Nothing Special   »   [go: up one dir, main page]

JPS62144002A - Apparatus for measuring thickness of metal membrane - Google Patents

Apparatus for measuring thickness of metal membrane

Info

Publication number
JPS62144002A
JPS62144002A JP28472585A JP28472585A JPS62144002A JP S62144002 A JPS62144002 A JP S62144002A JP 28472585 A JP28472585 A JP 28472585A JP 28472585 A JP28472585 A JP 28472585A JP S62144002 A JPS62144002 A JP S62144002A
Authority
JP
Japan
Prior art keywords
measured
detection
detection coil
thickness
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28472585A
Other languages
Japanese (ja)
Inventor
Shiro Fukushima
福島 志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP28472585A priority Critical patent/JPS62144002A/en
Publication of JPS62144002A publication Critical patent/JPS62144002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To make it possible to measure the thickness of a metal membrane with high accuracy without minding the arrangement accuracy of detection coils, by providing a relative moving means for relatively moving a body to be measured and the detection coils between a pair of detection coils. CONSTITUTION:The position slightly lower than the position downwardly separated by a distance dc from the under surface of a first detection coil 4a is set as a start point position d1 and, at first, said detection coil 4a is moved upwardly from said start point position d1 at a rough pitch, for example, at a pitch of 0.1mm and oscillation amplitude values P1, P2, P3, P4 are plotted at pitch positions d1, d2, d3, d4. In this case, as a body 1 to be measured 1 approaches a center position dc, oscillation amplitude values become small and become large when exceed said center position dc and, therefore, when P4>P3 was formed, the rising movement of the body 1 to be measured is stopped. Next, the body 1 to be measured falls and the min. value Pm of the oscillation amplitude value at each pitch position is calculated. By finding out the min. value Pm by this method, the thickness of a metal membrane 3 corresponding to said value can be accurately calculated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はうす電流損をfil用1−た高周波式膜厚測定
法によって金属薄膜の膜厚を測定する装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring the thickness of a metal thin film by a high-frequency film thickness measurement method that reduces thin current loss.

(従来の技術) 第3図にはうず電流損を利用した従来の膜厚測定装置の
機械的構成が示され、また第4図にはその従来装置の回
路構成が示されている。
(Prior Art) FIG. 3 shows the mechanical configuration of a conventional film thickness measuring device using eddy current loss, and FIG. 4 shows the circuit configuration of the conventional device.

図において、被測定体1はウェハ(基板)2に金属薄膜
3を形成したものからなり、この金属薄膜3の表面近く
に一定間隔dをへだてて検出コイル4が配置される。こ
の検出コイル4は第4図に示すように、トランジスタ5
と、コンデンサ6および同7と、を有する発振回路8の
一部を構成しており、検出コイル4から交番磁界を金属
薄膜3に加えることにより、次のようにして、該金属薄
膜3の膜厚測定が行われていた。
In the figure, the object to be measured 1 consists of a wafer (substrate) 2 on which a metal thin film 3 is formed, and a detection coil 4 is arranged near the surface of the metal thin film 3 at a constant distance d. This detection coil 4 is connected to a transistor 5 as shown in FIG.
, and capacitors 6 and 7. By applying an alternating magnetic field to the metal thin film 3 from the detection coil 4, the film of the metal thin film 3 is activated as follows. Thickness measurements were being taken.

すなわち、検出コイル4より生ずる交番磁界が被測定体
1を横切ると、金属薄M3中に交番磁界に対して直角に
うず電流が流れ、検出コイル4のQを下げる。その結果
として、発振回路8の発振振幅が変化する。この変化の
様相は第7図に示されている。図上、横軸は検出コイル
4と金属薄膜3との距離dを示し、縦軸は発振回路8の
発振振幅を示す。この座標上において、各金属薄膜3の
膜厚T1′、同T2’および同T3′に対し、破線で示
すような特性曲線が得られる。
That is, when the alternating magnetic field generated by the detection coil 4 crosses the object to be measured 1, an eddy current flows in the thin metal M3 at right angles to the alternating magnetic field, lowering the Q of the detection coil 4. As a result, the oscillation amplitude of the oscillation circuit 8 changes. The aspect of this change is shown in FIG. In the figure, the horizontal axis indicates the distance d between the detection coil 4 and the metal thin film 3, and the vertical axis indicates the oscillation amplitude of the oscillation circuit 8. On this coordinate, characteristic curves as shown by broken lines are obtained for the film thicknesses T1', T2', and T3' of each metal thin film 3.

