JPS62126976A - Production of d-aminoacylase - Google Patents
Production of d-aminoacylaseInfo
- Publication number
- JPS62126976A JPS62126976A JP60265860A JP26586085A JPS62126976A JP S62126976 A JPS62126976 A JP S62126976A JP 60265860 A JP60265860 A JP 60265860A JP 26586085 A JP26586085 A JP 26586085A JP S62126976 A JPS62126976 A JP S62126976A
- Authority
- JP
- Japan
- Prior art keywords
- aminoacylase
- produce
- ability
- strain
- microorganism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はD−アミノアシラーゼの製造法に関する。さら
に詳しくはD−アミノアンラーゼ生産能力を持つストレ
プトミセス属の微生物の変異処理により得られるし一ア
ミノアシラーゼ生産能欠損変異株を栄養培地中で培養し
、D−アミノアシラーゼを生成蓄積せしめ、これを採取
する方法に関する。この発明は例えば近年抗生物質の側
鎖やペプチド医薬品等の用途に求められる光学純度の高
いD−アミノ酸の製造等に極めて有効な酵素の製造方法
を楯供しようとするものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing D-aminoacylase. More specifically, a mutant strain deficient in the ability to produce mono-aminoacylase obtained by mutating a microorganism of the genus Streptomyces that has the ability to produce D-aminoanlase is cultured in a nutrient medium to produce and accumulate D-aminoacylase. Concerning how to collect. This invention aims to provide a method for producing enzymes that is extremely effective for, for example, producing D-amino acids with high optical purity, which are required in recent years for applications such as antibiotic side chains and peptide medicines.
(従来技術)
D−アミノアシラーゼの製造方法として、これまでにシ
ュードモナス(P seudomonas)属細菌によ
る方法(ネイヂ+ −(N aiture)、181.
1225(1952))、ファカルタティブ・メタノー
ル資化性菌による方法(特開昭55−42534)およ
び本発明者の一人である杉江らのストレプトミセス(S
treptoBces)属放線菌による方法(特Ij
FJ 昭53−59092)が知られている。(Prior Art) As a method for producing D-aminoacylase, a method using bacteria of the genus Pseudomonas (Nature), 181.
1225 (1952)), the method using facultative methanol-assimilating bacteria (Japanese Patent Application Laid-Open No. 55-42534), and Streptomyces (S.
method using actinomycetes of the genus treptoBces (Special Ij
FJ 1977-59092) is known.
(発明が解決しようとする問題点)
しかしながら、これらいずれの方法らD−選択性に問題
がある。即ち、これらの微生物を用いてD−アミノアシ
ラーゼを生産する時、いずれら同時にL−アミノアシラ
ーゼが生産され、採取した菌体あるいは菌体から超音波
等により抽出した粗酵素液を用いての反応で得られる目
的生産物の光学純度は十分に満足し得るしのではない。(Problems to be Solved by the Invention) However, all of these methods have problems with D-selectivity. That is, when D-aminoacylase is produced using these microorganisms, L-aminoacylase is produced at the same time, and a reaction using collected microorganisms or a crude enzyme solution extracted from the microorganisms by ultrasound, etc. The optical purity of the target product obtained is not fully satisfactory.
(問題点を解決するための手段)
かかる事情を鑑がみ、本発明者らはD−アミノアシラー
ゼの工業中・産を目的にD−アミノアシラーゼ生産菌の
改良につき鋭意検討の結果ストレプトミセス属のD−ア
ミノアシラーゼ生産菌の変異株の中からD−アミノアシ
ラーゼ生産能を維持したままで、不要酵素であるし一ア
ミノアシラーゼ生産能が実質的に欠損した菌株を見いだ
し本発明を完成した。従来、D−アミノアシラーゼ生産
菌に関する育種については全く報告はなく、本発明者ら
により、はじめて得られたものである。(Means for Solving the Problems) In view of the above circumstances, the present inventors conducted intensive studies to improve D-aminoacylase producing bacteria for the purpose of industrial production of D-aminoacylase, and as a result, Streptomyces spp. Among the mutant strains of D-aminoacylase-producing bacteria, we found a strain that substantially lacks the ability to produce mono-aminoacylase, which is an unnecessary enzyme, while maintaining the ability to produce D-aminoacylase, and completed the present invention. Until now, there have been no reports on the breeding of D-aminoacylase-producing bacteria, and this was obtained for the first time by the present inventors.
