Nothing Special   »   [go: up one dir, main page]

JPS6212167A - Manufacture of vertical type semiconductor device with groove section - Google Patents

Manufacture of vertical type semiconductor device with groove section

Info

Publication number
JPS6212167A
JPS6212167A JP14990085A JP14990085A JPS6212167A JP S6212167 A JPS6212167 A JP S6212167A JP 14990085 A JP14990085 A JP 14990085A JP 14990085 A JP14990085 A JP 14990085A JP S6212167 A JPS6212167 A JP S6212167A
Authority
JP
Japan
Prior art keywords
film
oxide film
groove
insulating film
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14990085A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sasaki
芳高 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP14990085A priority Critical patent/JPS6212167A/en
Publication of JPS6212167A publication Critical patent/JPS6212167A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a groove section smoothly, to prevent the generation of the concentration of an electric field and to increase withstanding voltage by selectively oxidizing a semiconductor base body through an opening section for an oxidation-resistant insulating film to shape an oxide film and removing the oxide film through etching to form the groove section. CONSTITUTION:An n-type semiconductor layer 12 in impurity concentration lower than that of an n<+> type semiconductor base body 11 is shaped onto the semiconductor base body 11. An oxide film 13 is formed, and an oxidation-resistant insulating film 14 is shaped selectively. The n-type semiconductor layer 12 is oxidized selectively through opening sections 14a for the oxidation-resistant insulating film 14 to selectively form oxide films 15. The oxidation-resistant insulating film 14 is removed through etching, a p-type diffusion layer 16 is shaped in a self-alignment manner while using the thick oxide film 15 as a mask, an n<+> type diffusion layer 17 is formed selectively, an oxide film 18 is shaped, a resist film 19 is formed selectively and etched, and the oxide films 15 are gotten rid of, thus shaping groove sections. The shapes of the contours of the groove sections are smoothed, and gate oxide films 21 and polycrystalline silicon films 22 are formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法、特に半導体基体の主面
にV字状またはU字状の溝部を形成した縦形半導体装置
の製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a vertical semiconductor device in which a V-shaped or U-shaped groove is formed on the main surface of a semiconductor substrate. It is.

(従来の技術) 半導体基体の主面にV字状またはU字状の溝部を形成し
た縦形MOSトランジスタは高周波特性に優れ、特にチ
ャンネル幅を長くすることができることからオン抵抗が
低く、スイッチング速度が速いという特徴を有している
(Prior art) A vertical MOS transistor in which a V-shaped or U-shaped groove is formed on the main surface of a semiconductor substrate has excellent high frequency characteristics, and in particular, because the channel width can be made long, the on-resistance is low and the switching speed is high. It has the characteristic of being fast.

第4図は従来のV字状溝部を有する縦形MOSトランジ
スタの断面形状を示ずものであり、このようなトランジ
スタは例えば特開昭59−193064号公報に開示さ
れている。半導体基体はn)シリコン基板1と、その上
に成長させたn−エピタキシャル層2とを有するn−オ
ンn+構造を有している。エピタキシャル層2の主面に
はV字状の溝部3が形成されており、この溝部の表面に
はゲート絶縁膜4を介してゲート電極1!J5が形成さ
れている。V字状溝部3の周囲にはp型の第1半導体層
6と、その内部に形成されたn+型の第2半導体lI!
i7とが形成されている。n−型基板1の裏面に、はド
レイン電極膜8が形成されており、エピタキシャル層2
の主面には絶縁膜9を介してソース電極10が、第1お
よび第2の半導体層6および7の双方とオーミック接触
するように設けられている。
FIG. 4 does not show the cross-sectional shape of a conventional vertical MOS transistor having a V-shaped groove, and such a transistor is disclosed in, for example, Japanese Patent Laid-Open No. 193064/1983. The semiconductor body has an n-on-n+ structure comprising an n) silicon substrate 1 and an n- epitaxial layer 2 grown thereon. A V-shaped groove 3 is formed in the main surface of the epitaxial layer 2, and a gate electrode 1! is formed on the surface of this groove with a gate insulating film 4 interposed therebetween. J5 is formed. A p-type first semiconductor layer 6 is formed around the V-shaped groove 3, and an n+-type second semiconductor layer 6 is formed inside the p-type first semiconductor layer 6.
i7 is formed. A drain electrode film 8 is formed on the back surface of the n-type substrate 1, and an epitaxial layer 2
A source electrode 10 is provided on the main surface of the substrate 1 with an insulating film 9 interposed therebetween so as to be in ohmic contact with both the first and second semiconductor layers 6 and 7 .

(発明が解決しようとする問題点) このようなV字状溝部を有するMOSトランジスタにお
いては、溝部3の先端3aが鋭く尖っているため電界が
集中し、ゲート絶縁膜4が破壊してしまい、耐圧が低下
するという欠点がある。一般に1字溝は、シリコンエピ
タキシャル!m2の異方性エツチングにより形成してい
るため、溝部光E 3 aは必然的に尖ることになる。
(Problems to be Solved by the Invention) In a MOS transistor having such a V-shaped groove, the tip 3a of the groove 3 is sharp, so the electric field concentrates and the gate insulating film 4 is destroyed. The disadvantage is that the withstand voltage decreases. Generally, the single-shaped groove is made of silicon epitaxial! Since it is formed by anisotropic etching of m2, the groove light E 3 a inevitably becomes sharp.