したがって、発振振幅と距離dがわかればその交点を通
る特性曲線がら膜厚が求まる。ところで、図から明らか
なように、膜厚が同一でも距離dが少し変化すると発振
振幅が大きく変化することが理解できる。この為、例え
ば、膜厚が1μmの純アルミニウム薄膜を1%の精度で
測定する為には、距離dの精度を±0.01 +u+以
下におさえる必要があった。この値は、ウェハ2(半導
体基板)上の金属薄膜3を測定するような場合、この精
度範囲内に検出コイル4を設置するのが極めて困難であ
り、満足する測定精度を得る為には複雑がっ大がかりな
装置構成としなければならず、その取り扱いも高度の熟
練を要する等の欠点がある。
Therefore, if the oscillation amplitude and distance d are known, the film thickness can be determined from the characteristic curve passing through the intersection. By the way, as is clear from the figure, it can be understood that even if the film thickness is the same, if the distance d changes slightly, the oscillation amplitude changes greatly. For this reason, for example, in order to measure a pure aluminum thin film with a thickness of 1 μm with an accuracy of 1%, it is necessary to keep the accuracy of the distance d within ±0.01 +u+. When measuring a metal thin film 3 on a wafer 2 (semiconductor substrate), it is extremely difficult to install the detection coil 4 within this accuracy range, and it is difficult to obtain a satisfactory measurement accuracy. This method has drawbacks such as requiring a large-scale device configuration and requiring a high level of skill to handle it.

近年、このような問題点をできるだけ解消する為に、第
5図に示すような改良装置が提供されている。この改良
装置は、第6図に示すように、発振回路8の検出コイル
4を第1の検出コイル4aと第2の検出コイル4bとに
2分割し、第5図に示すように、該第1の検出コイル4
aと第2の検出コイル4bとを、被測定体1の金属薄a
3の表面を中心位置にして、上下に対向配置したもので
ある。この改良装置を用いた場合の発振回路8の特性は
各膜厚Tl、同T2および同T3に対し、第7図に示す
ような実線の曲線となり、被測定体1が第1の検出コイ
ル4aと第2の検出コイル4bとの中間位置d。で極小
値をもつようになるこの極小値付近では距離dの変化に
対して発振振幅はほとんど変らない。したがって、例え
ば、純アルミニウムの金属薄膜3の膜厚1μmを1%の
精度で測定する場合、第1の検出コイル4aと金属薄膜
3との距離dをd=dcとなるように±0.1 mmの
精度におさえればよいことが実証されている。
In recent years, in order to eliminate such problems as much as possible, an improved device as shown in FIG. 5 has been provided. This improved device divides the detection coil 4 of the oscillation circuit 8 into two, a first detection coil 4a and a second detection coil 4b, as shown in FIG. 1 detection coil 4
a and the second detection coil 4b are connected to the thin metal a of the object to be measured 1.
They are arranged vertically facing each other with the surface of No. 3 as the center position. When this improved device is used, the characteristics of the oscillation circuit 8 become solid curves as shown in FIG. 7 for each film thickness Tl, T2, and T3. and the intermediate position d between the second detection coil 4b. Near this minimum value, the oscillation amplitude hardly changes as the distance d changes. Therefore, for example, when measuring a thickness of 1 μm of a pure aluminum metal thin film 3 with an accuracy of 1%, the distance d between the first detection coil 4a and the metal thin film 3 is adjusted by ±0.1 so that d=dc. It has been demonstrated that it is sufficient to maintain an accuracy of mm.

(発明か解決しようとする問題点) 上記の改良装置を用いることにより、被測定体1(金属
FI H3)に対する検出コイル4(第1の検出コイル
4aと第2の検出コイル4b)の配置精度をかなり大幅
に緩和できるようになった。
(Problem to be solved by the invention) By using the above improved device, the placement accuracy of the detection coil 4 (first detection coil 4a and second detection coil 4b) with respect to the object to be measured 1 (metal FI H3) can be improved. can now be alleviated considerably.

しかしながら、この改良装置においても、まだ検出コイ
ル4の配置精度を±0.1 mm以内に押さえなければ
ならず、簡易な装置でこの要求を満足するのは困難であ
る。
However, even with this improved device, the placement accuracy of the detection coil 4 must still be kept within ±0.1 mm, and it is difficult to satisfy this requirement with a simple device.

本発明は上記従来の問題点を解決する為になされたもの
であり、その目的は、検出コイルの配置精度を気にする
ことなく、金属薄膜の膜厚を高精度で測定することがで
きる金属薄膜の膜厚測定装置を提供することにある。
The present invention was made in order to solve the above-mentioned conventional problems, and its purpose is to provide a metal thin film that can measure the thickness of a thin metal film with high precision without worrying about the placement accuracy of the detection coil. An object of the present invention is to provide a thin film thickness measuring device.

