe attached to the mandrel to the roll body shell forming a water-cooled jacket between the roll mandrel and the mandrel peripheral surface on the outer periphery of the roll mandrel,
While transmitting ultrasonic waves in the radial direction, the reflected waves from the outer surface of the roll shell are received, and the length of the metal ribbon in contact with the cooling roll is measured from the change in the intensity of the reflected waves. A quenched ribbon characterized by adjusting the molten metal supply amount and/or roll circumferential speed to eliminate the deviation when the measured value deviates from a predetermined setting value depending on the desired plate thickness. thickness control method.
JP28686985A 1985-12-21 1985-12-21 Thickness controlling method for rapidly-cooled thin hoop Pending JPS62148061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28686985A JPS62148061A (en) 1985-12-21 1985-12-21 Thickness controlling method for rapidly-cooled thin hoop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28686985A JPS62148061A (en) 1985-12-21 1985-12-21 Thickness controlling method for rapidly-cooled thin hoop

Publications (1)

Publication Number Publication Date
JPS62148061A true JPS62148061A (en) 1987-07-02

Family

ID=17710056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28686985A Pending JPS62148061A (en) 1985-12-21 1985-12-21 Thickness controlling method for rapidly-cooled thin hoop

Country Status (1)

Country Link
JP (1) JPS62148061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213014A (en) * 2007-03-07 2008-09-18 Ihi Corp Method for controlling shape thickness of strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213014A (en) * 2007-03-07 2008-09-18 Ihi Corp Method for controlling shape thickness of strip

Similar Documents

Publication Publication Date Title
Chen et al. Temperature measurement of polymer extrusion by ultrasonic techniques
CA2432067A1 (en) Ultrasonic apparatus and methods for the monitoring of melting, mixing, and chemical reaction processes
JPS62148061A (en) Thickness controlling method for rapidly-cooled thin hoop
EP0305930B1 (en) Method of oscillating continuous casting mold at high frequencies and mold oscillated by such method
JPS6186058A (en) Method for measuring thickness of quickly cooled thin strip
EP0801733B1 (en) Method for measuring viscosity and viscosimeter
JPS5941829B2 (en) Continuous steel casting method
JPH02307652A (en) Crown control method in continuous thin casting
JPH0356806A (en) Method for measuring surface roughness of quenched thin belt roll
JPS6199520A (en) Method and device for measuring roll profile
JPS58186010A (en) Apparatus for measuring thickness of coated film of synthetic resin
JPS63313641A (en) Apparatus for controlling cutting weight of cast slab
JPH0513746B2 (en)
JPS6046407A (en) Ultrasonic type measuring method of thickness of plastic cable sheath
JPH01218749A (en) Apparatus for manufacturing amorphous ribbon
JPS63313642A (en) Apparatus for controlling cutting weight of cast slab
JPH0921679A (en) Apparatus for detecting surface level of molten metal
JPH01166867A (en) Thin strip manufacturing device
JP2006053040A (en) Cast piece freezing layer thickness measuring device of continuous casting machine
JPH0796146B2 (en) Method and apparatus for continuous casting of thin slab
JPH0726340Y2 (en) Glass tube wall thickness control device, tube drawing speed measuring device used in the device
KR950007216Y1 (en) Space control apparatus of nozzle and cooling roll
JPS60177907A (en) Rolling method of seamless pipe
JP2000263192A (en) Gap gauge for single roll casting and casting method
JPH0222882B2 (en)