(使用する微生物)
本発明で使用する微生物はストレプトミセス属に属する
D−アミノアシラーゼ生産菌を親株として、これに通常
の変異誘導操作、例えば紫外線、X−線照射あるいはN
−ニトロソグアニジン(NTGと略す)、亜硝酸等の化
学薬剤処理を施し、変異処理した菌体の中からL−アミ
ノアシラーゼ活性の欠損した菌株を選択することにより
得られるものであればいずれも用いることができ、L−
アミノアシラーゼ活性の欠損している点で先行技術で用
いられた菌と区別できる。好適な菌株の具体例としては
ストレプトミセス・ツイルス(S treptomyc
cs tuirus)I F Ol :3418 i
pら誘導されたし一アミノアノラーセ欠損変異)朱て二
うるストレプトミセス・フィルス0−33G&王研菌寄
第8446号)が挙げられる。(Microorganisms used) The microorganisms used in the present invention are D-aminoacylase-producing bacteria belonging to the genus Streptomyces as a parent strain, and are subjected to conventional mutagenesis procedures such as ultraviolet rays, X-ray irradiation, or N
- Any strain obtained by treating with chemical agents such as nitrosoguanidine (abbreviated as NTG) or nitrous acid and selecting a strain lacking L-aminoacylase activity from the mutagenized cells can be used. It is possible, L-
It can be distinguished from the bacteria used in the prior art by lacking aminoacylase activity. A specific example of a suitable strain is Streptomyces twillis.
cs tuirus) I F Ol :3418 i
Examples include Streptomyces filus 0-33G & Oken Bacteria No. 8446), which was derived from Streptomyces filus 0-33G and monoaminoanolase-deficient mutants derived from p et al.
(変異誘導法)
次に本発明で使用する変異株の選抜方法を以下の実験例
にて示す。(Mutation induction method) Next, the method for selecting mutant strains used in the present invention will be shown in the following experimental examples.
実験例
ストレプトミセス・ツイルスIFO13・118を第−
表に示す寒天斜面培地で培養し、生育した菌体を0.0
1%ツイーン80を含む生理食塩水に懸濁させる。これ
を無菌ガーゼでろ過し胞子懸濁液(I08〜107コ/
mlの胞子を含む)を得ろ。Experimental example: Streptomyces twillis IFO13/118
Cultured on the agar slant medium shown in the table, the grown bacterial cells were 0.0
Suspend in physiological saline containing 1% Tween 80. Filter this through sterile gauze to obtain a spore suspension (I08-107/
ml of spores).