(問題点を解決するための手段) 本発明は上記目的を達成するため次のように構成されて
いる。すなわち、本発明は、金属薄膜が形成された被測
定体を跨いだ状態で一定間隔をへだてて配置され、交番
磁界を発生する少なくとも一対の検出コイルと; 金属
薄膜のうず電流によるうず電流損に依存して特性が変化
する検出回路と; 検出回路の出力を測定する測定回路
と。
(Means for Solving the Problems) In order to achieve the above object, the present invention is configured as follows. That is, the present invention includes: at least a pair of detection coils that are arranged at a constant distance from each other across an object to be measured on which a thin metal film is formed, and generate an alternating magnetic field; A detection circuit whose characteristics change depending on the detection circuit; and a measurement circuit that measures the output of the detection circuit.

を含み、金属薄膜の膜厚に応じて変化するうず電流損に
対応した検出回路の特性変化から前記金属薄膜の膜厚を
測定する金属薄膜の膜厚測定装置において、前記一対の
検出コイル間内で前記被測定体と前記検出コイルとを往
復自在に相対移動させる相対移動手段が設けられている
金属薄膜の膜厚測定装置である。
In the metal thin film film thickness measuring device that measures the film thickness of the metal thin film from a change in the characteristics of a detection circuit corresponding to eddy current loss that changes depending on the film thickness of the metal thin film, The apparatus for measuring the thickness of a metal thin film is provided with a relative movement means for reciprocatingly moving the object to be measured and the detection coil relative to each other.

(作 用) 上記構成からなる本発明において、被測定体に形成され
た金属薄膜の膜厚は次のようにして測定される。まず、
相対移動手段を動作させて、検出コイルと被測定体との
相対移動を行う。
(Function) In the present invention having the above configuration, the thickness of the metal thin film formed on the object to be measured is measured as follows. first,
The relative movement means is operated to perform relative movement between the detection coil and the object to be measured.

例えば、上下に配置された一対の検出コイル間の下方位
置から被測定体を荒いピッチでステップ状に上方へ移動
させる。この被測定体の移動により該被測定体は検出コ
イル間の中心位置に近づくが、この近づきに伴って検出
回路の出力値は徐々に小さくなる。さらに、被測定体の
上昇移動を続けると逆に検出回路の出力値がその前の値
よりも増加するが、この増加し始めた位置で被測定体の
上昇移動を停止する6つまり、検出回路の出力値が極小
値を越えたときに被測定体の上昇移動を停止するのであ
る。
For example, the object to be measured is moved upward in steps at a rough pitch from a position below between a pair of detection coils arranged one above the other. Due to this movement of the object to be measured, the object to be measured approaches the center position between the detection coils, and as the object approaches, the output value of the detection circuit gradually decreases. Furthermore, if the object to be measured continues to move upward, the output value of the detection circuit will increase more than the previous value, but the upward movement of the object to be measured will be stopped at the position where this increase starts.6 In other words, the detection circuit When the output value exceeds the minimum value, the upward movement of the object to be measured is stopped.

次に、例えばその停止位置を折り返し点とし、細かい送
りピッチで被測定体を下降させ、検出回路から出力され
る出力値の極小値が求められる、したがって、この求め
られた極小値と同一の極小値を有する検出回路の特性曲
線から金属薄膜の膜厚が終局的に求められる。このよう
に、本発明においては、まず、荒送りの相対移動によっ
て検出回路から出力される出力値の極小値近傍位置を迅
速に見つけ出し、さらに、この極小値近傍位置で被測定
体と検出コイルとを細かいピッチで相対移動させること
で、検出回路の出力の極小値、すなわち膜厚を正確に求
めることが可能となるものである。
Next, for example, using the stop position as the turning point, the object to be measured is lowered at a fine feed pitch, and the minimum value of the output value output from the detection circuit is determined. The thickness of the metal thin film is ultimately determined from the characteristic curve of the detection circuit having the value. As described above, in the present invention, first, the position near the minimum value of the output value output from the detection circuit is quickly found by relative movement of the rough feed, and then the position near the minimum value is connected to the object to be measured and the detection coil. By relatively moving the film at a fine pitch, it is possible to accurately determine the minimum value of the output of the detection circuit, that is, the film thickness.

(実 施 例) 以下、本発明の一実施例を図面に基づいて説明する。な
お、本実施例の説明において、従来例と同一の構成部分
には同一符号を付してその説明を省略する。第1図には
本発明に係る一実施例の構成が示されている。図におい
て、側板9から一定の間隔をへだてて一対をなす保持脚
10および同11が水平に突設されており、一方の保持
脚10には第1の検出コイル4aが固定され、他方の保
持脚11には第2の検出コイル4bが固定されている。
(Example) Hereinafter, one example of the present invention will be described based on the drawings. In the description of this embodiment, the same components as those of the conventional example are given the same reference numerals, and the description thereof will be omitted. FIG. 1 shows the configuration of an embodiment according to the present invention. In the figure, a pair of holding legs 10 and 11 are horizontally protruded apart from the side plate 9 at a certain distance, and a first detection coil 4a is fixed to one holding leg 10, and the other holding leg A second detection coil 4b is fixed to the leg 11.

