Nothing Special   »   [go: up one dir, main page]

JPS6210974A - Method for driving solid-state image pickup device - Google Patents

Method for driving solid-state image pickup device

Info

Publication number
JPS6210974A
JPS6210974A JP60150361A JP15036185A JPS6210974A JP S6210974 A JPS6210974 A JP S6210974A JP 60150361 A JP60150361 A JP 60150361A JP 15036185 A JP15036185 A JP 15036185A JP S6210974 A JPS6210974 A JP S6210974A
Authority
JP
Japan
Prior art keywords
charge
gate electrode
transfer
gate
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60150361A
Other languages
Japanese (ja)
Inventor
Masao Yamawaki
正雄 山脇
Satoshi Hirose
広瀬 諭
Shigeru Takahara
茂 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60150361A priority Critical patent/JPS6210974A/en
Publication of JPS6210974A publication Critical patent/JPS6210974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the efficiency of transfer by driving a gate electrode of the side that transfers charge plural times while keeping the gate electrode of the side to which charge is transferred at high level. CONSTITUTION:One or more of charge coupled element gate electrodes 3, 4, 7, 8 are kept at low level during the period of transfer in a vertical direction, and one or more of charge coupled element gate electrodes 3, 4, 7, 8 are made to intermediate level. A moment in which the voltage of high level is applied to the gate electrodes at both sides which these electrodes are interposed is provided, and the gate electrode of the side that transfers charge is driven plural times while keeping the gate electrode of the side of which the charge is transferred at high level. Thus, the efficiency of transfer is improved even when a surface channel charge coupled element is used as the charge coupled element of vertical direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、垂直方向の電荷転送量を減らすこと・なく転
送効率を上げることのできる固体撮像装置の駆動方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for driving a solid-state imaging device that can increase transfer efficiency without reducing the amount of charge transferred in the vertical direction.

〔従来の技術〕[Conventional technology]

最近の固体撮像装置は高解像度化がすすみ、益々その集
積密度は増大している。しかしながら、高解像度化がず
ずむと、1画素当たりの光電変換素子面積が減少し感度
が低下する。これを防止するためには、信号続出に電荷
結合素子(Charge Coupled Devic
e+以下rccDJという)を用いた固体撮像装置(以
下rccrt型固体撮像装置」という)が有利である。
Recently, the resolution of solid-state imaging devices has been increasing, and their integration density has been increasing. However, as resolution increases, the area of a photoelectric conversion element per pixel decreases, resulting in a decrease in sensitivity. In order to prevent this, a charge coupled device (Charge Coupled Device) is used for signal succession.
A solid-state imaging device using an e+ (hereinafter referred to as rccDJ) (hereinafter referred to as an rccrt-type solid-state imaging device) is advantageous.

この場合、1画素内に光電変換素子とCODを配置する
必要がある。第5図に一般的な固体撮像装置のレイアウ
トを示す。従来の固体撮像装置は、−例として、フォト
ダイオード等の光電変換素子1,6、CCDチャネル2
、CCDの第1.第2.第3.第4のゲート電極3.4
,7,8、トランスファーゲート電極5.9を有してい
る。
In this case, it is necessary to arrange a photoelectric conversion element and a COD within one pixel. FIG. 5 shows the layout of a general solid-state imaging device. A conventional solid-state imaging device includes, for example, photoelectric conversion elements 1 and 6 such as photodiodes, and a CCD channel 2.
, the first part of the CCD. Second. Third. Fourth gate electrode 3.4
, 7, 8, and transfer gate electrodes 5.9.