これにNTGを加え(a度29 u g/ ml)、3
0℃で30〜90分インキュベートする。続いて胞子を
生理食塩水で2回洗浄した後、第−表に示す寒天平板培
地に塗抹し、30℃で、6〜12日培養した。生育した
コロニーを第二表に示す液体培地で30℃、2〜4日間
培養する。得られた菌体を集めO,1Mリン酸バッフ1
←(pH7,0)で洗浄した後、N−アセチル−し−ア
ミノ酸と共に30℃で24時間反応させる。菌体を除い
た反応液中のアミノ酸の有無をチェックすることにより
L−アミノアシラーゼ生産能の低下または欠損した変異
株を選抜した。さらにN−アセデル−DL−アミノ酸を
基質にした反応で二次評価を行ない、親株と同等以上の
D−アミノアシラーゼ生産能を維持し、かつL−アミノ
アシラーゼ生産能の著しく低下した変異株をえた。この
菌株はストレプトミセス・ツイルス0−33 (微工
研菌寄第8446号)として寄託した。Add NTG to this (a degree 29 u g/ml),
Incubate for 30-90 minutes at 0°C. Subsequently, the spores were washed twice with physiological saline, then spread on the agar plates shown in Table 1, and cultured at 30°C for 6 to 12 days. The grown colonies are cultured in the liquid medium shown in Table 2 at 30°C for 2 to 4 days. Collect the obtained bacterial cells and place in O, 1M phosphate buffer 1
← (pH 7.0), and then reacted with N-acetyl-thi-amino acid at 30°C for 24 hours. Mutant strains with decreased or deficient L-aminoacylase production ability were selected by checking the presence or absence of amino acids in the reaction solution from which the bacterial cells were removed. Furthermore, a secondary evaluation was performed using a reaction using N-acedel-DL-amino acid as a substrate, and a mutant strain was obtained that maintained D-aminoacylase production ability equivalent to or higher than that of the parent strain, and had a significantly reduced L-aminoacylase production ability. . This strain was deposited as Streptomyces twirus 0-33 (Feikoken Bacteria No. 8446).
(変異株の培養方法)
本発明の変異株は、通常の栄養隠、即ち炭素源、窒素源
、無機塩類の存在下で行なわれる。この酵素生産誘導物
質として、D−またはDL−フェニルグリシン、D−ま
たはDL−バリン、D−またはDL−ロイシンなどのD
−またはDL−アミノ酸、またはD−またはDL−アミ
ノ酸の誘導体、例えばN−アセチル−D−またはDL−
フェニルグリシンなどを例示で与る。また窒素源として
は有機窒素の添加が必要で、例えばポリペプトン、肉エ
キス、酵母エキス、コーンスチープリカーなどを適宜添
加し、また必要に応じて、培地fml当たり100μg
程度の塩化コバルトを添加してらよい。培養はpI−1
5〜8の範囲で可能であるが、pH6〜7の範囲内で行
なうのがより望ましく、また培養温度は20〜37℃の
範囲で可能であるが、30℃がより望ましい。培養には
酸素の供給が必要で、通気撹はんを行なう必要がある。(Method for culturing mutant strains) The mutant strains of the present invention are cultivated in the presence of conventional nutrients, ie, carbon sources, nitrogen sources, and inorganic salts. This enzyme production inducer includes D- or DL-phenylglycine, D- or DL-valine, D- or DL-leucine, etc.
- or DL-amino acids, or derivatives of D- or DL-amino acids, such as N-acetyl-D- or DL-
Examples include phenylglycine. In addition, it is necessary to add organic nitrogen as a nitrogen source, such as polypeptone, meat extract, yeast extract, corn steep liquor, etc., and if necessary, add 100 μg per fml of culture medium.
A certain amount of cobalt chloride may be added. Culture is pI-1
The pH can range from 5 to 8, but it is more desirable to have a pH of 6 to 7, and the culture temperature can range from 20 to 37°C, but 30°C is more desirable. Culture requires oxygen supply and aeration and agitation.
(酵素の回収と反応方法)
本発明で得られるD−アミノアンラーゼは主に菌体内に
生産されるので、得られた菌体を水洗後、酵素剤として
回収してもよく、あるいは、常法により菌体を破砕また
はりゾチーム等で溶菌して酵素を抽出し、これを酵素剤
として回収して乙よい。(Enzyme recovery and reaction method) Since the D-aminoanlase obtained in the present invention is mainly produced within bacterial cells, the obtained bacterial cells may be washed with water and then recovered as an enzyme preparation, or The enzyme can be extracted by crushing the bacterial cells or lysing them with lysozyme, etc., and recovering this as an enzyme agent.