この第1の検出コイル4aおよび第2の検出コイル4b
4i従来の改良装置と同様に発振回路8の一部を構成し
ている。
This first detection coil 4a and second detection coil 4b
4i It constitutes a part of the oscillation circuit 8 similarly to the conventional improved device.

この発振回路8の詳細な回路構成は第6図に示す従来の
回路構成と同様であり、検出コイル4を第1の検出コイ
ル4aと第2の検出コイル4bとに2分割した構成とな
っている。前記第1の検出コイル4aと第2の検出コイ
ル4bとの間には被測定体1が配置されている。
The detailed circuit configuration of this oscillation circuit 8 is similar to the conventional circuit configuration shown in FIG. 6, and has a configuration in which the detection coil 4 is divided into two, a first detection coil 4a and a second detection coil 4b. There is. The object to be measured 1 is arranged between the first detection coil 4a and the second detection coil 4b.

したがって、第1の検出コイル4aおよび第2の検出コ
イル4bから交番磁界を出力することにより、金属薄膜
3内にうず電流が発生する。
Therefore, by outputting an alternating magnetic field from the first detection coil 4a and the second detection coil 4b, eddy current is generated within the metal thin film 3.

このうず電流の大きさは金属薄膜3の膜厚に対応してお
り、したがって、この膜厚の大小に応じて検出コイル4
のQが変化する。換言すれば、膜厚の大小に応じて検出
コイル4のうず電流世か変化する。この結果、発振回路
8からは金属薄膜3の膜厚に対応するアナログの発振振
幅を有する信号が出力される。この発振振幅信号は高速
アナログデジタル変換回路12に加えられて、アナログ
信号からデジタル信号に変換される□。
The magnitude of this eddy current corresponds to the thickness of the metal thin film 3, and therefore, the detection coil 4
Q changes. In other words, the eddy current of the detection coil 4 changes depending on the film thickness. As a result, the oscillation circuit 8 outputs a signal having an analog oscillation amplitude corresponding to the thickness of the metal thin film 3. This oscillation amplitude signal is applied to a high-speed analog-to-digital conversion circuit 12, where it is converted from an analog signal to a digital signal.

そして、このデジタル信号はデータ処理回路1−3に加
えられ所望のデータ処理が行われるのである。本実施例
においては、前記高速アナログデジタル変換回路12と
データ処理回路13とによって測定回路14が構成され
ている。
This digital signal is then applied to the data processing circuit 1-3 to perform desired data processing. In this embodiment, a measuring circuit 14 is constituted by the high-speed analog-to-digital conversion circuit 12 and the data processing circuit 13.

ところで、本実施例において特徴的なことは、被測定体
1を第1の検出コイル4aと第2の検出コイル4bとの
間で上下方向に移動する相対移動手段15が設けられて
いることである。
By the way, a characteristic feature of this embodiment is that a relative moving means 15 is provided for vertically moving the object to be measured 1 between the first detection coil 4a and the second detection coil 4b. be.

本実施例において、相対移動手段15は、被測定体1を
保持する保持部材16と、この保持部材16に螺合する
送りねじ17と、送りねじ17を適宜正転および逆転の
所望向きに回転駆動するパルスモーク18と、このパル
スモータ18の回転制御を行う制御回路19とにより構
成されている。
In this embodiment, the relative moving means 15 includes a holding member 16 that holds the object to be measured 1, a feed screw 17 that is screwed into the holding member 16, and rotates the feed screw 17 in a desired direction of normal rotation and reverse rotation as appropriate. It is composed of a pulse smoke 18 to be driven and a control circuit 19 that controls the rotation of this pulse motor 18.

前記保持部材16は固定壁(図示せず)に設けられたガ
イド溝(図示せず)に沿って摺動自在に配置されており
、該保持部材16の保持部には被測定体1が着脱自在に
保持されている。
The holding member 16 is slidably disposed along a guide groove (not shown) provided in a fixed wall (not shown), and the object 1 to be measured is attached to and removed from the holding portion of the holding member 16. freely held.

また、該保持部材16の所望位置には貫通孔が設けられ
、この貫通孔の周面にねし溝が形成されている。そして
、このねじ溝に送りねじ17が貫通状態で螺合されてお
り、該送りねじ17の基端部はカップリング(図示せず
)を介してパルスモータ18の出力軸に連結されている
Further, a through hole is provided at a desired position of the holding member 16, and a threaded groove is formed on the circumferential surface of this through hole. A feed screw 17 is screwed into this thread groove in a penetrating state, and the base end of the feed screw 17 is connected to the output shaft of a pulse motor 18 via a coupling (not shown).

