Nothing Special   »   [go: up one dir, main page]

JPS62136827A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62136827A
JPS62136827A JP27704085A JP27704085A JPS62136827A JP S62136827 A JPS62136827 A JP S62136827A JP 27704085 A JP27704085 A JP 27704085A JP 27704085 A JP27704085 A JP 27704085A JP S62136827 A JPS62136827 A JP S62136827A
Authority
JP
Japan
Prior art keywords
substrate
gas
chlorine
radicals
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27704085A
Other languages
Japanese (ja)
Other versions
JPH071766B2 (en
Inventor
Kiyoshi Ozawa
清 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27704085A priority Critical patent/JPH071766B2/en
Publication of JPS62136827A publication Critical patent/JPS62136827A/en
Publication of JPH071766B2 publication Critical patent/JPH071766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To inhibit the etching of Si, and to improve a heavy-metal removal effect by forming a thin oxide film on the surface of an Si substrate prior to chlorine-gas treatment while irradiating the surface of the substrate by ultraviolet rays having a specific wavelength during treatment. CONSTITUTION:An SiO2 layer in 20-200Angstrom is shaped on the surface of an Si substrate prior to chlorine-gas treatment. When the SiO2 layer the Si substrate are positioned in a chlorine atmosphere, projecting ultraviolet rays having wavelengths of 180-400nm, Cl2 gas is dissociated directly, is changed into Cl radicals and is adsorbed to an SiO2 surface by conduction electrons transmitted by a tunnel phenomenon in SiO2, and reaches to the surface of the Si substrate by a diffusion, and Cl radicals and Si or a heavy metal are reacted. Cl radicals combine with the heavy metal in a bulk by such a reaction, and one part of the heavy metal is removed as a gas and one part is gettered. The reaction can be induced at a low temperature of 100-500 deg.C by ultraviolet exposure.

Description

【発明の詳細な説明】 〔概 要〕 Si基板表面の塩素ガス処理において、Si表面層がエ
ツチングされることな(、低温でSi基板内の重金属を
除去及びゲソタリソグするため塩素ガス処理に先立ち薄
い酸化層をSi基板表面に設ける。
[Detailed Description of the Invention] [Summary] In the chlorine gas treatment of the surface of the Si substrate, the Si surface layer is not etched (in order to remove and remove heavy metals in the Si substrate at low temperature, a thin layer is formed before the chlorine gas treatment). An oxide layer is provided on the surface of the Si substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法に関するものであり、
さらに詳しく述べるならばSi半導体基板を用いて半導
体装置を製造する工程のうち洗浄工程、特に塩素ガスに
より重金属を洗浄する工程、の改良に関するものである
The present invention relates to a method for manufacturing a semiconductor device,
More specifically, the present invention relates to improvements in the cleaning process, particularly the process of cleaning heavy metals with chlorine gas, in the process of manufacturing semiconductor devices using Si semiconductor substrates.

〔従来の技術〕[Conventional technology]

Si半導体基板の洗浄は従来からウェット洗浄により行
なわれているが、何段階もの処理を必要とするための煩
雑さに問題がある。この問題を解消するためにCA z
ガスを用いて洗浄を行なう方法が提案された。この洗浄
法では、薄い酸化膜の成長又は堆積工程を経たSi半導
体基板をCe zガス雰囲気内で100〜500°Cに
加熱することにより汚染物を除去する。
Cleaning of Si semiconductor substrates has conventionally been carried out by wet cleaning, but there is a problem in that it is complicated because it requires several stages of processing. To solve this problem CA z
A method of cleaning using gas has been proposed. In this cleaning method, contaminants are removed by heating a Si semiconductor substrate, which has undergone a process of growing or depositing a thin oxide film, to 100 to 500°C in a Cez gas atmosphere.

〔発明が解説しようとする問題点〕[Problem that the invention attempts to explain]

従来の塩素ガスによるSiの汚染除去処理では次のよう
な問題があった。
Conventional Si contamination removal treatment using chlorine gas has the following problems.

(i)塩素ガスによりSiのエツチングが進行するため
Siの深いエツチングを生ずる場合には、塩素ガス洗浄
処理法はSi基板の前処理法として必ずしも適当ではな
い。特にMOSのゲート酸化の前処理法として塩素ガス
洗 浄処理法を行なおッチングされ凹凸を生ずるため不
満足な結果となる。
(i) In cases where deep etching of Si occurs due to the progress of etching of Si with chlorine gas, the chlorine gas cleaning treatment method is not necessarily suitable as a pretreatment method for the Si substrate. In particular, when chlorine gas cleaning is performed as a pretreatment method for gate oxidation of MOS, etching occurs and unevenness is produced, resulting in unsatisfactory results.