上記の特rfrJ昭59−193064号公報では、p
型の第2半導体層6を溝部から所定の距離だけ離れたと
ころから溝部を挾んだ状態で溝615先端より下方へ延
在させ、溝部先端より下方へ延びた部分の間隔を部分的
に狭くして電界の集中を緩和することが提案されている
。しかしながら、このような解決策は、溝部先端の形状
は元のまま尖っているので根本的な解決策とはならない
とともに第1半導体層のプロフィルを所望のものとする
には余分な拡散工程を必要とする欠点がある。さらにケ
ミカルエツチングにより溝部を形成づ゛る方法は精密な
制御が難しく、特に素子の微細化が進み、溝部も微細な
ものが要求されるようになるとプロセスのコトロールが
困難となり、正確な寸法、形状に溝部を形成することが
できなくなる欠点もある。
In the above-mentioned special rfrJ publication No. 59-193064, p
The second semiconductor layer 6 of the mold is extended downward from the tip of the groove 615 while sandwiching the groove from a predetermined distance away from the groove, and the interval between the portions extending downward from the tip of the groove is partially narrowed. It has been proposed to reduce the concentration of the electric field by However, such a solution is not a fundamental solution because the shape of the tip of the groove remains sharp, and an extra diffusion step is required to obtain the desired profile of the first semiconductor layer. There is a drawback that. Furthermore, it is difficult to precisely control the method of forming grooves by chemical etching.In particular, as elements become smaller and grooves are required to be finer, it becomes difficult to control the process, and it becomes difficult to control the exact dimensions and shape. There is also the disadvantage that it is no longer possible to form grooves.

本発明は上述した問題点に鑑みてなされたもので、電界
が集中する尖った先端を持たない溝部を正確に再現性高
く形成することができ、これによって耐圧の向上した縦
形半導体装置を製造することができる方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above-mentioned problems, and it is possible to form a groove portion without a sharp tip where an electric field is concentrated with high precision and high reproducibility, thereby manufacturing a vertical semiconductor device with improved breakdown voltage. The purpose is to provide a method that can be used.

(問題点を解決するための手段) 本発明の製造方法は、一導電型の半導体基体と、この半
導体基体の主面に形成された溝部と、この溝部に絶縁膜
を介して形成されたM極膜と、前記半導体基体の主面に
、前記溝部を囲むとともに一部分が前記電極膜と重なる
ように縦方向に形成された逆導電型の第1半導体層およ
び一導電型の第2半導体層とを具える縦形半導体装置を
製造するに当り、前記溝部を形成する工程が、前記半導
体基体の主面上に、耐酸化性絶縁膜を選択的に形成する
工程と、この耐酸化性絶縁膜の開口部を経て半導体基体
を酸化して酸化膜を形成する工程と、この酸化膜をエツ
チングにより除去する工程とを具えることを特徴と覆る
ものである。
(Means for Solving the Problems) The manufacturing method of the present invention includes a semiconductor substrate of one conductivity type, a groove formed on the main surface of the semiconductor substrate, and an M a polar film; a first semiconductor layer of opposite conductivity type and a second semiconductor layer of one conductivity type formed vertically on the main surface of the semiconductor substrate so as to surround the groove and partially overlap with the electrode film; In manufacturing a vertical semiconductor device comprising: a step of forming the groove portion, a step of selectively forming an oxidation-resistant insulating film on the main surface of the semiconductor substrate; This method is characterized by comprising a step of oxidizing the semiconductor substrate through the opening to form an oxide film, and a step of removing the oxide film by etching.

(作 用) 上述した本発明の製造方法によれば、溝部をケミカルエ
ツチングによって形成するのではなく、溝部を形成すべ
き半導体基体の部分を選択的に酸化し、この酸化された
部分をエッチングドより除去して溝部を形成するもので
あるが、この酸化は等方性を有するため尖った先端が形
成されず、滑らかな輪郭形状を有する溝部が形成され、
したがって電界の集中は起らない。また、酸化工程はき
わめて[?にIIJ Illすることができるので、溝
部の寸法、形状も正確にかつ再現性高く制御することが
できる。このようにして耐圧の高い縦形半導体装置を正
確に製造することができる。
(Function) According to the manufacturing method of the present invention described above, the groove is not formed by chemical etching, but the portion of the semiconductor substrate where the groove is to be formed is selectively oxidized, and the oxidized portion is etched. However, since this oxidation is isotropic, a sharp tip is not formed, and a groove with a smooth contour is formed.
Therefore, no concentration of electric field occurs. Also, the oxidation process is extremely [? Therefore, the dimensions and shape of the groove can be controlled accurately and with high reproducibility. In this way, a vertical semiconductor device with high breakdown voltage can be accurately manufactured.

