Nothing Special   »   [go: up one dir, main page]

JPS62125629A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62125629A
JPS62125629A JP26647085A JP26647085A JPS62125629A JP S62125629 A JPS62125629 A JP S62125629A JP 26647085 A JP26647085 A JP 26647085A JP 26647085 A JP26647085 A JP 26647085A JP S62125629 A JPS62125629 A JP S62125629A
Authority
JP
Japan
Prior art keywords
groove
etching
film
forming
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26647085A
Other languages
Japanese (ja)
Inventor
Takao Miura
隆雄 三浦
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26647085A priority Critical patent/JPS62125629A/en
Publication of JPS62125629A publication Critical patent/JPS62125629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To microminiaturize an element separating zone by partly etching in depth with an etchant having selectivity in a crystal direction at groove forming time to form an oblique portion on the periphery of a bottom of the groove. CONSTITUTION:A groove of predetermined depth is selectively formed on a semiconductor substrate, a mask 22 is removed when a groove for forming an element separating zone formed by burying an insulator in the groove is formed, it is then heat treated to form an SiO2 film 27 in and on the groove 25, the surface including the groove is covered with a thick polycrystalline silicon film 28 by a CVD method to bury the groove 15, and the polycrystalline silicon film 28 is laminated thereon. Then, the film 28 on the surface is removed by etching or polishing, and the silicon film on the surface of the groove is oxidized to generate an SiO2 film 29, thereby completing an element separation zone of separating the groove. Thus, a discontinuous line of the buried insulator is eliminated to obviate a low density portion, thereby obtaining an element separating zone to be readily microminiaturized.

Description

【発明の詳細な説明】 [概要] 溝分離による素子分離帯を形成する際、結晶方向に選択
性をもったエツチング剤を用いてエツチングし、溝の底
周囲に傾斜部分を形成する。そうすれば、埋没絶縁体の
不連続線が形成されず、且つ、素子分離帯を微細化でき
る。
DETAILED DESCRIPTION OF THE INVENTION [Summary] When forming an element isolation zone by trench isolation, etching is performed using an etching agent that is selective to the crystal direction to form a sloped portion around the bottom of the trench. In this way, discontinuous lines of the buried insulator will not be formed, and the element isolation bands can be miniaturized.

[産業上の利用分野コ 本発明はICなど、半導体装置の製造方法に係り、特に
半導体素子を分離するための溝分離法(トレンチ分離法
)に関する。
[Industrial Field of Application] The present invention relates to a method for manufacturing semiconductor devices such as ICs, and more particularly to a trench isolation method for isolating semiconductor elements.

ICでは、半導体基板上に多数の半導体素子が設けられ
ており、これらの半導体素子を電気的に分離するための
、素子分離帯が形成されている。
In an IC, a large number of semiconductor elements are provided on a semiconductor substrate, and element isolation bands are formed to electrically isolate these semiconductor elements.

且つ、このような素子分離帯には種々の方式が知られて
いるが、現在、汎用されている方法に溝分離法がある。
Various methods are known for forming such device isolation bands, and one of the currently widely used methods is the trench isolation method.

しかし、この溝分離法で形成する素子分離帯は、その溝
内部に高密度な絶縁体が埋没されるように十分に配慮し
、且つ、その素子分離帯が微細化し易いことが望ましい
However, it is desirable that the element isolation band formed by this trench isolation method be given sufficient consideration so that a high-density insulator is buried inside the groove, and that the element isolation band can be easily miniaturized.

[従来の技術と発明が解決しようとする問題点]従来、
溝分離法(トレンチ分離法)は、別名をI OP (I
solation with 0xide and P
o1ysilicon)法とも呼ばれて、溝内に酸化膜
を介して多結晶半導体を埋没させ、その」二面に酸化膜
を形成する方法で、初期には基板の結晶方位を利用して
、ウエソt・エツチングによってV形の溝を形成する所
謂V溝分離帯の形成方法が採られていた。
[Problems to be solved by conventional techniques and inventions] Conventionally,
The trench isolation method (trench isolation method) is also known as I OP (I
Solation with Oxide and P
This is a method in which a polycrystalline semiconductor is buried in a trench via an oxide film, and an oxide film is formed on both sides of the trench. - A method of forming a so-called V-groove separation zone, in which a V-shaped groove is formed by etching, has been adopted.