このパルスモータ18は制御回路19の指令を受けてス
テップ状に正逆所望の向きに回転を行うが、そのステッ
プの幅は任意に可変できるようになっている。したがっ
て、パルスモータ18を回転制御することにより、送り
ねじ17と保持部材16との相対螺合回転が行われ、保
持部材16はガイド溝に沿って上下摺動を行い、これに
より被測定体1の上下移動の制御が達成されるのである
The pulse motor 18 receives commands from the control circuit 19 and rotates stepwise in the forward or reverse direction in a desired direction, and the width of the step can be arbitrarily varied. Therefore, by controlling the rotation of the pulse motor 18, the relative threading rotation between the feed screw 17 and the holding member 16 is performed, and the holding member 16 slides up and down along the guide groove. Control of the vertical movement is achieved.

前記制御回路1つから出力される制御信号はパルスモー
タ18へ加える外に、前記データ処理回路13へ加えら
れている。データ処理回路13は高速アナログデジタル
変換回路12から加えられているデジタルの発振振幅情
報と制御回路1つから加えられている制御信号(被測定
体の位置情報)とに基づき第2図に示すように、発振回
路8の発振振幅と被測定体1(金属薄膜3)の移動距離
dとの関係をプロットして特性図を作成する。
A control signal outputted from one of the control circuits is applied not only to the pulse motor 18 but also to the data processing circuit 13. The data processing circuit 13 operates as shown in FIG. 2 based on the digital oscillation amplitude information applied from the high-speed analog-to-digital conversion circuit 12 and the control signal (position information of the measured object) applied from one control circuit. Next, a characteristic diagram is created by plotting the relationship between the oscillation amplitude of the oscillation circuit 8 and the moving distance d of the object to be measured 1 (metal thin film 3).

したがって、この特性図を見ることにより、発振振幅の
正確な極小値を一目瞭然に求めることが可能となるもの
である。
Therefore, by looking at this characteristic diagram, it is possible to determine the accurate minimum value of the oscillation amplitude at a glance.

本実施例では、この発振振幅の極小値を求める場合、被
測定体1を第1の検出コイル4aと第2の検出コイル4
bの中心位置のやや下方位置、すなわち、第1の検出コ
イル4aの下面から下方へcicだけ離れた位置よりも
やや下方位置(第1の検出コイルから下方へdだけ離れ
た位置)を起点位置d1とし、まず、この起点位fd、
から荒いピッチ、例えば0.1 mIaのピッチで上昇
移動を行い、各ピッチ位置d1.同d2.同d、および
同d4での発振振幅値P1.同P2.同P3および同P
4をプロットさせる。この場合、被測定体1が中心位置
dCに近づくにつれて発振振幅値が小さくなり(PI>
P2〉P、)、この中心位Wdcを越えると発振振幅値
が再び大きくなるから、P 4 > P 3となったと
き、つまり被測定体1が中心位置dcを越えたときに該
被測定体1の上昇移動を停止する。次に、このd4の位
置又はこれよりも微少量上方位置を折り返し点として逆
向きに細かいピッチで被測定体1を下降し、その各ピッ
チ位置での発振振幅値をプロブ1−シ、このプロット図
から発振振幅値の極小値Pmを求める。
In this embodiment, when determining the minimum value of this oscillation amplitude, the object to be measured 1 is connected to the first detection coil 4a and the second detection coil 4.
The starting point is a position slightly below the center position of b, that is, a position slightly below the position cic downward from the bottom surface of the first detection coil 4a (a position d downward from the first detection coil). d1, first, this starting point fd,
From d1. Same d2. Oscillation amplitude value P1 at d and d4. Same P2. Same P3 and Same P
Plot 4. In this case, as the measured object 1 approaches the center position dC, the oscillation amplitude value becomes smaller (PI>
P2>P, ), and the oscillation amplitude value increases again when the center position Wdc is exceeded, so when P 4 > P 3, that is, when the measured object 1 exceeds the center position dc, the measured object 1 Stop the upward movement of 1. Next, the object 1 to be measured is lowered at a fine pitch in the opposite direction using the position of d4 or a slightly higher position than this as a turning point, and the oscillation amplitude value at each pitch position is plotted as a plot. The minimum value Pm of the oscillation amplitude value is determined from the figure.

このようにして極小値P、nを見い出すことにより、該
極小値P。に対応する金属薄膜3の膜厚を正確に求める
ことが可能となる。
By finding the minimum value P, n in this way, the minimum value P. It becomes possible to accurately determine the film thickness of the metal thin film 3 corresponding to .