(11)塩素ガスによるSi基板の被エツチング面を観
察すると薄い黒化層が認められる。この黒化層は被エツ
チング面に残存する極めて密度の低いSi層からなる残
渣であり、Siの超微粒子より構成されると考えられる
。特にn型低抵抗基板を処理すると顕著な残渣が認めら
れる。よって、引き続き何らかの洗浄工程が必要となる
(11) When the surface of the Si substrate to be etched by chlorine gas is observed, a thin blackened layer is observed. This blackened layer is a residue of an extremely low-density Si layer remaining on the surface to be etched, and is thought to be composed of ultrafine Si particles. Particularly when an n-type low resistance substrate is processed, a noticeable residue is observed. Therefore, some kind of cleaning process is subsequently required.

(iii )適用可能なエツチング処理条件特に基板温
度の範囲が狭く、従って期待される効果も限定される。
(iii) The range of applicable etching processing conditions, particularly substrate temperature, is narrow, and therefore the expected effects are also limited.

(iv )エツチング速度がSi基板の比抵抗により著
しく異なるために、同一基板上に比抵抗が異なる領域が
設けられていると、エツチング効果が同一基板上で異な
ってくるとともに期待される効果も限定される。
(iv) Since the etching speed varies significantly depending on the specific resistance of the Si substrate, if regions with different specific resistances are provided on the same substrate, the etching effect will differ on the same substrate and the expected effect will be limited. be done.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴とするところは、紫外線を照射しなからS
i基板の表面を処理することと、前処理として掻く薄い
酸化層を形成することの組合わせにある。Si基板を好
ましくは10〜100 Torr圧力を有する塩素雰囲
気中に置き基板温度を100〜500℃という低温に設
定し紫外線を照射するとSiのエツチングが生ずる。唯
、Siと塩素との反応には次のような問題点がある。す
なわち、被エツチSi表面下のバルク中の重金属は一部
はガスとして除去され一部は局所的に集められる。とこ
ろでこのようなSiのエツチングを通して基板処理をす
る場合には、エツチングが許容されるSi膜厚などSi
基板に付随した種々の制約があり、エツチングという現
象を利用していることのためにC1の基板中への拡散が
充分生起せず基板処理(重金属除去)の効果が制限され
る。
The feature of the present invention is that the S
It consists of a combination of treating the surface of the i-substrate and forming a thin oxide layer as a pretreatment. When a Si substrate is placed in a chlorine atmosphere having a pressure of preferably 10 to 100 Torr, the substrate temperature is set at a low temperature of 100 to 500° C., and ultraviolet rays are irradiated, Si etching occurs. However, the reaction between Si and chlorine has the following problems. That is, some of the heavy metals in the bulk beneath the surface of the Si to be etched are removed as gas and some are locally collected. By the way, when processing a substrate through such Si etching, it is necessary to
There are various constraints associated with the substrate, and since the phenomenon of etching is utilized, sufficient diffusion of C1 into the substrate does not occur, which limits the effectiveness of substrate processing (heavy metal removal).

本発明によれば、塩素ガス処理に先立ち、Si基板表面
に薄いSi02層を設ける。5i02は塩素ラジカルに
よりエツチングされないが、紫外線(4000…より短
波長)をSing層/St基板に照射すると、Siには
伝導電子が励起される。従って紫外線を照射しながら塩
素雰囲気中にSing層/Si基板を置くと、紫外線照
射によりCZ、ガスは直接解離されC7!ラジカルとな
りSi0g中をトンネル現象により透過した伝導電子に
より5in2表面に吸着され、更に拡散によりSi基板
表面に達し、ClラジカルとSiまたは重金属との反応
が起こる。かかる反応により、Clラジカルはバルク中
の重金属と結合し重金属は一部はガスとして除去され一
部はゲッタされる。紫外線照射によりこの反応を100
〜500℃の低温で誘起することができる。
According to the present invention, a thin Si02 layer is provided on the surface of the Si substrate prior to chlorine gas treatment. 5i02 is not etched by chlorine radicals, but when the Sing layer/St substrate is irradiated with ultraviolet light (wavelength shorter than 4000 . . .), conduction electrons are excited in Si. Therefore, when the Sing layer/Si substrate is placed in a chlorine atmosphere while being irradiated with ultraviolet rays, CZ and gas are directly dissociated by the ultraviolet irradiation, resulting in C7! The Cl radicals become radicals and are adsorbed on the 5in2 surface by conduction electrons transmitted through SiOg by tunneling, and further reach the Si substrate surface by diffusion, where a reaction between the Cl radicals and Si or heavy metals occurs. Through this reaction, Cl radicals combine with heavy metals in the bulk, and some of the heavy metals are removed as gas and some of them are gettered. This reaction was stimulated by ultraviolet irradiation to 100%
It can be induced at low temperatures of ~500°C.