ところが、近年、ドライエツチング法の発展と共に、ま
た、高集積化の要請によって、ドライエツチングでU形
の溝を形成する所謂U溝分離帯の形成方法が汎用される
ようになってきた。それは、U形溝が■溝より微細化に
適しているからである。
However, in recent years, with the development of the dry etching method and the demand for higher integration, a method for forming a so-called U-groove separation zone, in which a U-shaped groove is formed by dry etching, has become widely used. This is because the U-shaped groove is more suitable for miniaturization than the ■ groove.

また、上記のIOP法の代わりに、最近では、溝内を全
部酸化膜(二酸化シリコン膜;3i02膜)で埋没させ
る、所謂、酸化膜溝分離法とも云うべき分離方法も用い
られている。これは、化学気相成長(CVD)法による
5iCh膜の被着が進歩してきたためである。
Moreover, instead of the above-mentioned IOP method, recently, an isolation method, also called the so-called oxide film trench isolation method, has been used in which the entire trench is buried with an oxide film (silicon dioxide film; 3i02 film). This is due to advances in the deposition of 5iCh films by chemical vapor deposition (CVD).

しかし、現在のように、更に高集積化するために溝幅が
一層狭くなってくると、絶縁物による十分な埋没が難し
くなり、埋没層内部に間隙ができ易くなってきた。
However, as the trench width becomes narrower as a result of higher integration, it becomes difficult to sufficiently bury the trench with the insulator, and gaps are likely to form inside the buried layer.

それを具体例で説明する。第3図(a+〜(C+は従来
のIOP法によるU溝分離帯の形成方法の工程順断面図
である。
This will be explained using a specific example. FIG. 3 (a+ to (C+) are cross-sectional views in the order of steps of a method for forming a U-groove separation band by the conventional IOP method.

まず、第3図(a)に示すように、p型シリコン基板1
上にマスク2を形成し、塩素系ガスを用いたドライエツ
チング法によって深さ3〜4μm9幅1μm程度の溝3
を形成し、更に、硼素イオンを注入する。この硼素イオ
ンの注入によって、後工程の熱処理でp゛型チャネル力
・ノド層4 (第3図(b)参照)が形成される。尚、
マスク2は5i02膜を介した窒化シリコン(Si3 
N4 )膜を積層し、更に、その−トに燐シリケートガ
ラス(PSG)膜またはレジスト膜を被覆した膜厚1μ
m程度の被覆マスクである。
First, as shown in FIG. 3(a), a p-type silicon substrate 1
A mask 2 is formed on top, and grooves 3 with a depth of 3 to 4 μm and a width of about 1 μm are formed by dry etching using chlorine gas.
is formed, and further boron ions are implanted. By implanting this boron ion, a p' type channel/node layer 4 (see FIG. 3(b)) is formed in a heat treatment in a subsequent step. still,
Mask 2 is silicon nitride (Si3
N4) film is laminated, and the top is further covered with a phosphorous silicate glass (PSG) film or a resist film with a thickness of 1 μm.
It is a covering mask of about m.

次いで、第3図fblに示すように、マスク2を除去し
た後、熱処理して溝3の内部と上面に5i02膜(膜厚
1000人)5を生成し、次に、CVD法によって、溝
内部を含む表面に厚い多結晶シリコン膜6を被着させて
、溝3を埋没させる。
Next, as shown in FIG. A thick polycrystalline silicon film 6 is deposited on the surface including the grooves 3 to bury the grooves 3.

次いで、第3図(C1に示すように、表面の多結晶シリ
コン膜6をエツチングまたは研磨して除去し、更に、溝
表面の多結晶シリコン膜を酸化して、5t02膜7を生
成し、かくして、溝分離の素子分離帯を完成する。
Next, as shown in FIG. 3 (C1), the polycrystalline silicon film 6 on the surface is removed by etching or polishing, and the polycrystalline silicon film on the groove surface is further oxidized to form a 5t02 film 7. , complete the device isolation strip of groove isolation.