〈実施例) 第1図(a )〜<Xは本発明による溝部を有する縦形
半導体装置の製造方法の一実施例の順次の’FJ造工程
を示すものであり、本例では縦形MO8FETを製造す
るものである。高不純物濃度のn++半導体基体11の
上に、これよりも低不純物濃度のn型半導体層12を形
成する。本例ではこのn型半導体層12はエビダキシャ
ル成長により形成するが、引上げ法などの他の方法で形
成することもできる。n型半導体層12の表面に厚さ約
1000人の酸化膜13を形成した後、その上に厚さ約
3000  ・人のチッ化膜を形成し、このチッ化膜を
バターニングして耐酸化絶縁l1114を選択的に形成
した状態を第1図(a )に示す。
<Example> Figures 1(a) to <X show the sequential 'FJ manufacturing process of an example of the method for manufacturing a vertical semiconductor device having a groove portion according to the present invention.In this example, a vertical MO8FET is manufactured. It is something to do. An n-type semiconductor layer 12 having a lower impurity concentration is formed on the n++ semiconductor substrate 11 having a higher impurity concentration. In this example, this n-type semiconductor layer 12 is formed by evidaxial growth, but it can also be formed by other methods such as a pulling method. After forming an oxide film 13 with a thickness of approximately 1000 μm on the surface of the n-type semiconductor layer 12, a nitride film 13 with a thickness of approximately 3000 μm is formed thereon, and this nitride film is buttered to resist oxidation. FIG. 1(a) shows a state in which the insulator 1114 is selectively formed.

続いて熱酸化処理を施し、前記耐酸化絶1i躾14の開
口部14aを介してn型半導体層12を選択的に酸化し
、約1.5μIの厚さを有する酸化膜15を選択的に形
成する。その後、チッ化膜よる成る耐酸化絶縁膜14を
、例えば180℃の熱リン酸あるいはフレオン系のドラ
イエツチングによりエツチング除去した様子を第1図(
b)に示す。
Subsequently, thermal oxidation treatment is performed to selectively oxidize the n-type semiconductor layer 12 through the opening 14a of the oxidation-resistant insulation layer 14, and selectively oxidize the oxide film 15 having a thickness of about 1.5 μI. Form. Thereafter, the oxidation-resistant insulating film 14 made of a nitride film is removed by etching, for example, by hot phosphoric acid or Freon dry etching at 180°C.
Shown in b).

続いて前記厚い酸化膜15をマスクとして、チャンネル
領域を構成するp型拡散層(第1半導体層)16を自己
整合的に形成し、次にフォトエツチング技術により選択
的にマスクを形成し、p型拡散層16内にソース領域を
構成するn+型型数散層第2半導体層)17を選択的に
形成した様子を第1図(C)に示す。
Next, using the thick oxide film 15 as a mask, a p-type diffusion layer (first semiconductor layer) 16 constituting the channel region is formed in a self-aligned manner, and then a mask is selectively formed using photoetching technology, and a p-type diffusion layer (first semiconductor layer) 16 is formed in a self-aligned manner. FIG. 1C shows how an n + -type scattering layer second semiconductor layer (second semiconductor layer) 17 constituting a source region is selectively formed in the type diffusion layer 16 .

次に、再び熱酸化処理を施し、厚さ約3000人の酸化
膜18を形成し、さらにその上にレジスト膜19を選択
的に形成した様子を第1図(d )に示す。
Next, thermal oxidation treatment is performed again to form an oxide film 18 with a thickness of approximately 3,000 yen, and a resist film 19 is selectively formed thereon, as shown in FIG. 1(d).

次にエツチングを施し、酸化1115を除去して、深さ
が約0.7〜0.8μmの溝部20を形成する。この溝
部20の輪郭形状は滑らかとなっており、鋭(尖った部
分は形成されない。次に、この溝部に厚さ約1000人
のゲート酸化膜21を形成し、ざらにその上にゲート電
極を構成する多結晶シリコンp;J22を約6000人
の厚さに選択的に形成した様子を第1図(C)に承り。
Next, etching is performed to remove the oxide 1115 and form a groove 20 having a depth of about 0.7 to 0.8 μm. The contour of this groove 20 is smooth, and no sharp parts are formed.Next, a gate oxide film 21 with a thickness of about 1000 mm is formed in this groove, and a gate electrode is roughly formed on top of the gate oxide film 21. Figure 1 (C) shows how the constituting polycrystalline silicon p; J22 was selectively formed to a thickness of about 6000 mm.

このゲート多結晶シリコン11!22はp型拡散層16
およびn+型型数散層17部分的に重なるように形成さ
れている。なお、第1図((1)では酸化膜13および
18は一層の酸化膜23として示しである。
This gate polycrystalline silicon 11!22 is a p-type diffusion layer 16.
and n+ type scattering layer 17 are formed so as to partially overlap with each other. Note that in FIG. 1 ((1)), the oxide films 13 and 18 are shown as a single layer oxide film 23.

次にCVD法k1.TcVD−8i 021U24ヲ約
5000人の厚さに堆積した後、熱処理を施す。最優に
酸化膜23およびCVD−8i 02膜24にコンタト
ホール23aおよび24aを形成した後、A(を蒸着し
て金属′R極膜25を選択的に形成して、第1図(f)
に示す縦形MOSトランジスタを完成する。
Next, CVD method k1. After TcVD-8i 021U24 is deposited to a thickness of approximately 5000 mm, heat treatment is performed. After forming contact holes 23a and 24a in the oxide film 23 and the CVD-8i 02 film 24, a metal 'R' electrode film 25 is selectively formed by evaporating A (FIG. 1(f)).
The vertical MOS transistor shown in is completed.