酵素剤で連続酵素反応を行なうには、水洗菌体をそのま
ま使用してらよく、またこれをポリアクリルアミド等で
包括したり、菌体から抽出した酵素を常法により固定化
したらのら使用可能である。To perform continuous enzymatic reactions with enzyme agents, it is best to use water-washed bacterial cells as they are, or it is possible to enclose them in polyacrylamide, etc., or to use them after immobilizing enzymes extracted from the bacterial cells using conventional methods. be.
(発明の効果)
■〕−アミノ酸簿の有用な光学活性化合物の製造に(r
用なり一アミノアンラーゼの工業生産への最大の欠点で
あった菌体内のきよう雅1、−アミノアシラーゼを菌株
の育種により克服した。本発明の変異株を用いることに
より、菌体からの抽出酵素または菌体をそのまま酵素反
応に利用するいずれの方法でも高純変のD−アミノアシ
ラーゼ活性を容易に得ろことができ産業上の効果は極め
て大きい乙のである。(Effect of the invention) ■] - For the production of useful optically active compounds of the amino acid list (r
The greatest drawback to the industrial production of mono-aminoacylase, the intracellular aminoacylase, was overcome by breeding the bacterial strain. By using the mutant strain of the present invention, it is possible to easily obtain highly purified D-aminoacylase activity by extracting the enzyme from the bacterial cells or using the bacterial cells as they are for enzymatic reactions, resulting in industrial effects. is extremely large.
以下、本発明を実施例により詳述するが本発明はこれら
の実施例に限定されるものではない。Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples.
(以下余白) 第−表 酵母エキス 1g 肉エキス 1g NZアミンタイプA 2g マルトース 10g 寒天 20g 蒸留水 B。(Margin below) Table - Table Yeast extract 1g Meat extract 1g NZ amine type A 2g Maltose 10g Agar 20g Distilled water B.
第二表
可溶性デンプン 20g
マルトース 10g
グリセリン 10g
ポリペプトン 5g
酵母エキス 5g
肉エキス 15g
コーンスチープリカー 10g
食塩 5g
DL−バリン 15g
蒸留水 ll/
実施例1
可溶性デンプン2%、マルトース1%、グリセリン1%
、ポリペプトン0.5%、酵母エキス0.5%、肉エキ
ス1.5%、コーンスチープリカー1%、NaC10,
5%、DL−バリン1.5%を含む栄養培地(pi−1
7,0)l OOmlに変異株〇−33昧(微工研菌寄
第8446号)の胞子を接種し30℃、毎分110回転
で4日間培養した。培養液から菌体を集め生理食塩水で
十分洗浄した後、0.1Mリン酸援衝液(pl−17,
0)に懸濁し、超音波破砕器(19,5KH2)で細胞
を破砕する。遠心分離で細胞の破片を除去して、D−ア
ミノアシラーゼの粗酵素液を得た。酵素反応は0.05
MのN−アセチル−DL−バリンを基質として培養液1
mH,:相当する粗酵素液を用いて、30℃、24時間
反応させた。反応生成物の分析は、HP L Cて行な
った。分析方法はダイセル化学工業製光学分割カラムW
Hを用いる方法および、キラルモビールフェイズ法(
J、 Am、 Chew、 Soc、 I O2
゜5115(l 980))の二つの方法で行なった。Table 2 Soluble starch 20g Maltose 10g Glycerin 10g Polypeptone 5g Yeast extract 5g Meat extract 15g Corn steep liquor 10g Salt 5g DL-valine 15g Distilled water 1/2 Example 1 Soluble starch 2%, maltose 1%, glycerin 1%
, polypeptone 0.5%, yeast extract 0.5%, meat extract 1.5%, corn steep liquor 1%, NaC10,
Nutrient medium containing 5% and 1.5% DL-valine (pi-1
Spores of mutant strain 0-33 (Feikoken Bacteria No. 8446) were inoculated into 7.0) lOOml and cultured at 30° C. and 110 revolutions per minute for 4 days. After collecting bacterial cells from the culture solution and thoroughly washing them with physiological saline, they were added to a 0.1M phosphate buffered solution (pl-17,
0) and disrupt the cells using an ultrasonic disruptor (19.5KH2). Cell debris was removed by centrifugation to obtain a crude enzyme solution of D-aminoacylase. Enzyme reaction is 0.05
Culture solution 1 using N-acetyl-DL-valine of M as a substrate.