ところが、この形成方法は多結晶シリコン膜6を被着す
る際、多結晶シリコン膜は平面上に積もるため、底面の
隅から多結晶シリコン膜の積層不連続線が生じて(第3
図fb)、 (C)の点線に示す)、埋没密度の低い間
隙のある部分が形成される。そうすると、その不連続線
の低密度部分は、エツチングまたは研磨の工程(第3図
(C1参照)でエツチングや研磨の液が侵入し易くなり
、甚だしい場合には、侵入液が次工程の加熱によって膨
張して破壊することがある。また、破壊しなくとも、熱
処理すれば不連続線部に亀裂が入ることが多い。これら
のことば、半導体装置の歩留や品質に極めて不具合な問
題である。
However, in this formation method, when depositing the polycrystalline silicon film 6, the polycrystalline silicon film is stacked on a flat surface, so a discontinuous line of stacking of the polycrystalline silicon film occurs from the corner of the bottom surface (third
In Figures fb), (shown in dotted lines in (C)), interstitial areas with low burial density are formed. In this case, the low-density portion of the discontinuous line becomes easily penetrated by the etching or polishing liquid during the etching or polishing process (see Figure 3 (C1)), and in extreme cases, the intruding liquid is heated in the next process. They may expand and break.Furthermore, even if they do not break, cracks often appear in the discontinuous line portions after heat treatment.These problems are extremely detrimental to the yield and quality of semiconductor devices.

従って、この不連続線をなくするため、他の形成方法が
提案されており、第4図(a)〜Fdlはその形成工程
順断面図を示している。
Therefore, in order to eliminate this discontinuous line, other forming methods have been proposed, and FIGS. 4(a) to 4(Fdl) show cross-sectional views in the order of the forming steps.

まず、第4図(a)に示すように、p型シリコン基板1
1上に膜厚1000〜2000人の5i02膜12を形
成し、その上にマスク13を形成した後、等方性エツチ
ング剤、例えば弗酸液によってエツチングして、そのエ
ツチング量を制御しながら、図のように過度にサイドエ
ツチングする。このエツチングはサイドエツチング幅り
が重要である。
First, as shown in FIG. 4(a), a p-type silicon substrate 1
After forming a 5i02 film 12 with a thickness of 1000 to 2000 on 1, and forming a mask 13 thereon, etching is performed using an isotropic etching agent, for example, a hydrofluoric acid solution, and while controlling the amount of etching, Excessive side etching as shown. In this etching, the width of the side etching is important.

次いで、第4図tb)に示すように、六弗化硫黄(SF
6)ガスを用いてエツチングして、溝側面がテーパー状
になった深さ3〜4μmの溝14を形成し、更に、硼素
イオンを注入する。この溝側面がテーパー状に形成され
る理由は、六弗化硫黄に含まれる重い硫黄の物理的衝撃
によるもので、そのテーパー形状はサイドエツチング幅
して規制される。従って、サイドエツチング幅I、は非
常に重要になる。また、硼素イオンの注入は、後工程の
熱処理でp+型ヂャネルカソト層15(第4図(C)参
照)に形成される。尚、マスク13は上記の第3図の実
施例と同様の被覆マスクである。
Next, as shown in Figure 4tb), sulfur hexafluoride (SF
6) Etching is performed using gas to form a groove 14 having a depth of 3 to 4 μm with tapered groove sides, and further boron ions are implanted. The reason why the groove side surfaces are tapered is due to the physical impact of the heavy sulfur contained in sulfur hexafluoride, and the tapered shape is regulated by the side etching width. Therefore, the side etching width I becomes very important. Further, boron ions are implanted into the p+ type channel cathode layer 15 (see FIG. 4(C)) in a post-process heat treatment. The mask 13 is a covering mask similar to the embodiment shown in FIG. 3 above.

