Nothing Special   »   [go: up one dir, main page]

JPS619898A - Josephson memory element - Google Patents

Josephson memory element

Info

Publication number
JPS619898A
JPS619898A JP59130615A JP13061584A JPS619898A JP S619898 A JPS619898 A JP S619898A JP 59130615 A JP59130615 A JP 59130615A JP 13061584 A JP13061584 A JP 13061584A JP S619898 A JPS619898 A JP S619898A
Authority
JP
Japan
Prior art keywords
closed loop
current
josephson
superconduction
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59130615A
Other languages
Japanese (ja)
Inventor
Susumu Takada
進 高田
Itaru Kurosawa
格 黒沢
Hiroshi Nakagawa
博 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59130615A priority Critical patent/JPS619898A/en
Publication of JPS619898A publication Critical patent/JPS619898A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To simplify constitution and to lighten considerably a burden imposed to a peripheral circuit by making a digital information memory superconduction closed loop for adopting an AC superconduction quantum interference element (rf-SQUID) constitution to a geometrically complete closed loop. CONSTITUTION:An rf-SQUID closed loop 10 involved in a memory function is a complete closed loop physically and geometrically. When write command currents Ix and Iy flow in the same direction in write only W/Y control lines 12 and 13 jointed magnetically to the closed loop 10, a ring current is produced on the superconduction closed loop 10. When a magnitude of the ring current exceeds a DC Josephson critical current value of a Josephson element 11, a flux quantum is caught in the superconduction loop 10, and a permanent current IL is generated, thereby storing a logic ''1''. When X and Y coordinates read command currents Ix' and Iy' flow in control lines 12' and 13', a sensor gate 15 is brought into the detection possible condition. Then a magnetic field induced by the permanent current IL is added, and the logic ''1'' is read out.

Description

【発明の詳細な説明】 本発明は極低温現象の一つであるジョゼフソン効果を利
用してデジタル信号を記憶し、また読み中すためのジョ
ゼフソン記憶素子に関し、殊に永久電流記憶型ジョゼフ
ソン記憶素子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Josephson memory element for storing and reading digital signals by utilizing the Josephson effect, which is one of cryogenic phenomena, and particularly relates to a Josephson memory element of persistent current memory type. This invention relates to improvements in memory elements.

ジョゼフソン記憶素子にも幾つかのタイプがあるが、記
憶させるべきデジタル情報の°“1パまたは°0゛′に
対応させて選択的に閉ループ内に永久電流を生起させる
永久電流記憶型の記憶素子は比較的高速動作を実現する
のが容易という長所を有している。
There are several types of Josephson memory elements, but a persistent current memory type that selectively generates a persistent current in a closed loop in response to the digital information to be stored is '1' or '0'. The device has the advantage that it is easy to realize relatively high-speed operation.

従来のこうした永久電流記憶型ジョゼフソン記憶素子の
基本的な構成例を挙げれば、第1図及び第2図示のもの
が代表的である。
Typical examples of the basic configuration of such conventional persistent current memory type Josephson memory elements are those shown in FIGS. 1 and 2.

第1図示のものは、超伝導ループ1に、回路電流線乃至
ゲート電流線4を接続するための一対の端子2,3と、
一般に三つのジョゼフソン接合で成るゲート5を有し、
このゲート5には仮想線で囲って示すように、書き込み
用制御線6,7が磁気結合している。
The one shown in the first diagram includes a pair of terminals 2 and 3 for connecting a circuit current line or a gate current line 4 to a superconducting loop 1;
having a gate 5 generally consisting of three Josephson junctions;
Write control lines 6 and 7 are magnetically coupled to this gate 5, as shown surrounded by imaginary lines.

書き込み用制御線6,7は原理的には一木でも良いが、
一般にはこうした記憶素子をX、Y二次元平面アレイに
集積化した場合、特定の記憶素子をアドレスするため、
X座標に関するアドレス指定線6とY座標に関するアド
レス指定線7の二本で構成される。
In principle, the writing control lines 6 and 7 may be made of one piece of wood, but
Generally, when such memory elements are integrated into an X, Y two-dimensional plane array, in order to address a specific memory element,
It is composed of two addressing lines 6 for the X coordinate and an addressing line 7 for the Y coordinate.

また、超伝導ループ1内を永久電流ILが流れているか
否か、即ち超伝導ループl内の記憶情報が1゛′である
か“0゛′であるかを読み出すためには、これも一般に
は二つのジョゼフソン接合を含む超伝導ループで成る直
流超伝導量子干渉素子、即ちdc−3QUIDがセンス
・ゲート9として用いられ、図中、仮想線で囲って示す
ように主超伝導ループlに対し磁気結合されている。
In addition, in order to read out whether the persistent current IL is flowing in the superconducting loop 1, that is, whether the stored information in the superconducting loop 1 is 1' or 0', this is also generally done. A DC superconducting quantum interference device consisting of a superconducting loop including two Josephson junctions, that is, a dc-3QUID, is used as the sense gate 9, and the main superconducting loop l is shown surrounded by a phantom line in the figure. are magnetically coupled to each other.

これに対して、第2図に示す従来構成のジョゼフソン記
憶素子は、書き込み用制御線6.7がゲート5に対して
ではなく主超伝導ループlの当該ループ部分に対して磁
気結合している点で変わっているが、他の構扱部分は第
1図示の場合と原理的に全く同様である。従って他の構
成子は第1図中の対応する構成子と同一符号を付すに留
め、説明は省略する。
On the other hand, in the conventional Josephson memory element shown in FIG. However, other parts are basically the same as the case shown in the first figure. Therefore, the other components are given the same reference numerals as the corresponding components in FIG. 1, and the explanation thereof will be omitted.