次にこのように構成された装置の動作について説明する
。光電変換素子1,6に入射した光により発生した電荷
を一定時間蓄積した後、トランスファーゲート電極5.
9を通してCODのゲーI・電極3,4,7.8に供給
することによりCCI)(図示せず)に読み出す。した
がって従来のCCD型固体撮像装置では、光電変換素子
1.6の蓄積電荷量を転送できるだけのCCDの電荷転
送容量が必要となり、1画素中に占めるCODの面積が
大きくなる。通常、垂直方向のCCDはへアリットチャ
ネルCCD (Ruried  CCD、以下[BCC
DJという)を用いているが、BCCDの場合一般に電
荷転送量が小さく、このため、高画素化が進むと、画素
に占めるBCODの面積は30〜50%にも達し、光電
変換素子1.6の面積を大きくできなくなる。このため
、現状のCCD型固体撮像装置では垂直用BCCDの転
送電荷量は小さく感度は低い。
Next, the operation of the apparatus configured as described above will be explained. After accumulating charges generated by light incident on the photoelectric conversion elements 1 and 6 for a certain period of time, the transfer gate electrodes 5.
9 to the gate I electrodes 3, 4, 7.8 of the COD and read out to CCI) (not shown). Therefore, in the conventional CCD type solid-state imaging device, the charge transfer capacity of the CCD is required to transfer the amount of charge accumulated in the photoelectric conversion element 1.6, and the area occupied by the COD in one pixel increases. Usually, a vertical CCD is called a haired channel CCD (Ruried CCD, hereinafter [BCC
However, in the case of BCCD, the amount of charge transferred is generally small, and for this reason, as the number of pixels increases, the area of BCOD occupied by the pixel will reach 30 to 50%, and the photoelectric conversion element 1.6 It becomes impossible to increase the area of For this reason, in the current CCD type solid-state imaging device, the amount of transferred charge of the vertical BCCD is small and the sensitivity is low.

〔発明が解決しようとする問題点〕 上記欠点を克服するため、BCCr)の代わりに表面チ
ャネルCCU (Surface CCD、以下「5C
CDJという)を使用する方法がある。しかしこの場合
、転送電荷量は増大しても転送効率は悪くなり、垂直方
向の解像度が悪くなるという問題があった。
[Problems to be Solved by the Invention] In order to overcome the above drawbacks, a surface channel CCU (Surface CCD, hereinafter referred to as "5C") is used instead of a BCCr).
There is a method using a CDJ). However, in this case, there was a problem in that even though the amount of transferred charge increased, the transfer efficiency deteriorated and the resolution in the vertical direction deteriorated.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、垂直CODを5CODあるいは
5CODに近い特性をもつCCDで構成した固体撮像装
置における転送効率の高い駆動方法を提供することにあ
る。
The present invention has been made in view of these points, and its purpose is to provide a driving method with high transfer efficiency in a solid-state imaging device in which the vertical COD is configured with 5 COD or a CCD with characteristics close to 5 COD. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

このような問題点を解決するために本発明は、垂直方向
の転送期間に、少なくとも1つの電荷結合素子ゲート電
極は低レベルに固定し、少なくとも1つの電荷結合素子
ゲート電極は中間レベルとし、このゲート電極を挾む両
側のゲート電極に高レベルの電圧が印加される瞬間を有
し、電荷が転送される側のゲート電極を高レベルに保っ
たまま電荷を転送する側のゲート電極を複数同駆動する
ようにしたものである。
In order to solve these problems, the present invention fixes at least one charge-coupled device gate electrode to a low level, sets at least one charge-coupled device gate electrode to an intermediate level, and fixes this charge-coupled device gate electrode to a low level during the vertical transfer period. There is a moment when a high level voltage is applied to the gate electrodes on both sides of the gate electrode, and multiple gate electrodes on the side to which charge is transferred are simultaneously applied while the gate electrode on the side to which charge is transferred is kept at a high level. It is designed to be driven.

〔作用〕[Effect]

本発明においては、5CCDを垂直方向のCCDとして
使用しても転送効率は改善される。   ゛〔実施例〕 本発明に係わる固体撮像装置の駆動方法の一実施例を第
1図、第2図を用いて説明する。固体撮像装置としては
第5図に示す構成のものを使用するが、垂直用CODと
しては5CODを使用する。
In the present invention, the transfer efficiency is improved even when 5 CCDs are used as vertical CCDs. [Embodiment] An embodiment of a method for driving a solid-state imaging device according to the present invention will be described with reference to FIGS. 1 and 2. A solid-state imaging device having the configuration shown in FIG. 5 is used, and a 5COD is used as a vertical COD.

第1図ial 〜(dlは第5図の第1.第2.第3.
第4のゲート電極3,4,7.8に印加されるクロック
信号φVI+  φVZ+  φV3+  φV4を示
し、第2図はクロック信号φ9、φv、、φV3+  
φV4を印加した時の5CODのポテンシャルを示すも
のである。
Figure 1 ial ~ (dl is 1st, 2nd, 3rd, .
The clock signals φVI+ φVZ+ φV3+ φV4 applied to the fourth gate electrodes 3, 4, 7.8 are shown, and FIG. 2 shows the clock signals φ9, φv, φV3+
It shows the potential of 5COD when φV4 is applied.

第1図において、10は低し゛ベルを示し、11は高レ
ベル、12は中間レベルを示す。
In FIG. 1, 10 indicates a low level, 11 indicates a high level, and 12 indicates an intermediate level.

第2図(a)に示すクロック信号φVl+  φ9□、
φv3、φV4は、成るステージ(以下「nステージ」
という)の各ゲート電極3,4,7.8に印加される信
号を示し、クロック信号PφV、は(n−1)ステージ
の第4の電極に印加される信号を示し、クロック信号R
φv1は(n+1)ステージの第1の電極に印加される
信号を示す。第2図(b)〜+11は第1図の各タイミ
ングtl、t2.t3.t4゜t5.t6.t7.t8
における各クロック信号によるゲート電極下のポテンシ
ャルを示すものである。通常、垂直方向への電荷転送は
水平ブランキング期間に行われるため、ここではこの期
間における転送を考えた。またここでは光電変換素子1
.6から5CCDへの電荷転送方法については考えない
Clock signal φVl+φ9□ shown in FIG. 2(a),
φv3 and φV4 are stages (hereinafter referred to as "n stages")
The clock signal PφV indicates the signal applied to each gate electrode 3, 4, 7.8 of the (n-1) stage, and the clock signal R
φv1 indicates a signal applied to the first electrode of the (n+1) stage. FIG. 2(b) to +11 are each timing tl, t2. t3. t4゜t5. t6. t7. t8
It shows the potential under the gate electrode due to each clock signal in . Since charge transfer in the vertical direction is normally performed during the horizontal blanking period, transfer during this period was considered here. Also, here, photoelectric conversion element 1
.. The charge transfer method from 6 to 5 CCD is not considered.

第2図(blに示すtlのタイミングでゲート電極3.
4.7にクロック信号φVI+  φV□3 φV3の
電圧が印加される。ただし、各クロック信号φVI+φ
9□、φv3の電圧は、■φyl−Vφ9.〉■φV□
の関係にある。次に第2図(C)に示すタイミングt2
で電荷(図中斜線で表示)はクロック信号φ9□。
At the timing of tl shown in FIG. 2 (bl), the gate electrode 3.
4.7, the voltage of the clock signal φVI+φV□3 φV3 is applied. However, each clock signal φVI+φ
9□, the voltage of φv3 is ■φyl-Vφ9. 〉■φV□
There is a relationship between Next, timing t2 shown in FIG. 2(C)
The charge (indicated by diagonal lines in the figure) is the clock signal φ9□.

φV3が供給されているゲート電極4,7下に流れ、第
2図+dlに示すタイミングt3ではほとんどの電荷が
ゲート電極7下に転送される。次に第2図(e)〜(g
lに示すt4〜t6のタイミングで再びゲート電極3.
4にクロック信号φVI+  φV2を印加した時、1
回目の転送で取り残された電荷Qは再びゲ−ドア下に集
められる。
The charge flows under the gate electrodes 4 and 7 to which φV3 is supplied, and at timing t3 shown at +dl in FIG. 2, most of the charge is transferred under the gate electrode 7. Next, Fig. 2(e) to (g)
At the timing t4 to t6 shown in FIG. 1, the gate electrode 3.
When clock signal φVI+φV2 is applied to 4, 1
The charges Q left behind in the second transfer are collected under the gate again.

ゲート電極7の電荷Qを次のステージ((n→1)ステ
ージ)の第1のゲート電極へ転送するには、以上述べた
方法と同様の方法による。その結果が第2図0)に示す
タイミングt8であり、タイミングt1〜t8の間に電
荷は1ステージ転送される。第2図fh)は(b)に対
応する状態を示す。
To transfer the charge Q of the gate electrode 7 to the first gate electrode of the next stage ((n→1) stage), a method similar to the method described above is used. The result is timing t8 shown in FIG. 2 (0), and one stage of charge is transferred between timings t1 and t8. FIG. 2 fh) shows a state corresponding to (b).

なお、上記実施例では、取り残し電荷Qを集めるための
駆動を1回だけ行っているが、複数回行ってもよい。ま
た、第1図では説明を簡単にするためにクロック信号レ
ベルを2値のみにしたが、たとえば、クロック信号レベ
ルをゲート電極7からゲート電極3への電荷の逆流が起
こらないように設定すれば、いかなるクロック信号レベ
ルを用いても問題はない。さらに第2の実施例として第
3図fal〜(dlに示すようなりロック信号φVI+
  φ9□、φV3+  φv4のタイミングでも同様
な効果を奏する。
Note that in the above embodiment, the drive for collecting the remaining charge Q is performed only once, but it may be performed multiple times. In addition, in FIG. 1, the clock signal level is set to only two values to simplify the explanation, but for example, if the clock signal level is set so that the reverse flow of charge from the gate electrode 7 to the gate electrode 3 does not occur, , it doesn't matter what clock signal level you use. Furthermore, as a second embodiment, a lock signal φVI+ is used as shown in FIG.
Similar effects can be obtained at the timings of φ9□ and φV3+φv4.

また、第1図、第3図ではクロック信号φV□。Further, in FIGS. 1 and 3, the clock signal φV□.

φv4を1ステージの転送中に複数回動くように設定し
ているが、第3の実施例として第4図1bl、 (di
に示すごとく、1回のみの転送でも同様の効果を奏する
。なお、第4図(al、 (01に示すクロック信号φ
9..φv3は第3図(al、 (C1に示すクロック
信号と同一である。
φv4 is set to move multiple times during one stage of transfer, but as a third embodiment, Fig. 4 1bl, (di
As shown in the figure, the same effect can be achieved even if the transfer is performed only once. Note that the clock signal φ shown in FIG. 4 (al, (01)
9. .. φv3 is the same as the clock signal shown in FIG. 3 (al, (C1).

さらに本実施例では1画素当たり2つの5CODゲート
電極構造をもつ例について説明したが、2つ以上のゲー
ト電極があれば同し動作をさせることができる。
Further, in this embodiment, an example having two 5 COD gate electrode structures per pixel has been described, but the same operation can be performed if there are two or more gate electrodes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、垂直方向の転送期間に、
少なくとも1つの電荷結合素子ゲート電極を低いレベル
に固定し、少なくとも1つの電荷結合素子ゲート電極を
中間レベルとし、このゲート電極を挟む両側のゲート電
極に高レベルの電圧が印加される瞬間を有し、電荷が転
送される側のゲート電極を高レベルに保ったまま電荷を
転送する側のゲート電極を複数回駆動することにより、
表面チャネル電荷結合素子を垂直方向の電荷結合素子と
して使っても転送効率は改善され、さらに表面チャネル
電荷結合素子は電荷転送容量が大きいため、より小さな
幅の電荷結合素子ができ、光電変換素子の面積を広げ高
感度化を図ることができる効果がある。
As explained above, in the present invention, during the vertical transfer period,
At least one charge-coupled device gate electrode is fixed at a low level, at least one charge-coupled device gate electrode is set at an intermediate level, and there is a moment when a high-level voltage is applied to gate electrodes on both sides of the gate electrode. By driving the gate electrode on the charge transfer side multiple times while keeping the charge transfer side gate electrode at a high level,
Using surface channel charge-coupled devices as vertical charge-coupled devices also improves transfer efficiency, and the large charge-transfer capacity of surface-channel charge-coupled devices allows for smaller width charge-coupled devices, making it easier for photoelectric conversion devices. This has the effect of increasing the area and increasing sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる固体撮像装置の駆動方法の一実
施例に使用されるクロック信号を示す波形図、第2図は
ゲート電極下のポテンシャルを示す状態図、第3図は第
2の実施例を説明するための状態図、第4図は第3の実
施例を説明するための状態図、第5図は固体撮像装置の
一般的構成を示す構成図である。 1.6・・・・光電変換素子、2・・・・CCDチャネ
ル、3,4,7.8・・・・ゲート電極、5.9・・・
・トランスファーゲート電極。
FIG. 1 is a waveform diagram showing a clock signal used in an embodiment of the method for driving a solid-state imaging device according to the present invention, FIG. 2 is a state diagram showing the potential under the gate electrode, and FIG. 3 is a waveform diagram showing the potential under the gate electrode. FIG. 4 is a state diagram for explaining the third embodiment, and FIG. 5 is a configuration diagram showing the general configuration of the solid-state imaging device. 1.6...Photoelectric conversion element, 2...CCD channel, 3,4,7.8...Gate electrode, 5.9...
・Transfer gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に二次元的に配列された複数個の光電変換
素子と、この光電変換素子の信号を読み出すために垂直
方向に形成された表面チャネル電荷結合素子と、水平方
向に形成された電荷結合素子とを備えた固体撮像装置の
駆動方法において、垂直方向の転送期間に、少なくとも
1つの電荷結合素子ゲート電極を低レベルに固定し、少
なくとも1つの電荷結合素子ゲート電極を中間レベルと
し、このゲート電極を挟む両側のゲート電極に高レベル
の電圧が印加される瞬間を有し、電荷が転送される側の
ゲート電極を高レベルに保ったまま電荷を転送する側の
ゲート電極を複数回駆動することを特徴とする固体撮像
装置の駆動方法。
A plurality of photoelectric conversion elements arranged two-dimensionally on a semiconductor substrate, surface channel charge-coupled devices formed vertically to read out signals from the photoelectric conversion elements, and charge-coupled devices formed horizontally. In a method for driving a solid-state imaging device having a device, during a vertical transfer period, at least one charge-coupled device gate electrode is fixed at a low level, at least one charge-coupled device gate electrode is set to an intermediate level, and the gate There is a moment when a high level voltage is applied to the gate electrodes on both sides of the electrode, and the gate electrode on the side where charge is transferred is driven multiple times while the gate electrode on the side where charge is transferred is kept at a high level. A method for driving a solid-state imaging device, characterized in that:
JP60150361A 1985-07-05 1985-07-05 Method for driving solid-state image pickup device Pending JPS6210974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150361A JPS6210974A (en) 1985-07-05 1985-07-05 Method for driving solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150361A JPS6210974A (en) 1985-07-05 1985-07-05 Method for driving solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6210974A true JPS6210974A (en) 1987-01-19

Family

ID=15495309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150361A Pending JPS6210974A (en) 1985-07-05 1985-07-05 Method for driving solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6210974A (en)

Similar Documents

Publication Publication Date Title
US4774586A (en) Interline type charge transfer imaging device
US6519000B1 (en) Image pickup apparatus with mode switching between a still picture mode and a moving picture mode
JPS5984575A (en) Solid-state image-pickup element
JPS6115475A (en) Image pickup element and image pickup device
US7995129B2 (en) Image sensor for still or video photography
JPH04262679A (en) Driving method for solid-state image pickup device
JPS5983477A (en) Image pickup system
JP2983401B2 (en) Charge transfer method, charge transfer device, and solid-state imaging device using the same
JPH0262170A (en) Solid-state image pickup device
JPH0834564B2 (en) Solid-state imaging device and driving method thereof
JP2944251B2 (en) Solid-state imaging device
JP3922853B2 (en) Solid-state imaging device
JP3509184B2 (en) Driving method of solid-state imaging device
JPS6210974A (en) Method for driving solid-state image pickup device
JPH0150156B2 (en)
JP2002151673A (en) Solid-state image pickup element
JPS59122085A (en) Solid-state image pickup element
JPH0360226B2 (en)
JPS59154882A (en) Solid-state image pickup device
JPS63114377A (en) Drive method for charge transfer image pickup device
JP3269727B2 (en) Solid-state imaging device
JP3158324B2 (en) Driving method of solid-state imaging device
JP2595916B2 (en) Solid-state imaging device and driving method thereof
JPH06268923A (en) Drive method for solid-state image pickup device
JP2866329B2 (en) Structure of solid-state image sensor