次いで、第41F(C+に示すように、マスク13を除
去した後、熱処理して溝14の内部と上面に5i02膜
(膜厚1000人)16を生成し、更に、CVD法によ
って、溝内部を含む表面に厚い多結晶シリコン膜17を
被着させて、溝14を埋没させる。
Next, as shown in 41F (C+), after removing the mask 13, a heat treatment is performed to form a 5i02 film (thickness: 1000) 16 on the inside and upper surface of the groove 14, and the inside of the groove is further coated by CVD. A thick polycrystalline silicon film 17 is deposited on the surface including the groove 14 to bury the groove 14.

次いで、第4図(d)に示すように、表面の多結晶シリ
コン膜17をエツチングまたは研磨して除去し、更に、
溝表面の多結晶シリコン膜を酸化して、5t02膜18
を生成し、溝分離の素子分離帯を完成させる。
Next, as shown in FIG. 4(d), the polycrystalline silicon film 17 on the surface is removed by etching or polishing, and further,
The polycrystalline silicon film on the groove surface is oxidized to form a 5t02 film 18.
, and complete the device isolation zone for groove isolation.

この形成方法は不連続線が生成されず、側面にもチャネ
ルカット層15が形成される利点があるが、サイドエツ
チング幅L(第4図(al参照)の制御が難しく、且つ
、■溝分離に類似した形成方法であるため、上面の幅が
広くなって、微細に形成することが困難な製法である。
This formation method has the advantage that discontinuous lines are not generated and the channel cut layer 15 is also formed on the side surfaces, but it is difficult to control the side etching width L (see FIG. 4 (al)), and Since the formation method is similar to that of , the width of the upper surface becomes wide, making it difficult to form finely.

従って、本発明は、このような欠点を除去した溝分離か
らなる素子分離帯の形成方法を提案するものである。
Therefore, the present invention proposes a method of forming an element isolation band made of trench isolation that eliminates such drawbacks.

[問題点を解決するための手段] その問題は、半導体基板面に選択的に所定深さの溝を設
け、該溝内部に絶縁体を埋没させて形成する素子分離帯
の形成方法において、数構の形成時に、結晶方向に選択
性をもったエツチング剤によって一部深さだけエツチン
グして、数構の底面周囲に傾斜部を形成するようにした
工程が含まれる半導体装置の製造方法によって解決され
る。
[Means for solving the problem] The problem is that in the method of forming an isolation band, which is formed by selectively forming a groove of a predetermined depth on the surface of a semiconductor substrate and burying an insulator inside the groove, several problems arise. This problem is solved by a semiconductor device manufacturing method that includes a step of etching only a portion of the structure to a certain depth using an etching agent that is selective to the crystal direction during the formation of the structure to form sloped portions around the bottom surfaces of several structures. be done.

[作用] 即ち、本発明は、溝分離法において、結晶方向に選択性
をもったエツチング剤(溶液またはガス)によって一部
の深さだけエツチングして、溝の底面周囲に傾斜部分を
形成する。
[Operation] That is, in the groove separation method, the present invention etches only a partial depth using an etching agent (solution or gas) that is selective to the crystal direction to form an inclined portion around the bottom of the groove. .

そうすれば、埋没する絶縁体に不連続線が形成されず、
且つ、微細化の容易な素子分離帯が形成される。
This will prevent discontinuities from forming in the buried insulator.
In addition, an element isolation band that can be easily miniaturized is formed.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図ta+〜(d)は本発明にがかる一実施例の素子
分離帯の形成方法の工程順断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views in order of steps of a method for forming an isolation band according to an embodiment of the present invention.

第1図(a]に示すように、p型シリコン基板21上に
マスク22を設け、苛性カリ(KOH)溶液によって露
出したシリコン基板21を膜厚1μm程度エツチングし
て、図のようなテーパー状の側面をもった凹部23を形
成し、更に、硼素イオンを注入し、熱処理してp゛型リ
ーク防止層24を形成する。ここに、苛性カリ溶液とは
シリコン基板に対して結品方向に選択性をもつエツチン
グ液で、結晶方向(111)にのみエツチングが進行す
るため、図のようなテーパー状の側面が得られる。尚、
マスク22は上記の第3図、第4図の実施例と同じ<、
SiO2MトSi3 N4膜とPSG膜、またはレジス
ト膜を積層した膜厚1μm程度の被覆マスクである。
As shown in FIG. 1(a), a mask 22 is provided on a p-type silicon substrate 21, and the exposed silicon substrate 21 is etched with a caustic potash (KOH) solution to a thickness of about 1 μm, resulting in a tapered shape as shown in the figure. A recess 23 with side surfaces is formed, and boron ions are implanted and heat treated to form a p-type leak prevention layer 24.The caustic potash solution is selective to the silicon substrate in the direction of crystallization. Since etching proceeds only in the crystal direction (111) with an etching solution having
The mask 22 is the same as the embodiment shown in FIGS. 3 and 4 above.
This is a covering mask with a film thickness of about 1 μm, which is made by laminating a SiO2M, Si3N4, PSG, or resist film.