上記のように、本実施例によれば、被測定体1を荒いピ
ッチで移動して発振振幅の極小値位置の大まかな見当を
つけ、次に、その見当をつけた領域を細かいピッチで探
索することにより、前記発振振幅の極小値、すなわち、
金属薄WA3の膜厚を正確にかつ迅速に測定できる。ま
た、従来装置において不可欠であった複雑かつ面倒な検
出コイル4の高精度の位置決め固定作業を必要としない
から、膜厚測定作業が極めて容易であり、また、前記高
精度位置決め固定作業のための特別な機構が不要である
から、装置構成の簡易化を大幅に図ることもできる。
As described above, according to this embodiment, the object to be measured 1 is moved at a rough pitch to roughly estimate the position of the minimum value of the oscillation amplitude, and then the area where the oscillation amplitude has been estimated is searched at a fine pitch. By doing so, the minimum value of the oscillation amplitude, that is,
The thickness of the thin metal WA3 can be measured accurately and quickly. Furthermore, since there is no need for the complicated and troublesome high-precision positioning and fixing work of the detection coil 4, which was essential in conventional devices, the film thickness measurement work is extremely easy. Since no special mechanism is required, the device configuration can be greatly simplified.

なお、上記実施例では、被測定体1を検出コイル4(第
1の検出コイル4aと第2の検出コイル4b)に対して
移動するように構成したが、これとは逆に、被測定体1
を固定し、第1の検出コイル4aおよび第2の検出コイ
ル4b側を同様な送りねじの構成で一体的に移動するよ
うに構成してもよい。また、被測定体1と、第1の検出
コイル4aおよび第2の検出コイル4bとの相対移動は
必ずしも本実施例のようにパルスモータ18と送りねじ
17との組み合わせ機構に限定されることはなく、これ
らの相対移動量を微少量ずつ制御することが可能であれ
ば、適宜、他の所望の手段によって構成してもよい。
In the above embodiment, the object to be measured 1 is configured to move relative to the detection coil 4 (the first detection coil 4a and the second detection coil 4b). 1
may be fixed, and the first detection coil 4a and second detection coil 4b may be configured to move integrally using a similar feed screw configuration. Furthermore, the relative movement between the object to be measured 1 and the first detection coil 4a and second detection coil 4b is not necessarily limited to the combination mechanism of the pulse motor 18 and the feed screw 17 as in this embodiment. However, as long as it is possible to control these relative movement amounts minute by minute, other desired means may be used as appropriate.

また、上記実施例では、うず電流損によって特性変化を
行う検出回路として、発振回路8を採用したが、必ずし
もこれに限定されることがなく、他の回路によって構成
することも可能であり、例えば、うず電流損によってコ
イル定数が変化する検出コイルをブリッジの一辺にした
ブリッジ回路によって構成してもよい、この場合も上記
実施例の場合と同様に、迅速かつ正確に金属薄膜3の膜
厚を測定することが可能である。
Further, in the above embodiment, the oscillation circuit 8 is used as a detection circuit that changes characteristics due to eddy current loss, but it is not necessarily limited to this, and it is also possible to configure it with other circuits, for example. , a bridge circuit may be constructed in which one side of the bridge is a detection coil whose coil constant changes due to eddy current loss. In this case as well, the thickness of the metal thin film 3 can be quickly and accurately determined as in the above embodiment. It is possible to measure.

さらに、上記実施例は、データ処理回路13の作図結果
に基づいて発振振幅の極小値を求めているが、発振回路
8から出力される発振振幅のアナログ信号を表示器に導
き、この表示器の表示針の振れを観察することにより発
振振幅の極小値を求めるようにしてもよい。
Further, in the above embodiment, the minimum value of the oscillation amplitude is determined based on the plotting result of the data processing circuit 13, but the analog signal of the oscillation amplitude output from the oscillation circuit 8 is guided to the display, and the The minimum value of the oscillation amplitude may be determined by observing the deflection of the display hand.

