Nothing Special   »   [go: up one dir, main page]

JPS62104462A - Ac generator with permanent magnet - Google Patents

Ac generator with permanent magnet

Info

Publication number
JPS62104462A
JPS62104462A JP24186985A JP24186985A JPS62104462A JP S62104462 A JPS62104462 A JP S62104462A JP 24186985 A JP24186985 A JP 24186985A JP 24186985 A JP24186985 A JP 24186985A JP S62104462 A JPS62104462 A JP S62104462A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic poles
stator
stator core
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24186985A
Other languages
Japanese (ja)
Inventor
Hideo Kawamura
英男 河村
Katsuyuki Tamai
玉井 克行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP24186985A priority Critical patent/JPS62104462A/en
Publication of JPS62104462A publication Critical patent/JPS62104462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To prevent efficiency from being lowered on high speed operation, by multipole-structure in the magnetic poles of a rotor with the number of poles in three or more, and by constructing a stator core with the member of less eddy current loss in a high frequency sphere. CONSTITUTION:On the outer periphery of a rotary shaft 4, magnetic poles consisting of permanent magnets 5, 6 are arranged. The magnetic poles are multipole-organized with three poles or more. A stator is formed with a stator frame 1, a stator core 2, and stator coils 3. The stator core 2 is formed with the member of less eddy current loss in a high frequency sphere, for example, with ferrite. Due to the increased number of magnetic poles, a main magnetic field is less influenced by the reaction of an armature.

Description

【発明の詳細な説明】 (産業上の利用分デ?) 本発明は、交流発電機、1+fに高速回転時の電機子反
作用による性能低下と鉄損増加を防1にした、交流発電
機に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application De?) The present invention relates to an alternating current generator, which prevents performance deterioration and iron loss increase due to armature reaction during high-speed rotation to 1+f. .

(従来例) 従来、回転界磁形の高速低周波永久磁石発電機として、
第3図に示すような構成のものが用いられていた。図に
おいて、固定子枠l、珪素鋼板を積層した固定子鉄心2
、固定子コイル3により固定子側が構成され、回転子側
は、回転軸4に連結したN極の永久磁石5とS極の永久
磁石6により2極の回転子が構成されている。このよう
な構成の永久磁石発電機は、例えば2極のタービン発電
機に直結されて、高速で運転される。
(Conventional example) Conventionally, as a rotating field type high speed low frequency permanent magnet generator,
A configuration as shown in FIG. 3 was used. In the figure, a stator frame 1, a stator core 2 made of laminated silicon steel plates,
, the stator side is constituted by the stator coil 3, and the rotor side is constituted by the N-pole permanent magnet 5 and the S-pole permanent magnet 6 connected to the rotating shaft 4, forming a two-pole rotor. A permanent magnet generator having such a configuration is directly connected to, for example, a two-pole turbine generator and is operated at high speed.

(発明が解決しようとする問題点) ところで、一般に回転界磁形同期発電機の″rrL機子
コイルに3相交流が流れると、回転子と同じ同期速度の
回転磁界が発生し、主磁界に対して直流発電機と同様に
電機子反作用による影響が生じる。
(Problem to be Solved by the Invention) Generally, when a three-phase alternating current flows through the "rrL armature coil of a rotating field type synchronous generator, a rotating magnetic field having the same synchronous speed as the rotor is generated, and the main magnetic field On the other hand, as with DC generators, the influence of armature reaction occurs.

電機子反作用は、電機子起磁力をFa、交叉起F  a
 = F  C+ F a             
 ・(1)として表わされる。ここで、1対の磁極の電
機子アンペア回数をATa、交叉アンペア回数をATC
1減磁アンペア回数をATdとすれば、磁極数をP、導
体数をZ、各導体の電流をiaとして、(1)式は、 A T a = A T c + A T d = (
i a Z ) / P・・・ (2) のように表わすことができる。
The armature reaction is the armature magnetomotive force Fa, and the cross-induced F a
= F C+ F a
- Expressed as (1). Here, the armature amperage of a pair of magnetic poles is ATa, and the cross amperage is ATC.
If the number of demagnetizing amperes per demagnetization is ATd, the number of magnetic poles is P, the number of conductors is Z, and the current of each conductor is ia, formula (1) is as follows: AT a = AT c + AT d = (
i a Z ) / P... (2) It can be expressed as follows.