mH,: Using the corresponding crude enzyme solution, the reaction was carried out at 30°C for 24 hours. Analysis of the reaction product was performed by HPLC. The analysis method is optical resolution column W manufactured by Daicel Chemical Industries.
The method using H and the chiral mobile phase method (
J, Am, Chew, Soc, I O2
Two methods were used: ゜5115 (l 980)).
ソノ結果、24 時ItJ W、 fd 後、N 7
セチル−D−バリンの99.5%がD−バリンに転換
した。一方、N−アセデル−し−バリンは、はとんど反
応せず、わずかに0.4%がし一バリンに転換した。Sono result, 24 o'clock ItJ W, after fd, N 7
99.5% of cetyl-D-valine was converted to D-valine. On the other hand, N-acetyl-valine hardly reacted, and only 0.4% was converted to valine.
キラルモビールフェイズ法での分析結果を第1図に示し
た。培養液1ml中の酵素が1時間に1μモルのD−バ
リンを生ずる酵素活性を1単位とするとき、D−アミノ
アンラーゼ活性は37単位であった。The analysis results using the chiral mobile phase method are shown in Figure 1. The D-aminoanlase activity was 37 units when the enzyme activity in 1 ml of the culture solution to produce 1 μmol of D-valine per hour is defined as 1 unit.
比較例1
実施例Iと同様の栄養培地100+nlに親株であるス
トレプトミセス・ツイルスIPO13418株の胞子を
接種し、30℃で毎分110回転の培養で4日間培養し
た。実施例1と同様の方法で粗酵素液を得た。0.05
MのN−アセチル−DL−バリンを基質として、培養液
1+nlに相当する粗酵素液を用いて、30℃、24時
間反応させた。Comparative Example 1 Spores of the parent strain Streptomyces twillus IPO13418 strain were inoculated into 100+ nl of the same nutrient medium as in Example I, and cultured at 30° C. for 4 days at 110 revolutions per minute. A crude enzyme solution was obtained in the same manner as in Example 1. 0.05
Using N-acetyl-DL-valine of M as a substrate, a reaction was carried out at 30° C. for 24 hours using a crude enzyme solution corresponding to 1+nl of the culture solution.
反応生成物の分析は実施例Iと同様にして行なった。2
4時間反応後、N−アセチル−D−バリンの90%がD
−バリンに転換した。一方のN−アセヂルーし一バリン
td 4 B 、 6%がL−バリンに転換した。キラ
ルモビールフェイズ法での分析結果を第二図に示した。Analysis of the reaction products was carried out in the same manner as in Example I. 2
After 4 hours of reaction, 90% of N-acetyl-D-valine was D
- Converted to valine. On the other hand, 6% of N-acediyl-valine td 4 B was converted to L-valine. The analysis results using the chiral mobile phase method are shown in Figure 2.
実施例2
実施例1と同様の栄養培地で変異株0−33株を培養し
、同様の操作で粗酵素液を得た。0.05MのN−アセ
チル−DL−フェニルグリシンを基質として培養液1m
lに相当する粗酵素液を用いて30℃、24時間反応さ
せた。反応生成物の分析は実施例1と同様にして行なっ
た。24時間反応後、N−アセチル−D−フェニルグリ
シンの100%がD−フェニルグリシンに転換していた
。Example 2 Mutant strains 0-33 were cultured in the same nutrient medium as in Example 1, and a crude enzyme solution was obtained in the same manner. 1 m of culture solution using 0.05M N-acetyl-DL-phenylglycine as a substrate.