第2図(a )〜(e)は本発明製造方法の他の実施例
の順次の製造工程を示ずものである。n++半導体基板
31上にn型半導体層32を形成し、さらにこのn型半
導体層32の主面上に厚さ約1000人の酸化#I33
を形成する。次にn型半導体層32の主面に、模にチャ
ンネル領域を構成するp型拡故層34と、後にソース領
域を構成するn++拡散11i35とを形成する。その
後酸化膜33上にチッ化膜より成る耐酸化絶縁膜36を
約3000人の厚さに選択的に形成した様子を第2図(
a )に示す。酸化膜33は、熱酸化処理中にn型半導
体層32へ欠陥が導入されるのを防止するバッフ?とし
て作用するものである。
FIGS. 2(a) to 2(e) show the sequential manufacturing steps of another embodiment of the manufacturing method of the present invention. An n-type semiconductor layer 32 is formed on an n++ semiconductor substrate 31, and an oxide #I33 layer having a thickness of approximately 1000 nm is further formed on the main surface of this n-type semiconductor layer 32.
form. Next, on the main surface of the n-type semiconductor layer 32, a p-type diffusion layer 34, which simulates a channel region, and an n++ diffusion layer 11i35, which will later constitute a source region, are formed. After that, an oxidation-resistant insulating film 36 made of a nitride film is selectively formed on the oxide film 33 to a thickness of approximately 3,000 mm, as shown in FIG.
Shown in a). The oxide film 33 is a buffer that prevents defects from being introduced into the n-type semiconductor layer 32 during thermal oxidation treatment. It acts as a.

次にバッファ用酸化膜33を、溝部を形成すべき   
 ゛位置において選択的に除去した後、KOHを主成分
とするエッチャントによってV字状の溝37を形成する
。なお、この際のエツチングの深さは、溝37の先端が
p型拡散WJ34とn型半導体層32との境界を超えて
もよいし、あるいはこの境界に達しないものでもよい。
Next, the buffer oxide film 33 should be formed with grooves.
After selectively removing the material at the "" position, a V-shaped groove 37 is formed using an etchant containing KOH as a main component. Note that the etching depth at this time may be such that the tip of the groove 37 exceeds the boundary between the p-type diffusion WJ 34 and the n-type semiconductor layer 32, or may not reach this boundary.

このように溝37を形成した状態を第2図(b)に示す
The state in which the grooves 37 are formed in this manner is shown in FIG. 2(b).

続いて耐酸化性絶縁膜36をマスクとして熱酸化処理を
施す。この熱酸化工程は、例えば7〜8気圧に加圧した
雰囲気中において、1000℃の温度で約90〜150
分間高圧水素燃焼酸化を施して行なう。
Subsequently, thermal oxidation treatment is performed using the oxidation-resistant insulating film 36 as a mask. This thermal oxidation process is performed at a temperature of about 90 to 150°C at a temperature of 1000°C in an atmosphere pressurized to 7 to 8 atmospheres, for example.
This is done by applying high-pressure hydrogen combustion oxidation for minutes.

これによりp型拡散1lI34やn+型広拡散層35拡
散進行を極力抑えながら例えば1.5μm程度の厚い酸
化Mi!38を形成する。その後、耐酸化性絶縁膜3B
を除去した様子を第2図(C)に示す。この場合、酸化
膜38は半導体1i132中に均等に形成されるので、
その輪郭形状は清らかとなる。
As a result, while suppressing the diffusion progress of the p-type diffusion layer 34 and the n+ type wide diffusion layer 35 as much as possible, a thick oxidized Mi layer of, for example, about 1.5 μm is formed! form 38. After that, the oxidation-resistant insulating film 3B
FIG. 2(C) shows how it is removed. In this case, since the oxide film 38 is uniformly formed in the semiconductor 1i132,
Its contour shape becomes clear.

次に厚い酸化膜38をエツチングにより除去して滑らか
な表面形状を有する溝部39を露出させ、この溝部に酸
化膜42を約1000人の厚さに形成し、さらにその上
にゲート電極を構成する多結晶シリコ、 ン膜40を選
択的に形成する。この様子を第2図(d )に示す。な
お、第2図(d )ではバッファ用酸化膜33とゲート
酸化1I42とを一体として酸化11141で示す。
Next, the thick oxide film 38 is removed by etching to expose a groove 39 with a smooth surface shape, and an oxide film 42 is formed in this groove to a thickness of approximately 1000 nm, and a gate electrode is formed on top of the oxide film 42. A polycrystalline silicon film 40 is selectively formed. This situation is shown in FIG. 2(d). In FIG. 2(d), the buffer oxide film 33 and the gate oxide 1I42 are shown as an oxide 11141.

その後、CVD−8i 02膜43を約5000人の厚
さに形成し、さらにこのCVD−8i 02 @43、
酸化膜41にそれぞれコンタクトホール43aおよび4
1aを形成するとともに01型拡散層35を部分的にエ
ツチング除去してp型半導体層34の一部を露出させる
。最後にA1N極膜44を約3.5μ−の厚さに選択的
に形成して縦形MOSトランジスタを完成した様子を第
2図(e )に示す。
Thereafter, a CVD-8i 02 film 43 is formed to a thickness of approximately 5000 mm, and further this CVD-8i 02 @43,
Contact holes 43a and 4 are formed in the oxide film 41, respectively.
1a is formed, and the 01 type diffusion layer 35 is partially etched away to expose a part of the p type semiconductor layer 34. Finally, the A1 N electrode film 44 is selectively formed to a thickness of about 3.5 .mu.m to complete the vertical MOS transistor, as shown in FIG. 2(e).