(発明の効果) 本発明は以上説明したような構成と作用とを有している
ので、検出コイルの位置決め精度に関係なく金属薄膜の
膜厚を高精度かつ迅速に測定することができる。また、
検出コイルの位置決め精度を必要としないので、高精度
位置決めのための複雑な機構が不用となり、これにより
、装置構成の簡易化を大幅に図ることも可能となる。
(Effects of the Invention) Since the present invention has the configuration and operation as described above, the thickness of the metal thin film can be measured quickly and with high accuracy regardless of the positioning accuracy of the detection coil. Also,
Since positioning accuracy of the detection coil is not required, a complicated mechanism for high-precision positioning is not required, thereby making it possible to significantly simplify the device configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例の構成図、第2図は本実
施例の装置による膜厚測定の要領図、第3図は従来の改
良前の膜厚測定装置の構成図、第4図は第3図の装置に
用いられる発振回路の回路図、第5図は従来の改良装置
の構成図、第6図は第5図の装置に用いられる発振回路
の回路図、第7図は膜厚をパラメータとする金属薄膜の
相対移動距離dと発振振幅との関係を示す特性図である
。 1・・・・・・被測定体、 2・・・・・・ウェハ、 
3・・・・・・金属薄膜、 4・・・・・・検出コイル
、 4a・・・・・・第1の検出コイル、 4b・・・
・・・第2の検出コイル、5・・・・・・トランジスタ
、  6.7・・・・・・コンデンサ、8・・・・・・
発振回路、 9・・・・・・側板、 10.11・・・
・・・保持脚、  12・・・・・・高速アナログデジ
タル変換回路、 13・・・・・・データ処理回路、 
 14・・・・・・測定回路、 15・・・・・・相対
移動手段、 16・・・・・・保持部材、 17・・・
・・・送りねじ、 18・・・・・・パルスモータ、 
19・・・・・制御回路。 代理人 弁理士  八 幡  義 薄 葉 / 図 ホ 2 図 do  新剛− 第4図     第3 図 第6 図      第5 因 4」【工、コ4ル 第 7 図 距 離 d□
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a schematic diagram of film thickness measurement using the device of this embodiment, and Fig. 3 is a block diagram of a conventional film thickness measuring device before improvement. Figure 4 is a circuit diagram of the oscillation circuit used in the device shown in Figure 3, Figure 5 is a block diagram of a conventional improved device, Figure 6 is a circuit diagram of the oscillation circuit used in the device shown in Figure 5, and Figure 7. is a characteristic diagram showing the relationship between the relative movement distance d of a metal thin film and the oscillation amplitude with the film thickness as a parameter. 1...Object to be measured, 2...Wafer,
3...metal thin film, 4...detection coil, 4a...first detection coil, 4b...
...Second detection coil, 5...Transistor, 6.7...Capacitor, 8...
Oscillation circuit, 9...Side plate, 10.11...
... Holding leg, 12 ... High-speed analog-to-digital conversion circuit, 13 ... Data processing circuit,
14... Measuring circuit, 15... Relative movement means, 16... Holding member, 17...
...Feed screw, 18...Pulse motor,
19...Control circuit. Agent Patent Attorney Yoshi Yahata Usuba / Figure 2 Figure do Shingo - Figure 4 Figure 3 Figure 6 Figure 5 Reason 4''

Claims (5)

【特許請求の範囲】[Claims] (1)金属薄膜が形成された被測定体を跨いだ状態で一
定間隔をへだてて配置され、交番磁界を発生する少なく
とも一対の検出コイルと;金属薄膜のうず電流によるう
ず電流損に依存して特性が変化する検出回路と;検出回
路の出力を測定する測定回路と;を含み、金属薄膜の膜
厚に応じて変化するうず電流損に対応した検出回路の特
性変化から前記金属薄膜の膜厚を測定する金属薄膜の膜
厚測定装置において、前記一対の検出コイル間内で前記
被測定体と前記検出コイルとを相対移動させる相対移動
手段が設けられていることを特徴とする金属薄膜の膜厚
測定装置。
(1) at least a pair of detection coils that are arranged at a constant interval across the object to be measured on which a thin metal film is formed and generate an alternating magnetic field; A detection circuit whose characteristics change; and a measurement circuit which measures the output of the detection circuit; and the thickness of the metal thin film can be determined from changes in the characteristics of the detection circuit corresponding to eddy current loss which changes depending on the thickness of the metal thin film. A thin metal film thickness measuring device for measuring the thickness of a thin metal film, further comprising a relative movement means for relatively moving the object to be measured and the detection coil between the pair of detection coils. Thickness measuring device.
(2)相対移動手段は、パルスモータと;このパルスモ
ータの回転を制御する制御回路と;パルスモータの回転
運動を被測定体の直進運動に変換する送りねじと;から
なることを特徴とする特許請求の範囲第(1)項記載の
金属薄膜の膜厚測定装置。
(2) The relative movement means is characterized by comprising: a pulse motor; a control circuit that controls the rotation of the pulse motor; and a feed screw that converts the rotational motion of the pulse motor into linear motion of the object to be measured. A film thickness measuring device for a metal thin film according to claim (1).
(3)相対移動手段は、パルスモータと;このパルスモ
ータの回転を制御する制御回路と;パルスモータの回転
運動を一対の検出コイルの一体的な直進運動に変換する
送りねじと;からなることを特徴とする特許請求の範囲
第(1)項記載の金属薄膜の膜厚測定装置。
(3) The relative movement means consists of a pulse motor; a control circuit that controls the rotation of the pulse motor; and a feed screw that converts the rotational motion of the pulse motor into integral linear motion of a pair of detection coils. An apparatus for measuring the thickness of a thin metal film according to claim (1).
(4)検出回路は、うず電流損によって発振振幅が変化
する発振回路からなることを特徴とする特許請求の範囲
第(1)項乃至第(3)項のいずれかに記載の金属薄膜
の膜厚測定装置。
(4) The metal thin film according to any one of claims (1) to (3), wherein the detection circuit comprises an oscillation circuit whose oscillation amplitude changes due to eddy current loss. Thickness measuring device.
(5)検出回路は、うず電流損によってコイル定数が変
化する検出コイルをブリッジの一辺にしたブリッジ回路
からなることを特徴とする特許請求の範囲第(1)項乃
至第(3)項のいずれかに記載の金属薄膜の膜厚測定装
置。
(5) The detection circuit comprises a bridge circuit in which one side of the bridge is a detection coil whose coil constant changes due to eddy current loss. A film thickness measuring device for a metal thin film according to claim 1.
JP28472585A 1985-12-18 1985-12-18 Apparatus for measuring thickness of metal membrane Pending JPS62144002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28472585A JPS62144002A (en) 1985-12-18 1985-12-18 Apparatus for measuring thickness of metal membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28472585A JPS62144002A (en) 1985-12-18 1985-12-18 Apparatus for measuring thickness of metal membrane