次いで、第1図(blに示すように、塩素系ガスを用い
た異方性のドライエツチング法(例えば、5tC14ガ
スを用いたR I E)によってエツチングして、幅1
μm、深さ2〜3μmの溝25を形成し、更に、硼素イ
オンを注入する。そうすると、この垂直な異方性ドライ
エツチングによって、上記のテーパー状の側面がそのま
ま底部の側面に形成される。また、硼素イオンの注入に
よって、後工程の熱処理でp+型チャネルカプト層26
(第1図(C)参照)が形成される。
Next, as shown in FIG.
A trench 25 with a depth of 2 to 3 μm is formed, and boron ions are further implanted. Then, by this vertical anisotropic dry etching, the above-mentioned tapered side surface is directly formed on the side surface of the bottom. In addition, by implanting boron ions, the p+ type channel cupping layer 26 can be
(See FIG. 1(C)) is formed.

次いで、第1図(C1に示すように、マスク2を除去し
た後、熱処理して溝3の内部と上面に5i02膜(膜厚
1000人)27を生成し、次に、CVD法によって、
溝内部を含む表面に厚い多結晶シリコン膜28を被着さ
せて、溝25を埋没させる。そうすると、多結晶シリコ
ン膜28は図中の点線に示すような線方向に積層される
Next, as shown in FIG. 1 (C1), after removing the mask 2, a 5i02 film (thickness: 1000) 27 is formed on the inside and upper surface of the groove 3 by heat treatment, and then by CVD method.
A thick polycrystalline silicon film 28 is deposited on the surface including the inside of the groove to bury the groove 25. Then, the polycrystalline silicon film 28 is stacked in the line direction as shown by the dotted line in the figure.

次いで、第1図+d+に示すように、表面の多結晶シリ
コン膜6をエツチングまたは研磨して除去し、更に、溝
表面の多結晶シリコン膜を酸化して、5i02膜29を
生成し、溝分離の素子分離帯を完成する。
Next, as shown in FIG. 1+d+, the polycrystalline silicon film 6 on the surface is removed by etching or polishing, and the polycrystalline silicon film on the trench surface is further oxidized to form a 5i02 film 29, which separates the trench. Complete the device isolation band.

このような形成方法によれば、溝形成を高精度におこな
うことができて、且つ、底面の隅部から生じる不連続線
がなくなり、低密度部分が著しく減少する。図の多結晶
シリコン膜の中の点線は、多結晶シリコン膜の積層進行
方向である。また、p+型ヂャネルカソト層26の面積
が拡大するから、チャネルリーク阻止の効果が大きくな
り、且つ、表面にリーク防止層24を形成しているから
、表面のリークやスレーショルド電圧の変動も抑制され
る。更に、この形成法によれば、素子分離帯の微細化も
容易になる。
According to such a forming method, grooves can be formed with high precision, and discontinuous lines arising from the corners of the bottom surface are eliminated, and low-density portions are significantly reduced. The dotted line in the polycrystalline silicon film in the figure is the direction of stacking of the polycrystalline silicon film. Furthermore, since the area of the p+ type channel layer 26 is expanded, the effect of preventing channel leakage is increased, and since the leakage prevention layer 24 is formed on the surface, surface leakage and fluctuations in threshold voltage are also suppressed. . Furthermore, according to this formation method, it becomes easy to miniaturize the element isolation band.