A reaction was carried out at 30° C. for 24 hours using a crude enzyme solution corresponding to 1 ml. Analysis of the reaction product was carried out in the same manner as in Example 1. After 24 hours of reaction, 100% of N-acetyl-D-phenylglycine had been converted to D-phenylglycine.
一方、N−アセチル−し−フェニルグリシンは全く反応
しなかった。On the other hand, N-acetyl-phenylglycine did not react at all.
比較例2
比較例1と同様にして粗酵素液を得た。0.05MのN
−アセチル−DL−フェニルグリシンを基質として培養
液fmlに相当する粗酵素液を用いて30℃、24時間
反応させた。反応生成物の分析は実施例1と同様にして
おこなった。24時間反応後、N−アセチル−D−フェ
ニルグリシンの84.8%が1〕−フェニルグリシン1
こ転換しl二。Comparative Example 2 A crude enzyme solution was obtained in the same manner as in Comparative Example 1. 0.05M N
-Acetyl-DL-phenylglycine was used as a substrate and a crude enzyme solution corresponding to fml of the culture solution was used to react at 30°C for 24 hours. Analysis of the reaction product was carried out in the same manner as in Example 1. After 24 hours of reaction, 84.8% of N-acetyl-D-phenylglycine was converted to 1]-phenylglycine 1
Turn around.
一方、N−アセチル−L−フェニルグリノンは13.3
%が17−フェニルグリシンに転換した。On the other hand, N-acetyl-L-phenylglinone is 13.3
% was converted to 17-phenylglycine.
実施例3
実施例1で示した栄養培地で変異株0−33株を培養し
、菌体を集めた。さらに、この菌体を十分洗浄した後、
0.05MのN−アセチル−DL−バリンを基質に、培
養液1mlに相当する菌体懸濁液を用いて30℃で酵素
反応さUoた。10時間反応後、N−アセチル−D−バ
リンの86%がD−バリンに転換した。一方、N−アセ
チル−L −バリンは全く反応しなかった。Example 3 Mutant strains 0-33 were cultured in the nutrient medium shown in Example 1, and bacterial cells were collected. Furthermore, after thoroughly washing the bacteria,
An enzymatic reaction was carried out at 30° C. using 0.05 M N-acetyl-DL-valine as a substrate and a bacterial cell suspension equivalent to 1 ml of the culture solution. After 10 hours of reaction, 86% of N-acetyl-D-valine was converted to D-valine. On the other hand, N-acetyl-L-valine did not react at all.
第一図は実施例1で得られた酵素反応液の、HPLCに
よる分析のクロマトグラムを示したしのである。第二図
は比較例1で得られた酵素反応液の、I−I P L
Cによる分析のクロマトグラムを示したものである。Figure 1 shows a chromatogram of the enzyme reaction solution obtained in Example 1 analyzed by HPLC. Figure 2 shows the I-I P L of the enzyme reaction solution obtained in Comparative Example 1.
This figure shows a chromatogram analyzed by C.