(2)式から明らかなように、磁石発電機においては、
負荷電流の増加により電機子反作用起磁力が界磁に対し
て減磁力として作用するため、発電電圧が低下するとい
う問題があった。
As is clear from equation (2), in the magnet generator,
As the load current increases, the armature reaction magnetomotive force acts on the field as a demagnetizing force, which causes a problem in that the generated voltage decreases.

次に、固定子鉄心に発生する鉄損Wiは、ヒステリシス
損をwh、うず電流積をWe、使用周波数をfとすると
、 W i = W h + W e = K 1. f 
+ K 2  (f ) 2・・・(3) 但し、K1 、に2は常数 と表わされる。即ち、鉄損特にうず電流積は周波数が高
い程大きくなる。
Next, the iron loss Wi generated in the stator core is as follows, where wh is the hysteresis loss, We is the eddy current product, and f is the operating frequency. Wi = W h + We = K1. f
+K 2 (f) 2...(3) However, 2 in K1 and 2 is expressed as a constant. That is, the iron loss, especially the eddy current product, increases as the frequency increases.

ところで、交流発電機は小型高出力化が要求されるよう
な場合には、高速で回転子を回転させ出力周波数を高め
ているが、従来の固定子鉄心として使用されている珪素
鋼板は高周波域では透磁率が小さくなり、鉄損が増加し
て効率が低下するという問題があった。
By the way, when AC generators are required to be smaller and have higher output, the output frequency is increased by rotating the rotor at high speed, but the silicon steel plate used as the conventional stator core is not suitable for high frequency ranges. However, there was a problem in that magnetic permeability decreased, iron loss increased, and efficiency decreased.

そこで、本発明はこのような従来技術の問題点を解消し
ようとするものである。
Therefore, the present invention aims to solve these problems of the prior art.

(問題を解決するための「一段) 本発明は、回転軸外周に永久磁石磁極を配設してなる回
転界磁形の永久磁石発電機において、回転子磁極板を3
極以1;の多極構成とすると共に、固定子鉄心を高周波
域でうず′if流損の少ない部材で構成した永久磁石発
電機を提供することにより、上記した従来技術の問題点
を解消するものである。
(One Step to Solve the Problem) The present invention provides a rotating field type permanent magnet generator in which permanent magnet poles are arranged around the outer periphery of the rotating shaft.
By providing a permanent magnet generator having a multi-pole configuration with less than one pole and having a stator core made of a material with less eddying loss in a high frequency range, the problems of the prior art described above are solved. It is something.

(作用) 本発明は、回転子磁極を3極以−1−の多極構成とする
と共に、固定子鉄心を高周波でうず電流積の少ない部材
で構成したので、ii電機子反作用影響を少なくすると
共に、効率の低下を防11−できる。
(Function) In the present invention, the rotor magnetic poles have a multi-pole configuration of 3 or more, and the stator core is made of a material with a high frequency and low eddy current product, so ii) the influence of armature reaction is reduced. At the same time, a decrease in efficiency can be prevented.

(実施例) 以下、図により本発明の実施例について説明する。第1
図は本発明の永久磁石発電機の概略の断面構成図である
。未発IIにおいては、固定子鉄心として高周波域でう
ず電流積の少ない部材、例えばフェライトを使用する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a schematic cross-sectional configuration diagram of a permanent magnet generator of the present invention. In the case of unreleased II, a material having a small eddy current product in a high frequency range, such as ferrite, is used as the stator core.

また、回転子は、4極磁極で構成する。その他の構成は
第3図の従来例と回様の構成とする。
Further, the rotor is composed of four magnetic poles. The rest of the structure is the same as the conventional example shown in FIG.