上述のように、紫外線照射と酸化層の形成により所望の
結果を達成することができる。ここで酸化層の厚さを2
0〜200人にしたのはこの範囲外では本発明の効果が
達成できないからであり、また紫外線の波長を180〜
400nmとしたのは塩素ガスの解離とSi伝導電子の
励起がを効に行われるからである。酸化層の形成法はC
VD、熱酸化等任意の方法であってもよい。
As mentioned above, the desired results can be achieved by UV irradiation and the formation of an oxide layer. Here, the thickness of the oxide layer is 2
The reason for setting the number to 0 to 200 is that the effect of the present invention cannot be achieved outside this range, and the wavelength of ultraviolet rays is set to 180 to 200.
The reason why the thickness is set to 400 nm is that the dissociation of chlorine gas and the excitation of Si conduction electrons are effectively performed. The method for forming the oxide layer is C.
Any method such as VD or thermal oxidation may be used.

〔作 用〕[For production]

上述のようにSiO□層を予め設けることにより、Si
のエツチングが抑制されるために(i)エツチングより
もゲタリング、重金属との結合が優先的に進行し長時間
塩素ガス処理が可能になり、(ii )残渣の生成がな
くなり、また(iii)34基板に異なる比抵抗領域が
ある場合でも塩素ガス処理が適用可能になった。
By providing the SiO□ layer in advance as described above, the Si
(i) gettering and bonding with heavy metals proceed preferentially over etching, allowing long-term chlorine gas treatment; (ii) no residue is generated; and (iii) 34 Chlorine gas treatment can now be applied even when the substrate has different resistivity regions.

〔実施例〕〔Example〕

以下本発明の実施例を第1図を参照して説明する。 Embodiments of the present invention will be described below with reference to FIG.

図中1はHgランプ、2は紫外線選択反射ミラー、3は
ベルジャ、4は合成石英窓、5はヒータ、6は真空ポン
プに接続された排気口、7は塩素ガスをキャリアガス(
不活性ガス)とともに、また  。
In the figure, 1 is an Hg lamp, 2 is an ultraviolet selective reflection mirror, 3 is a bell jar, 4 is a synthetic quartz window, 5 is a heater, 6 is an exhaust port connected to a vacuum pump, and 7 is a carrier gas for chlorine gas (
Inert gas) and also.

は塩素ガスのみを供給する供給口である。is a supply port that supplies only chlorine gas.

下記条件にて処理を行なった。The treatment was carried out under the following conditions.

CI−z圧力−50Torr (100%C12ガス)
Cl z流it  15secm 紫外線波長−290〜370nm 紫外線強度−800mW / c m 2基板−窓間距
離−5cm 5iO□層−30人(1000℃ドライ酸化)処理時間
−60分 基板温度−300℃ 上記処理後、ドライ酸化により酸化膜厚を100人とし
Ae電極を形成した。C−を測定による少数キャリヤの
生成寿命は未処理基板では〜100μsecのものが〜
200μsecに改善された。
CI-z pressure -50Torr (100% C12 gas)
Clz flow it 15sec Ultraviolet wavelength - 290~370nm Ultraviolet intensity - 800mW/cm 2 substrate-window distance - 5cm 5iO□ layer - 30 people (1000℃ dry oxidation) Processing time - 60 minutes Substrate temperature - 300℃ Above treatment Thereafter, an Ae electrode was formed by dry oxidation to an oxide film thickness of 100 oxides. The generation lifetime of minority carriers measured by C- is ~100 μsec on an untreated substrate ~
The time was improved to 200μsec.

〔発明の効果〕〔Effect of the invention〕

Si基板の光励起塩素処理前に薄い酸化膜を堆積又は成
長することにより3iのエツチングを抑えて重金属除去
効果を出すことができる。
By depositing or growing a thin oxide film before photoexcited chlorine treatment of the Si substrate, etching of 3i can be suppressed and heavy metal removal effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の表面処理法を実施する装置の一例を示
す概念図である。 1・・・Hgランプ、 2・・・紫外線選択反射ミラー、 3・・・ベルジャ、 4・・・合成石英窓、 5・・・抵抗加熱ヒータ、 6・・・真空排気口、 7・・・ガス供給口。
FIG. 1 is a conceptual diagram showing an example of an apparatus for carrying out the surface treatment method of the present invention. DESCRIPTION OF SYMBOLS 1... Hg lamp, 2... Ultraviolet selective reflection mirror, 3... Bell jar, 4... Synthetic quartz window, 5... Resistance heater, 6... Vacuum exhaust port, 7... Gas supply port.