第3図(a )〜(e )は本発明の縦形半導体装置の
製造方法のさらに他の実施例の順次の工程を示すもので
ある。本例ではn++シリコン半導体基板51の上にn
型シリコン半導体層52を形成し、さらにその上に約1
000人の厚さのバッファ用酸化膜53を形成し、さら
にその上にチッ化膜より成る耐酸化性絶縁膜54を選択
的に形成した様子を第3図(a )に示す。
FIGS. 3(a) to 3(e) show the sequential steps of still another embodiment of the method for manufacturing a vertical semiconductor device of the present invention. In this example, an n
A type silicon semiconductor layer 52 is formed, and about 1 layer is further formed thereon.
FIG. 3(a) shows a state in which a buffer oxide film 53 having a thickness of 1,000 mm is formed, and an oxidation-resistant insulating film 54 made of a nitride film is selectively formed thereon.

次に熱酸化処理を施し、耐酸化性絶縁膜54の開口部に
厚さ約1.0μmの厚い酸化WA55を形成した状態を
第3図(b)に示す。
Next, a thermal oxidation treatment is performed to form a thick oxidized WA 55 with a thickness of about 1.0 μm in the opening of the oxidation-resistant insulating film 54, as shown in FIG. 3(b).

その後、耐酸化性絶縁1I54をマスクとして厚い酸化
膜55をエツチングにより除去して溝56を形成した様
子を第3図(C)に示す。
Thereafter, the thick oxide film 55 is removed by etching using the oxidation-resistant insulator 1I54 as a mask to form a groove 56, as shown in FIG. 3(C).

続いて再度熱酸化処理を施し、約1.5〜2.0μmの
厚い酸化膜57を形成した様子を第3図(d )′ に
示す。
Subsequently, thermal oxidation treatment was performed again to form a thick oxide film 57 of about 1.5 to 2.0 μm, as shown in FIG. 3(d)'.

続いて、チッ化膜より成る耐酸化性絶縁WA54、薄い
バッファ用酸化膜53および厚い酸化ll156をエツ
チングにより除去することによってn型半導体1lI5
2の主面に深さが1.0〜1.5μ鴎程度の滑らかな溝
部58を形成した様子を第3図(e )に示す。
Next, the oxidation-resistant insulation WA54 made of a nitride film, the thin buffer oxide film 53, and the thick oxide film 156 are removed by etching to form an n-type semiconductor 1lI5.
FIG. 3(e) shows a state in which a smooth groove 58 having a depth of approximately 1.0 to 1.5 μm is formed on the main surface of the substrate.

以後は第1図(e )および(f)と同様な処理を行な
って縦形MOSトランジスタを完成する。
Thereafter, processes similar to those shown in FIGS. 1(e) and 1(f) are performed to complete a vertical MOS transistor.

なお、本実施例において、厚い酸化膜56を除去した後
、耐酸化性絶縁膜54を除去することなく、再び熱酸化
処理を施して厚い酸化膜を形成する工程をくり返すこと
により溝部57の深さを任意の深さとすることができる
In this embodiment, after removing the thick oxide film 56, the groove portion 57 is formed by repeating the process of forming a thick oxide film by performing thermal oxidation treatment again without removing the oxidation-resistant insulating film 54. The depth can be any depth.

本発明は上述した実施例にのみ限定されるものではなく
、幾多の変形が可能である。例えば上述した実施例では
縦形MoSトランジスタを製造するものとしたが、縦形
静?fi誘導トランジスタや縦形バイポーラトランジス
タなどの他の縦形半導体装置の製造に適用することがで
きる。また、p型とp型とは上述した実施例とは反対と
することもできる。また、耐酸化性絶縁膜としてはチツ
化膜の他にアルミナ族などを用いることもできる。さら
に、ゲート電極膜は多結晶シリコン膜に限られるもので
はなく、モリブデン、タングステン、クロム等の高融点
金属またはそれらのシリサイドを以って構成することも
できる。また、第1図に示した実施例では厚い酸化M1
5を除去する以前にレジスト膜18を形成したが、この
レジスト膜は必ずしも必要ではない。
The present invention is not limited to the embodiments described above, but can be modified in many ways. For example, in the above-described embodiment, a vertical MoS transistor is manufactured, but what about vertical MoS transistors? It can be applied to manufacturing other vertical semiconductor devices such as fi-induced transistors and vertical bipolar transistors. Furthermore, the p-type and the p-type may be opposite to those in the above-mentioned embodiment. Further, as the oxidation-resistant insulating film, an alumina group film or the like can be used in addition to the nitride film. Further, the gate electrode film is not limited to a polycrystalline silicon film, but may also be made of a high melting point metal such as molybdenum, tungsten, chromium, or a silicide thereof. Furthermore, in the embodiment shown in FIG.
Although the resist film 18 is formed before removing the resist film 5, this resist film is not necessarily necessary.