Claims (1)
能が実質的に欠損し、かつD−アミノアシラーゼ生産能
を有する微生物を栄養培地中で培養し、D−アミノアシ
ラーゼを生成・採取することを特徴とするD−アミノア
シラーゼの製造法。A microorganism belonging to the genus Streptomyces that is substantially deficient in the ability to produce L-aminoacylase and has the ability to produce D-aminoacylase is cultured in a nutrient medium to produce and collect D-aminoacylase. A method for producing D-aminoacylase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60265860A JPS62126976A (en) | 1985-11-26 | 1985-11-26 | Production of d-aminoacylase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60265860A JPS62126976A (en) | 1985-11-26 | 1985-11-26 | Production of d-aminoacylase |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62126976A true JPS62126976A (en) | 1987-06-09 |
JPH0221797B2 JPH0221797B2 (en) | 1990-05-16 |
Family
ID=17423087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60265860A Granted JPS62126976A (en) | 1985-11-26 | 1985-11-26 | Production of d-aminoacylase |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62126976A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS645488A (en) * | 1987-06-29 | 1989-01-10 | Daicel Chem | Novel d-aminoacylase and production thereof |
EP0976828A1 (en) * | 1998-07-29 | 2000-02-02 | DAICEL CHEMICAL INDUSTRIES, Ltd. | Fungal D-aminoacylases and method for producing D-amino acids |
WO2000023598A1 (en) * | 1998-10-20 | 2000-04-27 | Chirotech Technology Limited | Aminoacylase and its use in the production of d-aminoacids |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05243773A (en) * | 1992-03-03 | 1993-09-21 | Fujitsu Ltd | Printed board shelf |
-
1985
- 1985-11-26 JP JP60265860A patent/JPS62126976A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS645488A (en) * | 1987-06-29 | 1989-01-10 | Daicel Chem | Novel d-aminoacylase and production thereof |
EP0976828A1 (en) * | 1998-07-29 | 2000-02-02 | DAICEL CHEMICAL INDUSTRIES, Ltd. | Fungal D-aminoacylases and method for producing D-amino acids |
US6514742B1 (en) | 1998-07-29 | 2003-02-04 | Daicel Chemical Industries, Ltd. | D-aminoacylases, method for producing the same, and method for producing D-amino acids using the same |
US6905861B2 (en) | 1998-07-29 | 2005-06-14 | Daicel Chemical Industries, Ltd. | D-aminoacylases, method for producing the same, and method for producing D-amino acids using the same |
WO2000023598A1 (en) * | 1998-10-20 | 2000-04-27 | Chirotech Technology Limited | Aminoacylase and its use in the production of d-aminoacids |
Also Published As
Publication number | Publication date |
---|---|
JPH0221797B2 (en) | 1990-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3239394A (en) | Process for producing 7-amino-cephalosporanic acid | |
JP3523285B2 (en) | Production method for glycolytic enzymes | |
EP0275901A2 (en) | Use of gamma-glutamyl-transpeptidase | |
JPS62126976A (en) | Production of d-aminoacylase | |
JPH04365491A (en) | Production of 4-halo-3-hydroxybutylamide | |
JPH0928390A (en) | Microbiological production of glycolic acid | |
US5116752A (en) | Process for preparing neuraminidase | |
US3915798A (en) | Process for producing 7-amino desacetoxy cephalosphoranic acid | |
JPH0378992B2 (en) | ||
US4761374A (en) | Thermally stable tryptophanase, process for producing the same, and thermally stable tryptophanase-producing microorganism | |
JP3026322B2 (en) | Method for producing trehalose | |
JP3032817B2 (en) | Mass production method of xyloglucan oligo 9 sugar | |
JPH0516832B2 (en) | ||
JPH04211369A (en) | Halophilic alkali amylase and production thereof | |
JP3873512B2 (en) | Method for producing D-3- (2-naphthyl) alanine | |
EP0320685B1 (en) | A process for the obtention of thermostable alpha-amylases by culturing superproductive microorganisms at high temperatures | |
JPS589679B2 (en) | Antibiotic manufacturing method | |
JP3026312B2 (en) | Production method of chitin degradation products | |
JP3743172B2 (en) | Method for producing L-homocysteine | |
JPH0391478A (en) | Production of collagenase | |
JPS6228678B2 (en) | ||
JP2946055B2 (en) | Method for producing optically active (S)-(+)-3-halo-1,2-propanediol | |
KR880002315B1 (en) | Culture method of streptococcus sp. | |
JP2901458B2 (en) | Method for producing gentianose | |
JPH0353890A (en) | Production of 4-halo-3-hydroxybutyronitrile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |