Nothing Special   »   [go: up one dir, main page]

JPS6199825A - Fourier transform multiwavelength photometer - Google Patents

Fourier transform multiwavelength photometer

Info

Publication number
JPS6199825A
JPS6199825A JP22043884A JP22043884A JPS6199825A JP S6199825 A JPS6199825 A JP S6199825A JP 22043884 A JP22043884 A JP 22043884A JP 22043884 A JP22043884 A JP 22043884A JP S6199825 A JPS6199825 A JP S6199825A
Authority
JP
Japan
Prior art keywords
value
wavelength
stored
fourier transform
interference pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22043884A
Other languages
Japanese (ja)
Inventor
Katsu Inoue
井上 克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22043884A priority Critical patent/JPS6199825A/en
Publication of JPS6199825A publication Critical patent/JPS6199825A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To obtain a final result in a short time by employing discrete Fourier transform and performing integration at every plural spectral points every time data on one point in an interference pattern is obtained. CONSTITUTION:The interference pattern 15 measured by an interferometer 10 is inputted to an A/D converter 20 in time series to obtain a digital value 42, which is inputted to a digital multiplier 40. The value of specific wavelength lambda1 stored in a wavelength storage device 60, on the other hand, is stored in a memory 61 and inputted to a cosine function generator 30, which inputs a phase corresponding to the optical path difference (x) of the interference pattern f(x) and the cosine function value 43 of frequency in inverse proportion to the wavelength lambda1 to a multiplier 40. The multiplier 40 multiplies the digital value 42 and function value 43 to obtain the product 44. A memory 51, on the other hand, is stored with spectral intensity S(lambda1) corresponding to the wavelength lambda1 and this value and product 44 are added together and stored in the memory 51 again. Thus, real-time processing is performed to obtain the final result in a short time.

Description

【発明の詳細な説明】 〔発明の質隼) フーリエ変換分光光度計は、分散形分光光度計に比し、
スリット光学系を用いない同時分光方式のため、光エネ
ルギーの利用率が高く、微弱光分析や高速分光に有利で
あることは良く知られている。 一方フーリエ変換分光
方式は干渉手段から得られた干渉図形をフーリエ変換す
ることにより、分析に役立つ分光スペクトルを算出する
のであるが、当初行われていた離散フーリエ変換(DF
T)は非常な長時間の計算時間を要し、従来これは高速
フーリエ変換(FFT)に置き換えられて来た。
[Detailed Description of the Invention] [Quality of the Invention] Compared to a dispersive spectrophotometer, a Fourier transform spectrophotometer has the following advantages:
It is well known that since it is a simultaneous spectroscopy method that does not use a slit optical system, it has a high utilization rate of light energy and is advantageous for weak light analysis and high-speed spectroscopy. On the other hand, the Fourier transform spectroscopy method calculates a useful spectrum for analysis by Fourier transforming the interference pattern obtained from the interference means.
T) requires a very long calculation time and has traditionally been replaced by Fast Fourier Transform (FFT).

今、干渉図形データ点数、スペクトル点数共にN個とす
れば、DFTでの乗算回数はN2回、FFTでは複素数
演算を考えても2 N ]、og2N回であって、その
効果はNが大なる程大きく、乗算に要する時間が全計算
時間の大部分を占めることから、FFTが一般に使用さ
れるのは当然の傾向であった。
Now, if both the number of interferogram data points and the number of spectrum points are N, the number of multiplications in DFT is N2 times, and in FFT, even considering complex number operations, it is 2 N ], og2N times, and the effect is larger with N. It was a natural tendency for FFT to be generally used because the time required for multiplication occupies most of the total calculation time.

ところが、分光分析による定量測定には、特定の波長に
おける吸光度(透過率の対数値)や、発光強度の相対値
が得られれば充分であり、ある種の定性分析測定では、
分光可能範囲内のスペクトル点全部のデータを必要とし
ない。特に、定量分析に於ては、一般に1分析項目当り
、2点のスペクトルデータがあれば良く、混合試料に於
ても5点あれば良いことが知られている。
However, for quantitative measurements using spectrometry, it is sufficient to obtain the absorbance (logarithm of transmittance) or the relative value of emission intensity at a specific wavelength; for some types of qualitative analysis measurements,
Data for all spectral points within the spectroscopic range is not required. In particular, it is known that in quantitative analysis, it is generally sufficient to have two points of spectral data for one analysis item, and even for a mixed sample, five points are sufficient.

今、分析項目数を10、測定スペクトル点数を20と仮
定し、入力する干渉図形のデータ点数を4096点とす
ると、DFTにおける乗算回数は、T1=4096X2
0=8X10”      (1)一方、FFTでは入
出力データ点数が必然的に同じであり、得られた全スペ
クトル点の中がら特定の20点を選ぶことになる。この
場合の乗算回数は、 T2=2−4096−12=9.6  XIO’  (
2)となってDFTよりやや大となる。
Now, assuming that the number of analysis items is 10, the number of measured spectrum points is 20, and the number of data points of the input interferogram is 4096 points, the number of multiplications in DFT is T1 = 4096 x 2
0=8 =2-4096-12=9.6 XIO' (
2), which is slightly larger than DFT.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術の無駄を省き、特に定量分析
に好適な特定波長フーリエ変換手段を備えた、フーリエ
変換多波長光度計の提供にある。
An object of the present invention is to provide a Fourier transform multi-wavelength photometer that eliminates the waste of the prior art and is equipped with specific wavelength Fourier transform means particularly suitable for quantitative analysis.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、小数の特定のスペクトル強度を算出す
るため離散フーリエ変換(DFT)を採用し、且つ干渉
図形の一点のデータが得られるごとに、複数のスペクト
ル点ごとの積算を行う、い゛わゆる実時間処理を行うこ
とである。
The present invention is characterized by employing a discrete Fourier transform (DFT) to calculate a specific spectral intensity in decimal numbers, and performing integration for each of multiple spectral points each time data for one point of an interferogram is obtained. This means performing so-called real-time processing.

本発明の第2の特徴は、干渉図形を測定する手段として
、機械的走査方式、電子的走査方式どちらでも可能で、
それらの間に本質的な差異が存在しないと云うことであ
る。
The second feature of the present invention is that either a mechanical scanning method or an electronic scanning method can be used as a means for measuring the interferogram.
This means that there is no essential difference between them.

〔発明の実施例〕[Embodiments of the invention]

以下図面に従って説明する。 This will be explained below according to the drawings.

第1図は本発明の基本構成図であって、干渉計10で測
定された干渉図形15は、時系列的にA−n変換器20
に入力し逐次ディジタル量42となり、ディジタル乗算
器40に入力する。一方波長記憶装!多−〇−に記憶さ
れている特定の波長λ1の値はメモリ61に格納されて
おり、余弦関数発生器30に入力し、干渉図形f (x
)の光路差Xに対応する位相と、波長λ、に反比例する
周波数の余弦関数値43を乗算器40に入力し、干渉図
形のデータ42を乗算を行い、積44となる。
FIG. 1 is a basic configuration diagram of the present invention, in which an interferogram 15 measured by an interferometer 10 is transmitted to an A-n converter 20 in time series.
The signal is sequentially inputted into a digital quantity 42 and inputted into a digital multiplier 40. On the other hand, wavelength memory! The value of the specific wavelength λ1 stored in the polygon is stored in the memory 61, inputted to the cosine function generator 30, and the value of the interferogram f (x
) and a cosine function value 43 of a frequency inversely proportional to the wavelength λ are input to the multiplier 40 and multiplied by the interferogram data 42, resulting in a product 44.

一方、メモリ51は波長λ、に対するスペクトル強度S
(λ、)の格納場所であって、既に記憶されている値と
前記の積44が加算され再びXメモリ51に記憶される
。すなわちここで行われる演算は、計算途中の光路差を
nlx、波長番号をjとすれば、 ω、=2πΔX/λ1(3) S、(λt) =S−−− (λ1) +f(n−Ax)・eos(n・ωt)  (4)但し
S、(λ*) = f (o)/ 2       (
5)と表わされる。又、Axは干渉図形の抽出間隔であ
り、サンプリング定理により分析最短波長の1/2以下
でなければならない。更に、計算(5)(4)に先立ち
全てのS(λ□)は零にクリヤされる。
On the other hand, the memory 51 stores the spectral intensity S for the wavelength λ.
(λ,), the already stored value and the product 44 are added and stored in the X memory 51 again. In other words, the calculation performed here is: ω, = 2πΔX/λ1 (3) S, (λt) = S--- (λ1) + f(n- Ax)・eos(n・ωt) (4) However, S, (λ*) = f (o)/2 (
5). Further, Ax is the extraction interval of the interferogram, and according to the sampling theorem, it must be equal to or less than 1/2 of the shortest wavelength for analysis. Furthermore, all S(λ□) are cleared to zero prior to calculations (5) and (4).

(3)式のω、は波長λ、により一意的に定まる角周波
数であり、一連の計算に先立ち予め計算して置けば、余
弦計算も速やかに実行出来る。
In equation (3), ω is an angular frequency uniquely determined by the wavelength λ, and if it is calculated in advance before a series of calculations, the cosine calculation can also be performed quickly.

余弦関数発生器30は、例えば第1象限の角度に対応す
る関数表を備える記憶装置とし、n・ω。
The cosine function generator 30 is, for example, a storage device having a function table corresponding to angles in the first quadrant, and has n·ω.

に対応する番地に格納されていた値を読み出すことによ
り、角度を与えて余弦関数を求める計算時間を大幅に省
略することも出まる。乗算器40、積算記憶装置51.
58波長記憶装置61.68は一個の演算記憶装置用で
代用する事ができるがその内部での機能は、第1図に示
すものと変りは無い。
By reading out the value stored at the address corresponding to , the calculation time for calculating the cosine function by giving the angle can be greatly reduced. Multiplier 40, integration storage device 51.
The 58-wavelength storage devices 61 and 68 can be substituted for one arithmetic storage device, but their internal functions are the same as those shown in FIG.

第2図は平面鏡走査形のマイケルソン干渉計であって、
光源lから出た分析光は、光学系2で平行光束となり、
半透鏡3に入射する。半透鏡3を透過した光束は可動平
面鏡4にて反射し、半透鏡3を反射して、固定平面鏡5
で反射した光束と再び合成され、集光光学系6で検知器
7に集光する。
Figure 2 shows a plane mirror scanning type Michelson interferometer.
The analysis light emitted from the light source 1 becomes a parallel beam in the optical system 2,
The light enters the semi-transparent mirror 3. The light beam transmitted through the semi-transparent mirror 3 is reflected by the movable plane mirror 4, and then reflected from the semi-transparent mirror 3, and then transferred to the fixed plane mirror 5.
It is combined again with the light beam reflected by the light beam, and is focused on the detector 7 by the focusing optical system 6.

可動平面鏡4が矢印9の方向に移動すると、二光束の間
の光路差が変化し、光路差Xの関数としての干渉図形f
(x)が信号15として得られる。
When the movable plane mirror 4 moves in the direction of the arrow 9, the optical path difference between the two beams changes, and the interference pattern f as a function of the optical path difference
(x) is obtained as signal 15.

第3図は第2図と同じマイケルソン干渉計を示すが、固
定平面鏡4に対し、固定平面鏡5が微小角αだけ傾いて
配置され、集光光学系6の集光面に置かれた光電検知器
配列(フォトアレイ)8に等原子渉縞を投射する。光電
検知器配列を電子的に走査すれば、一定の周期で干渉図
形信号15が出力する。
FIG. 3 shows the same Michelson interferometer as in FIG. 2, but a fixed plane mirror 5 is arranged at an angle of a small angle α with respect to a fixed plane mirror 4, and a photoelectric detector placed on the condensing surface of the condensing optical system 6 is arranged. Equiatomic fringes are projected onto a detector array (photoarray) 8. When the photodetector array is electronically scanned, an interferogram signal 15 is output at regular intervals.

第4図はパイ・レンズ方式の干渉計を用いた例で、光源
1からの光はレンズ2で試料セル25に集光し、透過光
は2個のレンズ31.32に入射する。
FIG. 4 shows an example using a pi-lens type interferometer, in which light from a light source 1 is focused on a sample cell 25 by a lens 2, and transmitted light is incident on two lenses 31 and 32.

レンズ31と32で集光した光は重なり合い、空間に干
渉縞を形成し、干渉面に置かれた光電検知器配列8に入
射する。
The lights collected by the lenses 31 and 32 overlap to form interference fringes in space, and are incident on the photoelectric detector array 8 placed on the interference surface.