本発明は、このように高周波域での鉄損増加を防止する
と共に、電機子反作用による影響を少なくしている。即
ち、電機子反作用による起磁力は、(2)式に示したよ
うに電流の大きさに比例するので、起磁力を小さく抑え
るために電流を下げるが他方、回転子の磁極数を増加さ
せて電圧を1−げ電力を増加させて、同一回転数におけ
る出力周波数を高める。
The present invention thus prevents an increase in iron loss in a high frequency range, and also reduces the influence of armature reaction. In other words, the magnetomotive force due to armature reaction is proportional to the magnitude of the current, as shown in equation (2), so in order to keep the magnetomotive force small, the current is lowered, but on the other hand, the number of magnetic poles on the rotor is increased. By lowering the voltage and increasing the power, the output frequency at the same rotation speed is increased.

第2図は本発明の永久磁石交流発電機の使用例を示すブ
ロック図である。
FIG. 2 is a block diagram showing an example of use of the permanent magnet AC generator of the present invention.

第2図において、10は排気タービンであり、エンジン
20の排気管(図示なし)から排出される排気ガスのエ
ネルギーにより、タービンブレード11が駆動され、こ
の駆動力によって出力軸12に回転力を与えるものであ
る。
In FIG. 2, reference numeral 10 denotes an exhaust turbine, and the turbine blades 11 are driven by the energy of exhaust gas discharged from the exhaust pipe (not shown) of the engine 20, and this driving force provides rotational force to the output shaft 12. It is something.

第1図構成になる永久磁石交流発電機の回転軸4は、出
力軸12に直結され、排気ガスによりタービンブレード
11が駆動されると、永久磁石5.6の回転により固定
子コイル3は交流電力を発電し、制御装′j!I15に
電力を供給する。16はエンジン20の出力軸2Iに設
けた大歯車22の回転数を検出する回転センサであり、
検出した回転信号R3を制御装置15に送出する。17
は交流電動機であり、大歯車22と噛合する小歯車18
を回転軸に備え、制御装置15より供給される交流電力
によって作動し、小歯車18、大歯車21を介して、そ
の回転力をエンジン20の出力軸に伝達する。なお、制
御装置15は入力された交流電力の周波数を、回転セン
サ16からの回転信号R3によって制御し、周波数を変
換して出力するものであり、交流電動a17に供給Xれ
る交流電力の周波数は、常に、交流電動機17がカ行作
動して、エンジン20の出力軸21の回転力を助勢する
如く制御されている。
The rotating shaft 4 of the permanent magnet alternating current generator having the configuration shown in FIG. Generate electricity and control equipment! Supply power to I15. 16 is a rotation sensor that detects the rotation speed of the large gear 22 provided on the output shaft 2I of the engine 20;
The detected rotation signal R3 is sent to the control device 15. 17
is an AC motor, and the small gear 18 meshes with the large gear 22.
is provided on the rotating shaft, is operated by AC power supplied from the control device 15, and transmits its rotational force to the output shaft of the engine 20 via the small gear 18 and the large gear 21. The control device 15 controls the frequency of the input AC power using the rotation signal R3 from the rotation sensor 16, converts the frequency, and outputs the frequency.The frequency of the AC power supplied to the AC electric motor a17 is The alternating current motor 17 is always in full operation and is controlled to assist the rotational force of the output shaft 21 of the engine 20.

したがって、t52図に示す使用例においては、排気タ
ービンを駆動する排気エネルギーは、固定子コイル3よ
り出力される電気エネルギーに変換され、交流電動機1
7を介して、エンジン20の出力軸21を助勢するエネ
ルギーとなるので、効率の高い排気エネルギー回収装置
が実現できる。
Therefore, in the usage example shown in diagram t52, the exhaust energy that drives the exhaust turbine is converted into electrical energy output from the stator coil 3, and the AC motor 1
Since the energy assists the output shaft 21 of the engine 20 through the exhaust gas 7, a highly efficient exhaust energy recovery device can be realized.