次に、第2図(a)〜telは本発明にかかる他の素子
分離帯の形成方法の工程順断面図を示している。
Next, FIGS. 2(a) to tel show step-by-step cross-sectional views of another method of forming an isolation band according to the present invention.

まず、第2図(a)に示すように、結晶軸方向(100
)のシリコン基板31上にマスク32を形成し、基板露
出部(素子分離帯形成領域)に硼素イオンを注入し、熱
処理してp+型リーク防止層33を形成する。
First, as shown in Fig. 2(a), the crystal axis direction (100
), a mask 32 is formed on the silicon substrate 31, boron ions are implanted into the exposed portion of the substrate (element isolation band formation region), and a p+ type leak prevention layer 33 is formed by heat treatment.

尚、マスク32は上記の第1図と同じ<、SiO2膜。Note that the mask 32 is the same as in FIG. 1 above, and is a SiO2 film.

Si3N4膜、PSG膜またはレジスト膜を積層した膜
厚1μm程度の被覆マスクである。
It is a covering mask with a film thickness of about 1 μm, which is made by laminating a Si3N4 film, a PSG film, or a resist film.

次いで、第2図(blに示すように、塩素系ガスを用い
た異方性のドライエツチング法く例えば、5iC14ガ
スを用いたRIB)によって露出したシリコン基板31
をエツチングして、幅1μm、深さ2〜3μmの溝34
を形成する。
Next, as shown in FIG. 2 (bl), the exposed silicon substrate 31 is etched by an anisotropic dry etching method using chlorine-based gas, for example, RIB using 5iC14 gas.
A groove 34 with a width of 1 μm and a depth of 2 to 3 μm is etched.
form.

次いで、第2図(C)に示すように、更に、その溝34
を苛性カリ溶液によって膜厚」μm程度エツチングして
、図のようなテーパー状の側面をもった底部を形成し、
次に、硼素イオンを注入する。上記したように、苛性カ
リ溶液は結晶方向に選択性のあるエツチング液であるか
ら、結晶方向(111)にのみエツチングが進行して、
図のようなテーパ一状の側面が形成される。又、硼素イ
オンの注入によって、次工程の熱処理でp+型チャネル
カット層35(第2図(d)参照)が形成される。
Then, as shown in FIG. 2(C), the groove 34 is further
The film is etched with a caustic potash solution to a film thickness of about 100 μm to form a bottom with tapered sides as shown in the figure.
Next, boron ions are implanted. As mentioned above, since the caustic potassium solution is an etching solution that is selective to the crystal direction, etching progresses only in the crystal direction (111).
A tapered side surface as shown in the figure is formed. Further, by implanting boron ions, a p+ type channel cut layer 35 (see FIG. 2(d)) is formed in the next step of heat treatment.

次いで、第2図Fdlに示すように、マスク32を除去
した後、熱処理して溝34の内部と上面にSiO2膜(
膜厚1000人)36を生成し、次に、CVD法によっ
て、溝内部を含む表面に厚い多結晶シリコン膜37を被
着させて、溝34を埋没させる。そうすると、多結晶シ
リコン膜37は図中の点線ムこ示すような線方向に積層
される。
Next, as shown in FIG. 2 Fdl, after removing the mask 32, heat treatment is performed to form a SiO2 film (
A thick polycrystalline silicon film 37 is formed on the surface including the inside of the trench by CVD, and the trench is buried. Then, the polycrystalline silicon film 37 is laminated in the line direction shown by the dotted line in the figure.

次いで、第2図(e)に示すように、表面の多結晶シリ
コン膜37をエツチングまたは研磨して除去し、更に、
溝表面の多結晶シリコン膜を酸化して、5i02膜38
を生成し、溝分離の素子分離帯を完成する。
Next, as shown in FIG. 2(e), the polycrystalline silicon film 37 on the surface is removed by etching or polishing, and further,
The polycrystalline silicon film on the groove surface is oxidized to form a 5i02 film 38.
, and complete the device isolation band for groove isolation.

本形成方法によれば、上記例と同様に、底面の隅部から
生じる不連続線がなくなり、且つ、p+型チャネルカッ
ト層26の面積が拡大して、チャネルリーク阻止の効果
が大きくなり、表面のリーク11J止Ji24によって
、表面のリークやスレーショルド電圧の変動が抑制され
る。更に、素子分離帯の微細化も容易になる。
According to this forming method, similarly to the above example, discontinuous lines arising from the corners of the bottom surface are eliminated, and the area of the p + type channel cut layer 26 is expanded, the effect of preventing channel leakage is increased, and the surface The surface leakage and threshold voltage fluctuations are suppressed by the leakage 11J stopper Ji24. Furthermore, it becomes easy to miniaturize the element isolation band.

以上の実施例はIOP法による形成方法で説明したが、
本発明は、溝内に酸化膜のみを埋没する酸化膜溝分離法
にも、同様に適用できることは云うまでもない。
The above embodiments were explained using the IOP method, but
It goes without saying that the present invention can be similarly applied to an oxide film trench separation method in which only an oxide film is buried in the trench.

[発明の効果] 上記の説明から明らかなように、本発明によれば埋没絶
縁体の不連続線がなくなって低密度部分が解消され、且
つ、p4型チャネルカット層26の面積が拡大して、チ
ャネルリーク阻止の効果が大きくなる。更に、本発明に
よれば、微細化の容易な素子分離帯が得られる効果があ
る。
[Effects of the Invention] As is clear from the above description, according to the present invention, the discontinuous line of the buried insulator is eliminated, the low density portion is eliminated, and the area of the p4 type channel cut layer 26 is expanded. , the effect of preventing channel leakage becomes greater. Further, according to the present invention, an element isolation band that can be easily miniaturized can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(dlおよび第2図(al〜(elは本
発明にかかる形成工程順断面図、 第3図(al〜(C)および第4図(a)〜(d)は従
来の形成工程順断面図である。 図において、 1. 、1.1.21.、31はp型シリコン基板、2
、13.22.32はマスク、 3、14.25.34は溝、 4、、1.5.24.26.33.35はチャネルカッ
ト層、5、 7.16.18.27.29.36.38
は5i02膜、6、17.28.37は多結晶シリコン
膜を示している。 第1図 従圭/l形へ゛方斃(1) 第3図 従藷n形虜万5乞■) 第4図
Figures 1 (a) to (dl) and Figures 2 (al to (el) are sectional views in the order of the formation steps according to the present invention; Figures 3 (al to (C) and Figures 4 (a) to (d) are It is a sectional view in the order of conventional forming steps. In the figure, 1., 1.1.21., 31 are p-type silicon substrates, 2
, 13.22.32 is a mask, 3, 14.25.34 is a groove, 4, 1.5.24.26.33.35 is a channel cut layer, 5, 7.16.18.27.29. 36.38
indicates a 5i02 film, and 6, 17, 28, and 37 indicate a polycrystalline silicon film. Figure 1 Jukei/L shape (1) Figure 3 Jukei N type captive ■) Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板面に選択的に所定深さの溝を設け、該
溝内部に絶縁体を埋没させて形成する素子分離帯の形成
方法において、該溝の形成時に、結晶方向に選択性をも
つたエッチング剤によつて一部深さだけエッチングして
、該溝の底面周囲に傾斜部を形成するようにした工程が
含まれてなることを特徴とする半導体装置の製造方法。
(1) In a method for forming an isolation band in which a groove of a predetermined depth is selectively formed on the surface of a semiconductor substrate and an insulator is buried inside the groove, selectivity is achieved in the crystal direction when forming the groove. 1. A method of manufacturing a semiconductor device, comprising the step of etching to a partial depth using a sticky etchant to form an inclined portion around the bottom of the groove.
(2)上記素子分離帯の形成方法において、溝のエッチ
ング初期に、結晶方向に選択性をもつたエッチング剤に
よつて一部深さだけエッチングして、底面周囲に傾斜部
を形成するようにしたことを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。
(2) In the method for forming the device isolation band described above, in the initial stage of etching the groove, etching is performed only to a partial depth using an etchant that is selective to the crystal direction to form an inclined portion around the bottom surface. A method for manufacturing a semiconductor device according to claim 1, characterized in that:
(3)上記素子分離帯の形成方法において、溝のエッチ
ング終期に、結晶方向に選択性をもつたエッチング剤に
よつて一部深さだけエッチングして、底面周囲に傾斜部
を形成するようにしたことを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。
(3) In the above method for forming an isolation band, at the final stage of etching the trench, etching is performed to a partial depth using an etchant that is selective to the crystal direction to form a sloped portion around the bottom surface. A method for manufacturing a semiconductor device according to claim 1, characterized in that:
JP26647085A 1985-11-26 1985-11-26 Manufacture of semiconductor device Pending JPS62125629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26647085A JPS62125629A (en) 1985-11-26 1985-11-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26647085A JPS62125629A (en) 1985-11-26 1985-11-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62125629A true JPS62125629A (en) 1987-06-06

Family

ID=17431373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26647085A Pending JPS62125629A (en) 1985-11-26 1985-11-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62125629A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290396A (en) * 1991-06-06 1994-03-01 Lsi Logic Corporation Trench planarization techniques
US5312770A (en) * 1991-06-06 1994-05-17 Lsi Logic Corporation Techniques for forming isolation structures
US5354706A (en) * 1993-03-02 1994-10-11 Lsi Logic Corporation Formation of uniform dimension conductive lines on a semiconductor wafer
US5726084A (en) * 1993-06-24 1998-03-10 Northern Telecom Limited Method for forming integrated circuit structure
JP2001244328A (en) * 2000-02-29 2001-09-07 Denso Corp Method for manufacturing semiconductor device
JP2006041177A (en) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd Magnetic detector, method of manufacturing the same and geomagnetism sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290396A (en) * 1991-06-06 1994-03-01 Lsi Logic Corporation Trench planarization techniques
US5312770A (en) * 1991-06-06 1994-05-17 Lsi Logic Corporation Techniques for forming isolation structures
US5354706A (en) * 1993-03-02 1994-10-11 Lsi Logic Corporation Formation of uniform dimension conductive lines on a semiconductor wafer
US5726084A (en) * 1993-06-24 1998-03-10 Northern Telecom Limited Method for forming integrated circuit structure
JP2001244328A (en) * 2000-02-29 2001-09-07 Denso Corp Method for manufacturing semiconductor device
JP2006041177A (en) * 2004-07-27 2006-02-09 Matsushita Electric Works Ltd Magnetic detector, method of manufacturing the same and geomagnetism sensor
JP4552554B2 (en) * 2004-07-27 2010-09-29 パナソニック電工株式会社 Magnetic detection device, geomagnetic sensor, and method of manufacturing magnetic detection device

Similar Documents

Publication Publication Date Title
EP0146789A2 (en) Process for forming isolating trenches in integrated circuit devices
JPS6352468B2 (en)
JP3050166B2 (en) Method for manufacturing semiconductor device
JP2001102439A (en) Manufacturing method of semiconductor device
JPS62125629A (en) Manufacture of semiconductor device
JPS5898943A (en) Manufacture of semiconductor device
JPS62136022A (en) Manufacture of semiconductor device
KR100245307B1 (en) Method of for isolating element in semiconductor device
KR970053422A (en) Device Separating Method of Semiconductor Device
JPH02148855A (en) Semiconductor device and manufacture thereof
USRE34400E (en) Method for fabricating isolation region in semiconductor devices
JPS61100944A (en) Manufacture of semiconductor device
JP2000049296A (en) Manufacture of semiconductor device
JPH04280451A (en) Manufacture of semiconductor element isolating region
JPS5882532A (en) Element separation method
KR0172240B1 (en) Method of separating element from semiconductor device
US5861339A (en) Recessed isolation with double oxidation
JPH07142564A (en) Manufacture of semiconductor device
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
JPS60105247A (en) Manufacture of semiconductor device
KR100428785B1 (en) Semiconductor device having a trench isolation structure and method of fabricating the same
JPS6025247A (en) Manufacture of semiconductor device
KR0161727B1 (en) Element isolation method of semiconductor device
JPH0389532A (en) Manufacture of semiconductor device
JPH1098097A (en) Field shield element isolation forming method of semiconductor device