第5図は干渉図形70の例であって、光路差0と最大光
路差りの量測定されデータ化される。
FIG. 5 is an example of an interferogram 70, in which the amounts of optical path difference 0 and maximum optical path difference are measured and converted into data.

第6図はスペクトル80の例であって、特定の波長λ□
〜λ、の中の2点のスペクトル強度81゜82を示して
いる。
FIG. 6 is an example of a spectrum 80, in which a specific wavelength λ□
The spectral intensities of two points between ~λ and 81° and 82 are shown.

被分析物質の固有吸収が波長λ、にあり、波長λ、では
吸収が無いとすれば2個のスペクトル強度81と82の
比すなわち a=S(λ4)/S(λ3 )        (6)
が、分析物質の存在濃度に対応する事は良く知られてい
る。
If the characteristic absorption of the analyte is at the wavelength λ, and there is no absorption at the wavelength λ, then the ratio of the two spectral intensities 81 and 82, i.e., a=S(λ4)/S(λ3) (6)
It is well known that this corresponds to the concentration of the analyte present.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明は、予め定められた物質の定量分
析に適したフーリエ変換形の分光光度計を提供するもの
であって、次の効果を有している。
As described above, the present invention provides a Fourier transform type spectrophotometer suitable for quantitative analysis of predetermined substances, and has the following effects.

1、フーリエ分光法の全ての利点を有している。1. Has all the advantages of Fourier spectroscopy.

2、スペクトル点指定された任意の波長に対応するもの
だけが計算されるので直ちに定量分析に利用される。
2. Only the spectrum point corresponding to the specified arbitrary wavelength is calculated, so it can be used immediately for quantitative analysis.

3.20個以下のスペクトル点であれば、高速フーリエ
変換方式より短時間で最終結果を得る。
3. If there are 20 or fewer spectral points, the final result can be obtained in a shorter time than the fast Fourier transform method.

4、実時間方式を採用し、干渉図形を一旦記憶する必要
が無いため、データ記憶メモリは、波長個数に対応する
歩容量で充分である。
4. Since a real-time method is adopted and there is no need to temporarily store the interferogram, the data storage memory has a sufficient walking capacity corresponding to the number of wavelengths.

5、高速フーリエ変換を行わないので、演算実行桁数は
少くて良く、例えば16ビツトで充分である。
5. Since fast Fourier transform is not performed, the number of digits to be executed may be small; for example, 16 bits is sufficient.

6、複数個の波長は、任意に指定可能で、必要に応じて
容易に変更できる。
6. A plurality of wavelengths can be arbitrarily specified and easily changed as necessary.

7、被測定物質のどれにも吸収されない特定の波長での
スペクトルを求め、他の吸収を受けるスペクトルとの強
度比を採用することにより、光源の強度変動、試料自体
による散乱の影響を補償した相対測光量を得ることがで
きる。
7. By calculating the spectrum at a specific wavelength that is not absorbed by any of the substances to be measured and using the intensity ratio with other absorption spectra, we compensated for the influence of light source intensity fluctuations and scattering by the sample itself. Relative photometry can be obtained.

これ等の効果特長の他に、本来フーリエ変換分光方式が
有する、高い光学系の明るさと同時測光に伴う高エネル
ギ効率は当然もたらされており、微弱光分析や、極微量
分析に適しているため、その応用範囲も広い。
In addition to these effective features, the Fourier transform spectroscopy method naturally provides the high brightness of the optical system and the high energy efficiency associated with simultaneous photometry, making it suitable for weak light analysis and ultra-trace analysis. Therefore, its application range is wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成図、第2図は本発明に用いら
れる干渉計の実施例を示す図、第3図は同じく他の実施
例を示す図、第4図は同じく干渉計のもう一つの例を示
す図、第5図は干渉図形を示す図、第6図はスペクトル
を示す図である。 10・・・干渉計、20・・・A−D変換器、30・・
・余弦関数発生器、40・・・乗算器、50 ・・・演
算記憶装置、乱立・・・記憶装置。
FIG. 1 is a basic configuration diagram of the present invention, FIG. 2 is a diagram showing an embodiment of an interferometer used in the present invention, FIG. 3 is a diagram similarly showing another embodiment, and FIG. Another example is shown in FIG. 5, which shows an interference pattern, and FIG. 6, which shows a spectrum. 10... Interferometer, 20... A-D converter, 30...
- Cosine function generator, 40... Multiplier, 50... Arithmetic storage device, Random... Storage device.

