Nothing Special   »   [go: up one dir, main page]

JPS62119393A - Heat exchanger for metal hydride - Google Patents

Heat exchanger for metal hydride

Info

Publication number
JPS62119393A
JPS62119393A JP60257658A JP25765885A JPS62119393A JP S62119393 A JPS62119393 A JP S62119393A JP 60257658 A JP60257658 A JP 60257658A JP 25765885 A JP25765885 A JP 25765885A JP S62119393 A JPS62119393 A JP S62119393A
Authority
JP
Japan
Prior art keywords
heat
heat carrier
metal hydride
heat transfer
carrier tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60257658A
Other languages
Japanese (ja)
Inventor
Shin Fujitani
伸 藤谷
Ikuro Yonezu
育郎 米津
Naojiro Honda
本田 直二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60257658A priority Critical patent/JPS62119393A/en
Publication of JPS62119393A publication Critical patent/JPS62119393A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To make it possible to improve heat exchanging capability as well as to present ease of manufacture with compactness in construction by providing longitudinally long, corrugated plate shaped heat transfer fins axially on the outer surface of a heat carrier tube the inner cross section of which is corrugated and maintaining always the same shape with respect to positions in the axial direction. CONSTITUTION:A heat carrier 3 is made to flow in a heat carrier tube 1, and in the gaps among heat transfer fins 2 a metal hydride 4 is filled so that a heat exchange occurs between the heat carrier 3 and the metal hydride 4. The hydrogen which is absorbed or discharged with an endothermic reaction or an exothermic reaction is led out to the outside or led in from the outside through a filter 5 through which hydrogen can pass but powders of metal hydrides can not pass. By this constitution with a heat carrier tube 1 at the central position, thermal stresses which develop during the exothermic reaction of a metal hydride 4 arranged round the outer circumference of the heat carrier tube 1 are dissipated towards outside, and thermal stress developed in the heat carrier tube 1 becomes thereby small, and because the internal cross-sectional shape of the heat carrier tube 1 is corrugated, the thermal stress applied onto the heat carrier tube 1 is absorbed to the inner wall with no fear that the tube 1 will be damaged by the stress, and the heat exchange with the heat carrier 3 is made efficiently.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は金属水素化物の可逆的な反応を利用して熱の貯
蔵、取り出しを行なうに好適な金属水素化物用熱交換器
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a metal hydride heat exchanger suitable for storing and extracting heat by utilizing the reversible reaction of metal hydrides.

(ロ)従来の技術 ある種の金属あるいは合金は水素と可逆的に反応するが
、この際に生じる反応熱を蓄熱等に利用しようという試
みが現在盤んになされ、金属水素化物利用装置の各種提
案が行なわれている。
(b) Prior art Certain metals or alloys react reversibly with hydrogen, and attempts to use the heat of reaction generated at this time for heat storage, etc. are currently on hold, and various metal hydride utilization devices have been developed. Suggestions are being made.

しかし、従来提案されているものは、例えば特開昭58
−194701号公報や特開昭58−47989号公報
などに見られるように、全て水素ガス出入導管を中心に
配置し、熱交換器を外部に配置する構成であった。この
ため、水素吸収を伴う発熱反応時に、何かの原因でショ
ックが加わり爆発的に反応を行なった場合、外側に向う
大きな熱応力により熱交換器が損傷を受けるおそれがあ
った。
However, what has been proposed so far is, for example,
As seen in Japanese Patent Laid-open No. 194701 and Japanese Unexamined Patent Publication No. 58-47989, all of them had a structure in which a hydrogen gas inlet/output conduit was arranged at the center and a heat exchanger was arranged outside. Therefore, if a shock is applied for some reason during an exothermic reaction accompanied by hydrogen absorption, causing an explosive reaction, there is a risk that the heat exchanger will be damaged by the large outward thermal stress.

そこで、このような不具合を除くため、出願人は先に、
中心部に熱媒を流す熱媒管を配置し、この熱媒管から軸
方向に沿って放射状に広がる平板状の伝熱フィンを設け
て熱交換器を構成する金属水素化物容器を提案した(特
願昭60−33698号明細書参照)。
Therefore, in order to eliminate such problems, the applicant first
We proposed a metal hydride container in which a heat exchanger is constructed by arranging a heat transfer pipe in the center to flow a heat medium, and providing flat heat transfer fins that radiate out from the heat transfer pipe in the axial direction ( (See the specification of Japanese Patent Application No. 33698/1983).

これによれば1発熱反応が急激に起っても、そのとき発
生する熱応力は外側に向って発散されることから、熱交
換器の破壊が未然に防止される。
According to this, even if an exothermic reaction suddenly occurs, the thermal stress generated at that time is dissipated outward, thereby preventing damage to the heat exchanger.

また、その熱交換器は熱媒管に軸方向に沿った縦長平板
状の伝熱フィンを有する円筒体構造のため、押し出し一
体成型により、伝熱抵抗の原因となるつぎ目無しで、簡
単に製造できるという利点も得られる。
In addition, the heat exchanger has a cylindrical structure with longitudinal flat heat transfer fins along the axial direction of the heat medium tube, so it can be easily manufactured by extrusion molding without seams that can cause heat transfer resistance. It also has the advantage of being manufacturable.

(ハ)発明が解決しようとする問題点 しかしながら、上記熱交換器においては、伝熱面積を増
すために半径方向にその平板状の伝熱フィンの寸法を延
ばすと、熱交換器の中心付近と外周付近とで伝熱面から
の距離に大きな差が生じ、伝熱面からの距離の大きい外
周付近の金属水素化物充填層では、中心付近の金属水素
化物充填層に比べ熱媒との熱交換速度が低下する。この
結果、反応が不均一となって、全体としての熱交換能力
が低下する。加えて形状が大きくなり、コンパクトな熱
交換器を構成することができない。一方、熱交換器の外
周付近の金属水素化物層とフィンとの間の距離を小さく
保ったままで、しかも形状をコンパクトにしつつ、伝熱
面積を増すため、フィン枚数を多くすると、押し出し等
による一体成型加工が回連になるという問題点があった
(c) Problems to be Solved by the Invention However, in the above heat exchanger, if the dimensions of the flat heat transfer fins are extended in the radial direction in order to increase the heat transfer area, There is a large difference in the distance from the heat transfer surface near the outer periphery, and in the metal hydride packed bed near the outer periphery where the distance from the heat transfer surface is large, heat exchange with the heating medium is faster than in the metal hydride packed bed near the center. Speed decreases. As a result, the reaction becomes non-uniform and the overall heat exchange capacity decreases. In addition, the size becomes large, making it impossible to construct a compact heat exchanger. On the other hand, in order to increase the heat transfer area while keeping the distance between the metal hydride layer near the outer periphery of the heat exchanger small and the fins compact, it is possible to increase the number of fins by extrusion, etc. There was a problem that the molding process was repeated.

(ニ)問題点を解決するための手段 本発明は、一体成型加工により容易に製造ができ、コン
パクトにして熱交換能力の大きい金属水素化物用熱交換
器を提供することを目的として。
(d) Means for Solving the Problems The object of the present invention is to provide a metal hydride heat exchanger that can be easily manufactured by integral molding, is compact, and has a large heat exchange capacity.

内部断面形状が波形状の熱媒管の外部表面に、金属水素
化物との熱伝導に必要な、軸方向に沿って縦長波板状の
伝熱フィンを設け、常に軸方向位置に対して同一形状に
なるように熱交換器を構成したものである。
The external surface of the heat medium tube, which has a corrugated internal cross-sectional shape, is provided with longitudinally corrugated plate-shaped heat transfer fins along the axial direction, which are necessary for heat conduction with the metal hydride, and are always at the same axial position. The heat exchanger is configured to have the same shape.

(ホ)作用 熱媒管を金属水素化物の中心部に配置することにより、
熱媒管に加わる発熱反応時の熱応力が小さくなり、熱交
換器の破壊が防止される。その熱媒管の内部断面形状を
波形とすることにより、熱媒との熱交換速度が改善され
る。また、その熱媒管の外部表面に波板状の伝熱フィン
を設けることにより、伝熱面積を増大させることができ
、熱交換器外周付近の金属水素化物充填層と伝熱フィン
との距離を小さく保つことができる。更に、熱交換器全
体は軸方向の位置に対して同一形状を有するため、押し
出し一体成型にて容易に製造できる。
(e) By placing the working heat transfer pipe in the center of the metal hydride,
Thermal stress applied to the heat medium tube during the exothermic reaction is reduced, and damage to the heat exchanger is prevented. By making the internal cross-sectional shape of the heat medium pipe corrugated, the rate of heat exchange with the heat medium is improved. In addition, by providing corrugated heat transfer fins on the external surface of the heat transfer pipe, the heat transfer area can be increased, and the distance between the metal hydride packed layer near the outer periphery of the heat exchanger and the heat transfer fins can be increased. can be kept small. Furthermore, since the entire heat exchanger has the same shape with respect to its axial position, it can be easily manufactured by extrusion molding.

(へ)実施例 第1図は本発明の一実施例に係る金属水素化物用熱交換
器を示したもので、(a)はその斜視図、(b)はその
半径方向断面図である。本実施例の熱交換器は、熱媒の
流路となる熱媒管lの内壁面が軸方向に平行な波形状に
成形されると共に、その熱媒管1の外壁面より半径方向
に延びる8枚の伝熱フィン2も軸方向に平行な波板状に
形成されて成る。
(F) Embodiment FIG. 1 shows a metal hydride heat exchanger according to an embodiment of the present invention, in which (a) is a perspective view thereof, and (b) is a radial cross-sectional view thereof. In the heat exchanger of this embodiment, the inner wall surface of the heat medium pipe 1, which serves as a flow path for the heat medium, is formed into a corrugated shape parallel to the axial direction, and extends in the radial direction from the outer wall surface of the heat medium pipe 1. The eight heat transfer fins 2 are also formed in the shape of corrugated plates parallel to the axial direction.

この熱交換器の熱媒管1内に熱媒3を流すと共に、伝熱
フィン2間の空隙に金属水素化物4を充填することによ
り、熱媒3と金属水素化物4との間で熱交換が行なわれ
る。通常、金属水素化物4の周囲は水素は通すが金属水
素化物粉体は通し得ないフィルタ5により被われて耐圧
容器に収納され、吸発熱反応によって吸放出される水素
はそのフィルタ5を通して外部に出し入れされることに
なる。
By flowing the heat medium 3 into the heat medium pipe 1 of this heat exchanger and filling the gap between the heat transfer fins 2 with the metal hydride 4, heat is exchanged between the heat medium 3 and the metal hydride 4. will be carried out. Usually, the metal hydride 4 is surrounded by a filter 5 that allows hydrogen to pass through but does not allow the metal hydride powder to pass through and is housed in a pressure-resistant container, and the hydrogen absorbed and released by an endothermic reaction is passed through the filter 5 to the outside. It will be taken in and taken out.

このように、中心部に熱媒管1を配置して熱交換器を構
成することにより、熱媒管1の外周に配置される金属水
素化物4の発熱反応時に発生する熱応力は外側に向って
発散されるため、熱媒管1に加わる熱応力は小さくなる
。しかもこのとき、熱媒管1の内部断面形状は波形状に
形成したので。
In this way, by configuring the heat exchanger by arranging the heat medium pipe 1 in the center, the thermal stress generated during the exothermic reaction of the metal hydride 4 arranged around the outer periphery of the heat medium pipe 1 is directed outward. Therefore, the thermal stress applied to the heat transfer pipe 1 becomes smaller. Moreover, at this time, the internal cross-sectional shape of the heat medium tube 1 was formed into a wave shape.

熱媒管1に加わる熱応力はその波形内壁に吸収され、熱
媒管1は熱応力により破壊されるおそれがなくなる。ま
た、熱媒3との熱交換も効率良く行なわれるようになる
Thermal stress applied to the heat medium tube 1 is absorbed by its corrugated inner wall, and there is no possibility that the heat medium tube 1 will be destroyed by the thermal stress. Moreover, heat exchange with the heat medium 3 can also be performed efficiently.

一方、熱媒管1の外部には波板状の伝熱フィン2を設け
るようにしたので、熱交換器の外径寸法を増すことなし
に、伝熱面積を増大させることができ、熱交換器外周付
近の金属水素化物充填層と伝熱フィンとの距離を短かく
することができる。この結果、金属水素化物4との熱交
換能力を増加させることができ、従来と同じ熱交換能力
の場合は。
On the other hand, since corrugated heat transfer fins 2 are provided on the outside of the heat medium pipe 1, the heat transfer area can be increased without increasing the outer diameter of the heat exchanger. The distance between the metal hydride packed layer near the outer periphery of the vessel and the heat transfer fins can be shortened. As a result, the heat exchange capacity with the metal hydride 4 can be increased, and in the case of the same heat exchange capacity as before.

外径寸法を短かくすることができ、コンパクト化が可能
となる。
The outer diameter dimension can be shortened, making it possible to make it more compact.

更に、熱交換器全体を軸方向の位置に対して同一形状と
したので、押し出し一体成型により容易に製造できるよ
うになる。
Furthermore, since the entire heat exchanger has the same shape with respect to its axial position, it can be easily manufactured by extrusion molding.

尚、熱交換器の半径方向断面図は第1図(b)に示した
形状に限るものではなく、例えば、第2図に示す凹凸波
形状にするなど、その形状は軸方向に対して一定に形成
されていれば任意の形状を採用することができる。
Note that the radial cross-sectional view of the heat exchanger is not limited to the shape shown in Figure 1(b), but may have a shape that is constant in the axial direction, such as the uneven wave shape shown in Figure 2. Any shape can be adopted as long as it is formed.

また、伝熱フィン2の枚数も8枚に限ることなく任意の
枚数を採用することができるが、あまり枚数を増すこと
は、フィン自体の顕熱を増すことになり、効率が低下し
、また一体成型加工も困罵となるので好ましくない。
Further, the number of heat transfer fins 2 is not limited to eight, and any number can be adopted, but increasing the number too much will increase the sensible heat of the fins themselves, lowering the efficiency, and Integral molding is also undesirable because it is difficult to process.

第3図は本発明の他の実施例を示したもので、第1図の
金属水素化物用熱交換器を用いて、金属水素化物反応容
器を構成した場合の例である0図中、(a)はその゛金
属水素化物反応容器の外観図、(b)は半径方向断面図
、(c)は軸方向断面図であり、第1図と同一符号は同
一部分を示す。
FIG. 3 shows another embodiment of the present invention. In FIG. 0, ( (a) is an external view of the metal hydride reaction vessel, (b) is a radial cross-sectional view, and (c) is an axial cross-sectional view, and the same reference numerals as in FIG. 1 indicate the same parts.

この実施例の金属水素化物反応容器は、第1図に示した
ように、フィルタ円筒5に熱媒管1.伝熱フィン2から
成る熱交換器を圧接収納し、伝熱フィン2間に金属水素
化物4を充填して成るものの周囲をカオウール(商品名
)等の断熱材6で被い、耐圧容器7に収納して成るもの
である。その耐圧容器7は、−節部に水素フィルタ8付
き水素導入排気ロアa、他端部にフランジ7bを備え、
内部を密閉して成る。
As shown in FIG. 1, the metal hydride reaction vessel of this embodiment has a filter cylinder 5 and a heat medium pipe 1. A heat exchanger consisting of heat transfer fins 2 is housed under pressure, a metal hydride 4 is filled between the heat transfer fins 2, and the surrounding area is covered with a heat insulating material 6 such as Kao Wool (trade name), and the heat exchanger is placed in a pressure vessel 7. It is made up of storage. The pressure vessel 7 is equipped with a hydrogen introduction exhaust lower a with a hydrogen filter 8 at the negative joint, and a flange 7b at the other end.
The inside is sealed.

以上の構成で1反応容器内部の金属水素化物4は、フィ
ルタ5並びに水素フィルタ8および断熱材6を介して、
図示していない水素貯蔵器と連結された水素導入排気ロ
アaより導入排気される水素と反応することができる。
With the above configuration, the metal hydride 4 inside one reaction vessel passes through the filter 5, the hydrogen filter 8, and the heat insulating material 6,
It can react with hydrogen introduced and exhausted from the hydrogen introduction/exhaust lower a connected to a hydrogen storage device (not shown).

蓄熱装置などにおける放熱過程においては、金属水素化
物4は水素導入排気ロアaより導入される水素と水素化
反応を起こし。
During the heat dissipation process in a heat storage device or the like, the metal hydride 4 undergoes a hydrogenation reaction with hydrogen introduced from the hydrogen introduction exhaust lower a.

このとき生じる反応熱は熱媒管1の内部を流れる熱媒に
迅速に伝達され、外部に効率よく取り出され、暖房、給
湯などの熱負荷へ供給される。また。
The reaction heat generated at this time is quickly transferred to the heat medium flowing inside the heat medium pipe 1, efficiently taken out to the outside, and supplied to heat loads such as space heating and hot water supply. Also.

蓄熱過程においては、ソーラコレクタあるいは工場排熱
等の外部熱源により加熱された熱媒より金属水素化物反
応容器に熱が運ばれ1本発明による金属水素化物用熱交
換器を介して金属水素化物4に迅速に伝達され、金属水
素化物4を脱水素化させる。このとき生じた水素ガスは
、水素導入排気ロアaより排気される。
In the heat storage process, heat is transferred to the metal hydride reaction vessel from a heat medium heated by an external heat source such as a solar collector or factory waste heat, and the metal hydride is transferred to the metal hydride reaction vessel through the metal hydride heat exchanger according to the present invention. is rapidly transferred to dehydrogenate the metal hydride 4. The hydrogen gas generated at this time is exhausted from the hydrogen introduction exhaust lower a.

第4図は、本発明の更に他の実施例に係る金属水素化物
反応容器の構成図を示したもので、(a)はその軸方向
断面図、(b)はその半径方向断面図である。図中、第
3図と同一符号は同一または相当部分を示し、第3図と
異なる主な点は、フィルタ5.断熱材6の代りに断熱材
兼用のフィルタ円筒9を設けた点、熱媒管1および伝熱
フ、「ン2の半径方向断面を凹凸状の波形に形成した点
、熱媒管1の肉厚部分に中空部10を設けている点であ
る。
FIG. 4 shows a configuration diagram of a metal hydride reaction vessel according to still another embodiment of the present invention, in which (a) is an axial cross-sectional view, and (b) is a radial cross-sectional view. . In the figure, the same reference numerals as in FIG. 3 indicate the same or corresponding parts, and the main differences from FIG. 3 are filter 5. The fact that a filter cylinder 9 that also serves as a heat insulating material is provided instead of the heat insulating material 6, the radial cross section of the heat medium pipe 1 and the heat transfer tube 2 are formed into an uneven wave shape, and the thickness of the heat medium pipe 1 is The point is that a hollow portion 10 is provided in the thick portion.

反応容器をこのように構成した場合は、上記第3図に示
した実施例同様の作用効果が得られる他。
When the reaction vessel is constructed in this manner, the same effects as in the embodiment shown in FIG. 3 can be obtained.

発熱反応時に内側に向う熱応力は熱媒管1の肉厚部に形
成された中空部10によっても吸収され、更に熱応力の
影響を緩和することができる。
Thermal stress directed inward during the exothermic reaction is also absorbed by the hollow portion 10 formed in the thick portion of the heat transfer pipe 1, and the influence of the thermal stress can be further alleviated.

(ト)発明の効果 以上のように本発明によれば、コンパクトでしかも熱交
換能力の優れた金属水素化物反応容器が得られる。これ
により、金属水素化物の可逆的な反応熱を利用する蓄熱
装置あるいはヒートポンプなどの熱効率を高め、太陽熱
あるいは工場排熱等の有効利用を促進すると共に、これ
らの装置の小型化に寄与することができるようになる。
(g) Effects of the Invention As described above, according to the present invention, a metal hydride reaction vessel which is compact and has excellent heat exchange ability can be obtained. This will increase the thermal efficiency of heat storage devices or heat pumps that utilize the reversible reaction heat of metal hydrides, promote the effective use of solar heat or factory exhaust heat, and contribute to the miniaturization of these devices. become able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る金属水素化物用熱交換
器の構成図で、(a)はその斜視図、(b)はその半径
方向断面図、第2図は本発明の第2実施例に係る金属水
素化物用熱交換器の半径方向の断面図、第3図は本発明
の第3実施例に係る金属水素化物反応容器の構成図で、
(a)はその外観図、(b)はその半径方向断面図、(
c)はその軸方向断面図。 第4図は本発明の第4実施例に係る金属水素化物反応容
器の構成図で、(a)はその軸方向断面図、(b)はそ
の半径方向断面図である。 1・・・熱媒管、2・・・伝熱フィン、3・・熱媒、4
・・・金属水素化物。 代理人 弁理士  紋 1) 誠  。 第1図 (b) 第2図 第3図
FIG. 1 is a configuration diagram of a metal hydride heat exchanger according to an embodiment of the present invention, (a) is a perspective view thereof, (b) is a radial cross-sectional view thereof, and FIG. FIG. 3 is a radial cross-sectional view of a metal hydride heat exchanger according to a second embodiment, and FIG. 3 is a configuration diagram of a metal hydride reaction vessel according to a third embodiment of the present invention.
(a) is its external view, (b) is its radial cross-sectional view, (
c) is an axial sectional view thereof. FIG. 4 is a block diagram of a metal hydride reaction vessel according to a fourth embodiment of the present invention, in which (a) is an axial sectional view, and (b) is a radial sectional view. 1... Heat medium pipe, 2... Heat transfer fin, 3... Heat medium, 4
...Metal hydride. Agent Patent Attorney Crest 1) Makoto. Figure 1 (b) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 中心軸に熱媒を流す熱媒管を配置し、その熱媒管の外部
表面の軸方向に沿って金属水素化物を保持する縦長の伝
熱フィンを複数枚設けて全体を円筒形状に形成すると共
に、その円筒形状全体の半径方向断面形状を前記熱媒管
の内壁は波形状、前記伝熱フィンは波板状で、しかも軸
方向に沿って常に同一形状に形成して成ることを特徴と
する金属水素化物用熱交換器。
A heat transfer pipe through which a heat transfer medium flows is placed along the central axis, and a plurality of vertically elongated heat transfer fins that hold metal hydride are provided along the axial direction of the external surface of the heat transfer pipe to form a cylindrical shape as a whole. In addition, the radial cross-sectional shape of the entire cylindrical shape is characterized in that the inner wall of the heat medium tube is corrugated, the heat transfer fins are corrugated, and the shape is always the same along the axial direction. Heat exchanger for metal hydrides.
JP60257658A 1985-11-19 1985-11-19 Heat exchanger for metal hydride Pending JPS62119393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257658A JPS62119393A (en) 1985-11-19 1985-11-19 Heat exchanger for metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257658A JPS62119393A (en) 1985-11-19 1985-11-19 Heat exchanger for metal hydride

Publications (1)

Publication Number Publication Date
JPS62119393A true JPS62119393A (en) 1987-05-30

Family

ID=17309307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257658A Pending JPS62119393A (en) 1985-11-19 1985-11-19 Heat exchanger for metal hydride

Country Status (1)

Country Link
JP (1) JPS62119393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180650A1 (en) * 2000-08-18 2002-02-20 Vaillant GmbH Adsorber /desorber heat exchanger
JP2006234292A (en) * 2005-02-25 2006-09-07 Fuji Electric Systems Co Ltd Induction heating type dry distillation furnace
US7517396B2 (en) * 2006-02-06 2009-04-14 Gm Global Technology Operations, Inc. Apparatus for optimal adsorption and desorption of gases utilizing highly porous gas storage materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188697A (en) * 1984-03-05 1985-09-26 Mitsubishi Heavy Ind Ltd Heat radiating vessel for alloy absorbing and storing hydrogen
JPS60205191A (en) * 1984-03-30 1985-10-16 Sanyo Electric Co Ltd Vessel for metallic hydrogenated substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188697A (en) * 1984-03-05 1985-09-26 Mitsubishi Heavy Ind Ltd Heat radiating vessel for alloy absorbing and storing hydrogen
JPS60205191A (en) * 1984-03-30 1985-10-16 Sanyo Electric Co Ltd Vessel for metallic hydrogenated substance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180650A1 (en) * 2000-08-18 2002-02-20 Vaillant GmbH Adsorber /desorber heat exchanger
JP2006234292A (en) * 2005-02-25 2006-09-07 Fuji Electric Systems Co Ltd Induction heating type dry distillation furnace
JP4658638B2 (en) * 2005-02-25 2011-03-23 メタウォーター株式会社 Induction heating type distillation furnace
US7517396B2 (en) * 2006-02-06 2009-04-14 Gm Global Technology Operations, Inc. Apparatus for optimal adsorption and desorption of gases utilizing highly porous gas storage materials

Similar Documents

Publication Publication Date Title
US5000252A (en) Thermal energy storage system
US8778063B2 (en) Coiled and microchannel heat exchangers for metal hydride storage systems
CN111578130B (en) Heat conduction fin and solid hydrogen storage equipment with same
US5472047A (en) Mixed finned tube and bare tube heat exchanger tube bundle
JPH0527563B2 (en)
JPS62119393A (en) Heat exchanger for metal hydride
CN106500536A (en) Heat-pipe radiator
JPS6176887A (en) Vessel for accommodating metallic hydrides
RU2204773C2 (en) Tube-in-tube heat exchanger
JPH0412377Y2 (en)
JPS6159192A (en) Heat accumulator
JPS60232496A (en) Heat exchanger
CN113436757B (en) Modular solid-state reactor core with temperature equalization structure
JPH047151Y2 (en)
CN213455071U (en) Phase change energy storage device based on uniform temperature heat pipe
CN217876070U (en) Pipe shell type heat storage and supply device
JPS63225799A (en) Manufacture of reactor for hydrogen absorption alloy
JPH09303983A (en) Stereo-type heat pipe radiator
JPH0224763B2 (en)
JPH0253362B2 (en)
JPS60205191A (en) Vessel for metallic hydrogenated substance
JPS62278101A (en) Reactor for hydrogen-occlusion alloy
JPS61202091A (en) Utilizing device for metallic hydrogen compound
JPS6249100A (en) Metal hydride container
JPS6135479B2 (en)