(発明の効果) 以上説明したように本発明は、永久磁石発電機の回転子
磁極数を増加させて、電機子反作用による主磁界への影
響を少なくすることができる。また、固定子鉄心を高周
波域でうず電流の小さい部材、例えばフェライトを用い
ているので、高速運転時において効率の低下を防止でき
る。
(Effects of the Invention) As described above, the present invention can increase the number of rotor magnetic poles of a permanent magnet generator and reduce the influence of armature reaction on the main magnetic field. Furthermore, since the stator core is made of a material with low eddy current in a high frequency range, such as ferrite, it is possible to prevent a decrease in efficiency during high-speed operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概略の断面構成図、第2図は本発明の
使用例を示すブロック図、第3図は従来例の断面構成図
である。 l・・・固定子枠、2・・・固定子鉄心、3・・・固定
子コイル、4・・・回転軸、5.6・・・永久磁石。
FIG. 1 is a schematic cross-sectional configuration diagram of the present invention, FIG. 2 is a block diagram showing an example of use of the present invention, and FIG. 3 is a cross-sectional configuration diagram of a conventional example. l... Stator frame, 2... Stator core, 3... Stator coil, 4... Rotating shaft, 5.6... Permanent magnet.

Claims (1)

【特許請求の範囲】[Claims] 回転軸外周に永久磁石磁極を配設してなる回転子を有す
る回転界磁形の永久磁石発電機において、回転子磁極数
を3極以上の多極構成とすると共に、固定子鉄心を高周
波域でうず電流損の少ない部材で構成したことを特徴と
する永久磁石発電機。
In a rotating field type permanent magnet generator having a rotor with permanent magnet magnetic poles arranged around the outer circumference of the rotating shaft, the rotor has a multi-pole configuration with three or more magnetic poles, and the stator core is designed to operate in a high frequency range. A permanent magnet generator characterized by being constructed of materials with low eddy current loss.
JP24186985A 1985-10-29 1985-10-29 Ac generator with permanent magnet Pending JPS62104462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24186985A JPS62104462A (en) 1985-10-29 1985-10-29 Ac generator with permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24186985A JPS62104462A (en) 1985-10-29 1985-10-29 Ac generator with permanent magnet

Publications (1)

Publication Number Publication Date
JPS62104462A true JPS62104462A (en) 1987-05-14

Family

ID=17080733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24186985A Pending JPS62104462A (en) 1985-10-29 1985-10-29 Ac generator with permanent magnet

Country Status (1)

Country Link
JP (1) JPS62104462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074878A (en) * 2005-09-09 2007-03-22 Toshiba Corp Generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074878A (en) * 2005-09-09 2007-03-22 Toshiba Corp Generator

Similar Documents

Publication Publication Date Title
CN104578661B (en) A kind of doubly-salient brushless DC generator of axially distribution
Slemon Electrical machines for variable-frequency drives
US7134180B2 (en) Method for providing slip energy control in permanent magnet electrical machines
CN102005876B (en) Paratactic structure hybrid excitation synchronous machine (HESM) and alternating current excitation control system thereof
KR940000306A (en) AC variable speed drive device and electric vehicle drive system using the device
EP0792004B1 (en) Induction generator with single pair of opposing magnetic poles
CN101562383B (en) Single-phase reluctance generator
CN113437849B (en) Double-rotor single-stator axial magnetic flux hybrid excitation motor
CN112910123B (en) Rotor magnetic pole modulation type induction hybrid excitation brushless motor and power generation system
CN114172335B (en) Stator-partitioned hybrid excitation stator-rotor double permanent magnet vernier motor
CN201188577Y (en) Single-phase reluctance generator
CN210405045U (en) Axial parallel composite motor
CN104505961A (en) Motor generator with external rotor
CN210629311U (en) Axial magnetic field composite stator permanent magnet motor
Luo et al. A synchronous/permanent magnet hybrid AC machine
CN111224477A (en) Parallel structure brushless mixed excitation synchronous generator based on harmonic winding excitation
CN112910131B (en) Rotor magnetic pole modulation type bypass type mixed excitation motor
CN112787476B (en) Integrated direct-current induction hybrid excitation brushless motor based on alternating-pole rotor
JPS62104462A (en) Ac generator with permanent magnet
CN210608876U (en) Radial magnetic field composite motor
CN209748381U (en) Parallel type hybrid excitation brushless synchronous generator
CN207732599U (en) Asynchronous motor based on pulsating field
CN113489275B (en) Stator partition type alternating current excitation type hybrid excitation brushless motor based on mixed pole rotor
CN218473009U (en) Synchronous non-magnetic motor with excitation winding mechanism
RU2253178C1 (en) Synchronous motor-generator set