Claims (1)

【特許請求の範囲】[Claims] 1、塩素ガスを用いたSi基板の表面処理を伴なう半導
体装置の製造方法において、処理に先立ち20〜200
Åの酸化層をSi基板表面に成長又は堆積すること、処
理中には180〜400nmの紫外線を照射することを
特徴とする半導体装置の製造方法。
1. In a method for manufacturing a semiconductor device that involves surface treatment of a Si substrate using chlorine gas, 20 to 200
1. A method for manufacturing a semiconductor device, which comprises growing or depositing an oxide layer of 1.5 Å on the surface of a Si substrate, and irradiating ultraviolet light of 180 to 400 nm during processing.
JP27704085A 1985-12-11 1985-12-11 Method for manufacturing semiconductor device Expired - Lifetime JPH071766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27704085A JPH071766B2 (en) 1985-12-11 1985-12-11 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27704085A JPH071766B2 (en) 1985-12-11 1985-12-11 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62136827A true JPS62136827A (en) 1987-06-19
JPH071766B2 JPH071766B2 (en) 1995-01-11

Family

ID=17577943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27704085A Expired - Lifetime JPH071766B2 (en) 1985-12-11 1985-12-11 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH071766B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649627A (en) * 1987-07-02 1989-01-12 Fujitsu Ltd Manufacture of semiconductor device
JPS6459822A (en) * 1987-08-31 1989-03-07 Nec Corp Cleaning of si surface and its apparatus
JPH01217926A (en) * 1988-02-26 1989-08-31 Fujitsu Ltd Gettering method
JPH02106933A (en) * 1988-10-17 1990-04-19 Nec Corp Forming method of silicon oxide film
JPH04239727A (en) * 1991-01-23 1992-08-27 Fujitsu Ltd Dry cleaning of semiconductor substrate
US5225355A (en) * 1988-02-26 1993-07-06 Fujitsu Limited Gettering treatment process
JP2009518834A (en) * 2005-12-08 2009-05-07 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Substrate dry chemical treatment method and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289595A (en) * 2000-04-05 2001-10-19 Tadashi Tsunesada Sight of gun

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649627A (en) * 1987-07-02 1989-01-12 Fujitsu Ltd Manufacture of semiconductor device
JPS6459822A (en) * 1987-08-31 1989-03-07 Nec Corp Cleaning of si surface and its apparatus
JPH01217926A (en) * 1988-02-26 1989-08-31 Fujitsu Ltd Gettering method
US5225355A (en) * 1988-02-26 1993-07-06 Fujitsu Limited Gettering treatment process
JPH02106933A (en) * 1988-10-17 1990-04-19 Nec Corp Forming method of silicon oxide film
JPH04239727A (en) * 1991-01-23 1992-08-27 Fujitsu Ltd Dry cleaning of semiconductor substrate
JP2009518834A (en) * 2005-12-08 2009-05-07 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Substrate dry chemical treatment method and use thereof

Also Published As

Publication number Publication date
JPH071766B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
KR100391840B1 (en) Method and apparatus for forming an insulating film on the surface of a semiconductor substrate
US5578133A (en) Dry cleaning process for cleaning a surface
JPH0691014B2 (en) Semiconductor device manufacturing equipment
JPS62136827A (en) Manufacture of semiconductor device
JP3484480B2 (en) Method for manufacturing semiconductor device
JP4124675B2 (en) Method and apparatus for low-temperature oxidation of silicon wafer
TWI608133B (en) A method of forming oxide layer and epitaxy layer
JPH03116727A (en) Manufacture of semiconductor device
JP2640828B2 (en) Method for removing native oxide film on semiconductor substrate surface
JP3571160B2 (en) Method for forming oxide film on semiconductor surface and method for manufacturing semiconductor device
JP3250996B2 (en) Silicon substrate having insulating film on surface and method and apparatus for manufacturing the same
JPS63129633A (en) Surface treatment for semiconductor
JPH0536653A (en) Substrate surface treatment method
JPS6286731A (en) Laser beam irradiation si surface treating device
JPH11297689A (en) Heat treatment of silicon insulating film and manufacture of semiconductor device
JP3439580B2 (en) Method and apparatus for forming silicon oxide film
JPH0521412A (en) Method of processing semiconductor substrate
JP4027913B2 (en) Manufacturing method of semiconductor device
JP3421437B2 (en) Manufacturing method of MIS structure
JP2006128391A (en) Crystalline silicon substrate treatment method and photoelectric conversion element
JPH04333223A (en) Film forming method and device thereof
JPH0160932B2 (en)
JPH06349801A (en) Surface treatment method
JPH01262631A (en) Method of purifying semiconductor substrate
JPS63160324A (en) Molecular beam epitaxial crystal growth