(発明の効果) 上述した本発明の製造方法によれば、従来のようにケミ
カルエツチングによってm5INを形成するのではなく
、耐酸化性絶縁膜の開口部を経て半導体基体を選択的に
酸化して酸化膜を形成し、この酸化膜をエツチング除去
して溝部を形成するものであるから、溝部の輪郭形状は
鋭く尖った部分がなく、滑らかに形成されるので電解の
集中は起らず、耐圧を向上することができる。また、酸
化処理および酸化膜のエツチング除去処理は比較的安定
したプロセスで正確に行なうことができる。特に最近の
酸化技術の発展は著しく、数十オンダストロングの精度
で厚みを制御することができるので、溝部を所望通りの
形状に正確に形成することができる。また、バッファ用
酸化膜の厚さを制御炙ることによりバーズビークの大小
が決定され、これに伴って溝部の滑らかさも制御するこ
とができる。
(Effects of the Invention) According to the manufacturing method of the present invention described above, m5IN is not formed by chemical etching as in the conventional method, but by selectively oxidizing the semiconductor substrate through the opening of the oxidation-resistant insulating film. Since the groove is formed by forming an oxide film and removing this oxide film by etching, the contour of the groove is smooth and has no sharp points, so there is no concentration of electrolyte and the withstand voltage is low. can be improved. Further, the oxidation treatment and the etching removal treatment of the oxide film can be performed accurately using relatively stable processes. In particular, recent advances in oxidation technology have made it possible to control the thickness with an accuracy of several tens of orders of magnitude, making it possible to accurately form the groove into a desired shape. Furthermore, by controlling the thickness of the buffer oxide film, the size of the bird's beak can be determined, and the smoothness of the groove can also be controlled accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a )〜(f)は本発明による溝部を有する縦
形半導体装置の製造方法の一実施例の順次1    の
製造工程を示す断面図、 □ 第2図(a )〜(e )は同じく他の実施例の順次の
製造工程を示す断面図、 第3図(a )〜(e )は同じくさらに他の実施例の
順次の製造工程を示寸断面図、 第4図は従来の方法で製造した溝部を有する縦形半導体
装置を示す断面図である。 11・・・n+型半導体基板 12・・・n型半導体層  13・・・酸化膜14・・
・耐酸化絶縁膜  15・・・酸化膜16、17・・・
第1および第2半導体層18・・・酸化膜     2
1・・・ゲート酸化膜22・・・多結晶シリコン膜 24・”CVD−8i 02膜 25・・・電極膜
1(a) to (f) are cross-sectional views showing sequential manufacturing steps 1 of an embodiment of the method for manufacturing a vertical semiconductor device having a groove portion according to the present invention; □ FIG. 2(a) to (e) are Similarly, FIGS. 3(a) to 3(e) are sectional views showing the sequential manufacturing steps of another embodiment, and FIG. 4 is a conventional method. FIG. 2 is a cross-sectional view showing a vertical semiconductor device having a groove portion manufactured in the above. 11... N+ type semiconductor substrate 12... N type semiconductor layer 13... Oxide film 14...
- Oxidation-resistant insulating film 15... Oxide film 16, 17...
First and second semiconductor layers 18... oxide film 2
1... Gate oxide film 22... Polycrystalline silicon film 24, CVD-8i 02 film 25... Electrode film

Claims (1)