Claims (1)

【特許請求の範囲】[Claims] 1、光路差0を含み、一定光路差までの干渉図形を得る
手段と、該干渉図形を一定の微小光路差ごとにA−D変
換する手段と、複数の与えられた波長に対応する余弦関
数を発生する手段と、前記A−D変換手段の出力と、前
記余弦関数の値との積を前記与えられた波長ごとに積算
する手段とからなり、前記干渉図形のデータ点数に比し
数十分の一から数百分の一のスペクトル点を得ることを
特徴とするフーリエ変換多波長光度計。
1. Means for obtaining an interference pattern including an optical path difference of 0 up to a constant optical path difference, means for A-D converting the interference pattern for every constant minute optical path difference, and cosine functions corresponding to a plurality of given wavelengths. and means for integrating the product of the output of the A-D converting means and the value of the cosine function for each given wavelength, and the number of points is several tens compared to the number of data points of the interferogram. A Fourier transform multi-wavelength photometer that is characterized by obtaining spectral points from a fraction of a fraction to a fraction of a hundredth.
JP22043884A 1984-10-22 1984-10-22 Fourier transform multiwavelength photometer Pending JPS6199825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22043884A JPS6199825A (en) 1984-10-22 1984-10-22 Fourier transform multiwavelength photometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22043884A JPS6199825A (en) 1984-10-22 1984-10-22 Fourier transform multiwavelength photometer

Publications (1)

Publication Number Publication Date
JPS6199825A true JPS6199825A (en) 1986-05-17

Family

ID=16751109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22043884A Pending JPS6199825A (en) 1984-10-22 1984-10-22 Fourier transform multiwavelength photometer

Country Status (1)

Country Link
JP (1) JPS6199825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149832A (en) * 1984-12-24 1986-07-08 Shimadzu Corp Fourier transform type spectrophotometer
JPS633230A (en) * 1986-06-23 1988-01-08 Advantest Corp Optical digital spectrum analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149832A (en) * 1984-12-24 1986-07-08 Shimadzu Corp Fourier transform type spectrophotometer
JPS633230A (en) * 1986-06-23 1988-01-08 Advantest Corp Optical digital spectrum analyzer

Similar Documents

Publication Publication Date Title
US8862445B2 (en) Selecting spectral elements and components for optical analysis systems
US7911605B2 (en) Multivariate optical elements for optical analysis system
US7834999B2 (en) Optical analysis system and optical train
US5357340A (en) Method for spectroscopy using two Fabry-Perot interference filters
US4822169A (en) Measuring assembly for analyzing electromagnetic radiation
US7206073B2 (en) Dispersed fourier transform spectrometer
US20150211922A1 (en) Compact Optical Spectrometer
Gebbie et al. Two-beam interferometric spectroscopy
Griffiths et al. Rapid scan infrared Fourier transform spectroscopy
US3689158A (en) Atomic absorption analyzer compensated for background absorption
JPS6199825A (en) Fourier transform multiwavelength photometer
US5039222A (en) Apparatus and method for producing fourier transform spectra for a test object in fourier transform spectrographs
JPS6140928B2 (en)
US3737234A (en) Spectrophotometer for measurement of derivative spectra
US5959730A (en) Apparatus and method for real-time spectral alignment for open-path fourier transform infrared spectrometers
JPH0781840B2 (en) Optical film thickness measuring device
Brault Fourier transform spectrometry in relation to other passive spectrometers
JPS6271804A (en) Film thickness measuring instrument
JPH04262238A (en) Quantitative analysis method using spectrochemical analysis
Jamieson Passive infrared sensors: limitations on performance
Harwit et al. III Modulation Techniques in Spectrometry
JPH10206235A (en) Method and apparatus for standardizing spectral information and computer readable storage medium for utilization of standardized spectral information
SU1044111A1 (en) Double diffraction monochromator
JPS6079248A (en) Spectrophotometer
JPH07113583B2 (en) Wide wavelength simultaneous measurement spectrometer using Fabry-Perot interferometer