Publications (1)

Publication Number Publication Date
JPS62144002A true JPS62144002A (en) 1987-06-27

Family

ID=17682174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28472585A Pending JPS62144002A (en) 1985-12-18 1985-12-18 Apparatus for measuring thickness of metal membrane

Country Status (1)

Country Link
JP (1) JPS62144002A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181507A (en) * 2000-12-18 2002-06-26 Ulvac Japan Ltd Inductance measuring instrument
JP2006510024A (en) * 2002-12-13 2006-03-23 アプライド マテリアルズ インコーポレイテッド Method and apparatus for measuring the thickness of a test object between two eddy current sensor heads
JP2007517218A (en) * 2003-12-30 2007-06-28 ラム リサーチ コーポレーション Method and apparatus for measuring film thickness with a coupled eddy current sensor
JP2008008778A (en) * 2006-06-29 2008-01-17 Kobe Steel Ltd Shape measurement method of flaky measuring object, and device therefor
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium
JP2002181507A (en) * 2000-12-18 2002-06-26 Ulvac Japan Ltd Inductance measuring instrument
JP2006510024A (en) * 2002-12-13 2006-03-23 アプライド マテリアルズ インコーポレイテッド Method and apparatus for measuring the thickness of a test object between two eddy current sensor heads
US7777483B2 (en) 2002-12-13 2010-08-17 Applied Materials, Inc. Method and apparatus for measuring a thickness of a layer of a wafer
JP2007517218A (en) * 2003-12-30 2007-06-28 ラム リサーチ コーポレーション Method and apparatus for measuring film thickness with a coupled eddy current sensor
JP2008008778A (en) * 2006-06-29 2008-01-17 Kobe Steel Ltd Shape measurement method of flaky measuring object, and device therefor

Similar Documents

Publication Publication Date Title
KR100385078B1 (en) very small friction and wear tester
CN1243986C (en) Analytical circuit for current sensor working on compensation principle, particular for measurement of dc and ac, and method for operation of said current sensor
US4952857A (en) Scanning micromechanical probe control system
JPS62144002A (en) Apparatus for measuring thickness of metal membrane
KR880000420B1 (en) Spindle orientation control apparatus
JP3370556B2 (en) Wire bonding apparatus and control method thereof
JP2756492B2 (en) Dynamic viscoelasticity measuring device
US9557730B2 (en) Driving apparatus and article processing apparatus
JPS58129611A (en) Positioning system
US7130026B2 (en) Stage control method, a stage control system, and a semiconductor manufacturing equipment
JPH0449048B2 (en)
JPS60168055A (en) Accelerometer
JP2004347504A (en) Optical encoder
JPH0436602A (en) Scanning probe controller
JPS61203253A (en) Table driving device
JP2607533B2 (en) Processing device and processing method
WO2022186386A1 (en) Position sensor
JP2001133381A (en) Scanning probe microscope
JPH02253108A (en) Noncontact shape measuring instrument
JPS6052773A (en) Ad converter
JPS62143110A (en) Expanded contracted quantity control system for piezoelectric element
JPS62138909A (en) Positioning control system for actuator
JPH0237992B2 (en)
KR830001054B1 (en) Spindle exact position control device
JPS63109956A (en) X-y table