【特許請求の範囲】 1、一導電型の半導体基体と、この半導体基体の主面に
形成された溝部と、この溝部に絶縁膜を介して形成され
た電極膜と、前記半導体基体の主面に、前記溝部を囲む
とともに一部分が前記電極膜と重なるように縦方向に形
成された逆導電型の第1半導体層および一導電型の第2
半導体層とを具える縦形半導体装置を製造するに当り、 前記溝部を形成する工程が、 前記半導体基体の主面上に、耐酸化性絶縁 膜を選択的に形成する工程と、 この耐酸化性絶縁膜の開口部を経て半導体 基体を酸化して酸化膜を形成する工程と、 この酸化膜をエッチングにより除去する工 程とを具えることを特徴とする溝部を有する縦形半導体
装置の製造方法。 2、一導電型の半導体基体の主面上に耐酸化性絶縁膜を
選択的に形成する工程と、 この耐酸化性絶縁膜の開口部を経て半導体 基体を選択的に酸化して酸化膜を形成する工程と、 この酸化膜によって囲まれた半導体基体の 表面に、逆導電型の第1半導体層と、この第1半導体層
内に一導電型の第2半導体層とを選択的に形成する工程
と、 前記酸化膜をエッチングして滑らかな輪郭 を有する溝部を形成する工程と、 この溝部の表面に絶縁膜を形成する工程と、この絶縁膜
上に、少なくとも前記第1およ び第2半導体層と部分的に重なるように電極膜を形成す
る工程とを具えることを特徴とする特許請求の範囲1記
載の縦形半導体装置の製造方法。 3、前記耐酸化性絶縁膜の開口部を経て半導体基体を選
択的に酸化して酸化膜を形成する工程と、この酸化膜を
エッチングにより除去する工程とをくり返し行なうこと
を特徴とする特許請求の範囲1または2記載の縦形半導
体装置の製造方法。 4、前記耐酸化性絶縁膜を形成する以前に、半導体基体
の主面に第1半導体層および第2半導体層を形成し、次
に耐酸化性絶縁膜の開口部を経て半導体基体を酸化する
以前にこの開口部を経て半導体基体をエッチングしてV
字状の溝を形成することを特徴とする特許請求の範囲1
記載の縦形半導体装置の製造方法。
[Claims] 1. A semiconductor substrate of one conductivity type, a groove formed on the main surface of the semiconductor substrate, an electrode film formed in the groove with an insulating film interposed therebetween, and the main surface of the semiconductor substrate. a first semiconductor layer of an opposite conductivity type and a second semiconductor layer of one conductivity type formed vertically to surround the groove and partially overlap the electrode film;
In manufacturing a vertical semiconductor device comprising a semiconductor layer, the step of forming the groove includes a step of selectively forming an oxidation-resistant insulating film on the main surface of the semiconductor substrate; 1. A method for manufacturing a vertical semiconductor device having a groove, comprising the steps of: oxidizing a semiconductor substrate through an opening in an insulating film to form an oxide film; and removing the oxide film by etching. 2. A step of selectively forming an oxidation-resistant insulating film on the main surface of a semiconductor substrate of one conductivity type, and selectively oxidizing the semiconductor substrate through the opening of the oxidation-resistant insulating film to form an oxide film. selectively forming a first semiconductor layer of an opposite conductivity type on the surface of the semiconductor substrate surrounded by the oxide film, and a second semiconductor layer of one conductivity type within the first semiconductor layer; a step of etching the oxide film to form a groove having a smooth outline; a step of forming an insulating film on the surface of the groove; and at least the first and second semiconductor layers on the insulating film. 2. The method of manufacturing a vertical semiconductor device according to claim 1, further comprising the step of forming an electrode film so as to partially overlap the electrode film. 3. A patent claim characterized in that the step of selectively oxidizing the semiconductor substrate through the opening of the oxidation-resistant insulating film to form an oxide film, and the step of removing this oxide film by etching are repeatedly performed. A method for manufacturing a vertical semiconductor device according to scope 1 or 2. 4. Before forming the oxidation-resistant insulating film, a first semiconductor layer and a second semiconductor layer are formed on the main surface of the semiconductor substrate, and then the semiconductor substrate is oxidized through the opening of the oxidation-resistant insulating film. The semiconductor body was previously etched through this opening and the V
Claim 1 characterized in that a letter-shaped groove is formed.
A method of manufacturing the vertical semiconductor device described above.
JP14990085A 1985-07-10 1985-07-10 Manufacture of vertical type semiconductor device with groove section Pending JPS6212167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14990085A JPS6212167A (en) 1985-07-10 1985-07-10 Manufacture of vertical type semiconductor device with groove section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14990085A JPS6212167A (en) 1985-07-10 1985-07-10 Manufacture of vertical type semiconductor device with groove section

Publications (1)

Publication Number Publication Date
JPS6212167A true JPS6212167A (en) 1987-01-21

Family

ID=15485060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14990085A Pending JPS6212167A (en) 1985-07-10 1985-07-10 Manufacture of vertical type semiconductor device with groove section

Country Status (1)

Country Link
JP (1) JPS6212167A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003502A1 (en) * 1991-07-26 1993-02-18 Nippondenso Co., Ltd. Method of producing vertical mosfet
US5298442A (en) * 1988-12-27 1994-03-29 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US5470770A (en) * 1994-03-31 1995-11-28 Nippondenso Co., Ltd. Manufacturing method of semiconductor device
US5672524A (en) * 1995-08-01 1997-09-30 Advanced Micro Devices, Inc. Three-dimensional complementary field effect transistor process
US5696396A (en) * 1993-11-12 1997-12-09 Nippondenso Co., Ltd. Semiconductor device including vertical MOSFET structure with suppressed parasitic diode operation
US5698880A (en) * 1994-03-31 1997-12-16 Nippondenso Co., Ltd. Semiconductor device having a groove with a curved part formed on its side surface
US5714781A (en) * 1995-04-27 1998-02-03 Nippondenso Co., Ltd. Semiconductor device having a gate electrode in a grove and a diffused region under the grove
US5747851A (en) * 1995-09-29 1998-05-05 Nippondenso Co., Ltd. Semiconductor device with reduced breakdown voltage between the gate electrode and semiconductor surface
EP0675529A3 (en) * 1994-03-30 1998-06-03 Denso Corporation Process for manufacturing vertical MOS transistors
US5780324A (en) * 1994-03-30 1998-07-14 Denso Corporation Method of manufacturing a vertical semiconductor device
US5925911A (en) * 1995-04-26 1999-07-20 Nippondenso Co., Ltd. Semiconductor device in which defects due to LOCOS or heat treatment are suppressed
US5998268A (en) * 1996-09-30 1999-12-07 Denso Corporation Manufacturing method of semiconductor device with a groove
US6015737A (en) * 1991-07-26 2000-01-18 Denso Corporation Production method of a vertical type MOSFET
US6100140A (en) * 1995-07-04 2000-08-08 Nippondenso Co., Ltd. Manufacturing method of semiconductor device
US6172552B1 (en) 1997-10-17 2001-01-09 Nec Corporation FET device for use in solid-state relay
US6316300B1 (en) 1998-09-16 2001-11-13 Denso Corporation Method of manufacturing a semiconductor device having an oxidation process for selectively forming an oxide film
US6429481B1 (en) 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US6603173B1 (en) * 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET
DE19640443B4 (en) * 1995-09-29 2005-07-07 Denso Corp., Kariya Semiconductor device and its manufacturing method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298442A (en) * 1988-12-27 1994-03-29 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US6627950B1 (en) 1988-12-27 2003-09-30 Siliconix, Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
WO1993003502A1 (en) * 1991-07-26 1993-02-18 Nippondenso Co., Ltd. Method of producing vertical mosfet
EP0550770A1 (en) * 1991-07-26 1993-07-14 Nippondenso Co., Ltd. Method of producing vertical mosfet
US5460985A (en) * 1991-07-26 1995-10-24 Ipics Corporation Production method of a verticle type MOSFET
US6603173B1 (en) * 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET
US6015737A (en) * 1991-07-26 2000-01-18 Denso Corporation Production method of a vertical type MOSFET
US5696396A (en) * 1993-11-12 1997-12-09 Nippondenso Co., Ltd. Semiconductor device including vertical MOSFET structure with suppressed parasitic diode operation
EP0675529A3 (en) * 1994-03-30 1998-06-03 Denso Corporation Process for manufacturing vertical MOS transistors
US5776812A (en) * 1994-03-30 1998-07-07 Nippondenso Co., Ltd. Manufacturing method of semiconductor device
US5780324A (en) * 1994-03-30 1998-07-14 Denso Corporation Method of manufacturing a vertical semiconductor device
US5470770A (en) * 1994-03-31 1995-11-28 Nippondenso Co., Ltd. Manufacturing method of semiconductor device
US5698880A (en) * 1994-03-31 1997-12-16 Nippondenso Co., Ltd. Semiconductor device having a groove with a curved part formed on its side surface
EP0675530A3 (en) * 1994-03-31 1997-10-08 Nippon Denso Co Manufacturing method of a field effect semiconductor device.
US5925911A (en) * 1995-04-26 1999-07-20 Nippondenso Co., Ltd. Semiconductor device in which defects due to LOCOS or heat treatment are suppressed
US5714781A (en) * 1995-04-27 1998-02-03 Nippondenso Co., Ltd. Semiconductor device having a gate electrode in a grove and a diffused region under the grove
US6100140A (en) * 1995-07-04 2000-08-08 Nippondenso Co., Ltd. Manufacturing method of semiconductor device
US5672524A (en) * 1995-08-01 1997-09-30 Advanced Micro Devices, Inc. Three-dimensional complementary field effect transistor process
US5747851A (en) * 1995-09-29 1998-05-05 Nippondenso Co., Ltd. Semiconductor device with reduced breakdown voltage between the gate electrode and semiconductor surface
DE19640443B4 (en) * 1995-09-29 2005-07-07 Denso Corp., Kariya Semiconductor device and its manufacturing method
US5998268A (en) * 1996-09-30 1999-12-07 Denso Corporation Manufacturing method of semiconductor device with a groove
DE19742181B4 (en) * 1996-09-30 2006-05-18 Denso Corp., Kariya Manufacturing method for a semiconductor device
US6172552B1 (en) 1997-10-17 2001-01-09 Nec Corporation FET device for use in solid-state relay
US6828195B2 (en) 1997-11-14 2004-12-07 Fairchild Semiconductor Corporation Method of manufacturing a trench transistor having a heavy body region
US6429481B1 (en) 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US7696571B2 (en) 1997-11-14 2010-04-13 Fairchild Semiconductor Corporation Method of manufacturing a trench transistor having a heavy body region
US8044463B2 (en) 1997-11-14 2011-10-25 Fairchild Semiconductor Corporation Method of manufacturing a trench transistor having a heavy body region
US6316300B1 (en) 1998-09-16 2001-11-13 Denso Corporation Method of manufacturing a semiconductor device having an oxidation process for selectively forming an oxide film

Similar Documents

Publication Publication Date Title
JPS6212167A (en) Manufacture of vertical type semiconductor device with groove section
JPH02125623A (en) Manufacture of self-alignment transistor
KR100272051B1 (en) Process for manufacture of a p-channel mos gated device with base implant through the contact window
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
JPS63257231A (en) Manufacture of semiconductor device
JPH08255902A (en) Insulated gate semiconductor device and fabrication thereof
US6436780B1 (en) Semiconductor device
JPS62185353A (en) Manufacture of semiconductor device
JPH0127589B2 (en)
CN118116961B (en) Trench gate IGBT chip and manufacturing method thereof
JPH01138763A (en) Manufacture of static induction semiconductor device
JP3498415B2 (en) Semiconductor device and manufacturing method thereof
JPS5975667A (en) Manufacture of semiconductor device
JPS641063B2 (en)
JP4197399B2 (en) Method for manufacturing silicon carbide semiconductor device
JPS59104167A (en) Manufacture of insulated gate type field effect transistor
JPH01108772A (en) Manufacture of bipolar transistor
JPS63138772A (en) Schottky barrier type semiconductor device and manufacture thereof
JPS61160976A (en) Manufacture of semiconductor device
JPS63240068A (en) Manufacture of semiconductor device
JPS62298174A (en) Manufacture of semiconductor integrated circuit device
JPS61220372A (en) Manufacture of semiconductor device
JPH01137673A (en) Manufacture of semiconductor device
JPH01136376A (en) Manufacture of semiconductor element
JPH03153081A (en) Field effect transistor and its manufacture