こうした第1.2図示の従来例においては、入力情報論
理“1パの書き込みは、書き込み用制御線6,7(一般
にX座標及びY座標の各アドレス指定線を兼ねる)を流
れるアドレス指定兼書き込み指令電流Iz、Iy 、及
びループ制御線4を流れるループ制御電流乃至ゲート電
流1gが、全て所定の閾値を越えて立ち上がり揃った時
に始めて行なわれるJ 論理値“O″の書き込み、乃至記憶内容の消去は、上記
書き込みモードにおいて超伝導閉ループへのゲート電波
Igを流さないことにより行なわれる。
In the conventional example shown in FIG. 1.2, writing of the input information logic "1" is carried out through the writing control lines 6 and 7 (generally serving as addressing lines for the X and Y coordinates). Writing of logical value "O" or erasing of memory contents is performed only when the command currents Iz, Iy and the loop control current or gate current 1g flowing through the loop control line 4 all rise above a predetermined threshold. This is performed by not flowing the gate radio wave Ig to the superconducting closed loop in the write mode.

しかして、論理値“l°′の書き込みにおけるように、
上述したような三種類の電流をほんの一瞬に揃えること
は、特にこうした記憶素子を集積した回路では各信号の
伝搬経路が異なることからしても極めて難しい。
Thus, as in writing the logical value "l°',
It is extremely difficult to align the three types of current as described above in a fraction of a second, especially in a circuit in which such memory elements are integrated, since the propagation paths of each signal are different.

そこで次善の策として、回路動作の確実化を図るため、
各種類の信号電流が時間的に確実に一致する瞬間を作る
よう、あえて重なりを考えなければならないが、その場
合にもこうした従来の記憶素子では、単に各信号電流を
重ならせれば良いというものではなく、各信号の入力順
序、即ちタイミング・シーケンスが重要な問題となる。
Therefore, as a next best measure, in order to ensure circuit operation,
In order to create a moment when each type of signal current reliably coincides in time, it is necessary to deliberately consider overlapping, but even in such cases, with conventional memory elements such as this, it is sufficient to simply overlap each signal current. Rather, the important issue is the input order of each signal, that is, the timing sequence.

定められたシーケンスとは異なる順序で各信号電流が入
力してきた時には誤動作を起こす場合さえあるからであ
る。
This is because malfunctions may even occur if each signal current is input in an order different from the predetermined sequence.

実際にも、従来の試作回路においては、このタイミング
・シーケンスを所定の通りに維持するための回路設計が
極めて難しく、周辺回路に与える負相もかなり大きくな
っていた。
In fact, in conventional prototype circuits, it is extremely difficult to design a circuit to maintain this timing sequence as specified, and the negative phase applied to the peripheral circuits is also quite large.

また、情報の読み出しに就いても、センス・ケー]・9
への線路8を介してのセンス電流乃至読み出し指令電流
Isのみならず、やはり既述の書き込み時に必要とした
と同様に、ゲーI−電流rgをも加えなければならない
In addition, when it comes to reading information, sense K]・9
In addition to the sense current or read command current Is via the line 8 to the line 8, a gate I-current rg must also be applied, as was also required during the writing described above.

換言すればゲート電流1gは、書き込み回路系において
も読み出し回路系においても共に用いられなければなら
ず、そのため、その電流値範囲にかなり厳しい制約を生
ずると共に周辺駆動回路系を大変複雑にしていた。
In other words, the gate current of 1 g must be used in both the write circuit system and the read circuit system, which imposes quite severe restrictions on the current value range and makes the peripheral drive circuit system very complicated.

してみるに、こうした従来構成の持つ欠点の根幹は、結
局、書き込み指令電流、読み出し指令電流の二種類に加
えて、超伝導閉ループl自体に与える回路電流乃至ゲー
ト電流Igをも要すること、即ち、少なくとも三種類の
別個独立な信号電流系を要することにある。これを構造
的に見た立場から言iば、超伝導閉ループlが、外部回
路系から当該閉ループ内に電流を供給するための外部回
路接続用端子を要する等して、幾何構造的に独立な閉ル
ープでないことにある。
As a result, the fundamental drawback of such a conventional configuration is that in addition to the two types of write command current and read command current, a circuit current or gate current Ig given to the superconducting closed loop I itself is required. , at least three types of separate and independent signal current systems are required. From a structural standpoint, the superconducting closed loop 1 is geometrically structurally independent because it requires external circuit connection terminals to supply current from the external circuit system into the closed loop. The reason is that it is not a closed loop.

本発明はこうした事実に鑑みて成されたもので、記憶素
子自体として構成至便なものを提供するのみならず、必
要とする入力信号電流の種類を減らし、更に各信号電流
間のタイミング・シーケンスには余り敏感でなく、従っ
て周辺回路系の構成も簡栄にでき、設計自由度も増し得
る永久電流記憶型ジョゼフソン記憶素子の提供をその目
的としている。
The present invention has been made in view of these facts, and not only provides a storage element with an easy configuration, but also reduces the types of input signal currents required, and further improves the timing sequence between each signal current. The object of the present invention is to provide a persistent current memory type Josephson memory element which is not very sensitive and therefore can simplify the configuration of the peripheral circuit system and increase the degree of freedom in design.

この目的を達成するため、本発明においては、先づもっ
て交流超伝導量子干渉素子(rf−5QUID)構成を
採るデジタル情報記憶用超伝導閉ループを、幾何構造的
にも完全な閉ループとする。即ち、外部への接続端子等
は一切、持たない、完全に閉じた構造とする。
In order to achieve this object, in the present invention, first of all, a superconducting closed loop for digital information storage that adopts an AC superconducting quantum interference device (RF-5QUID) configuration is made into a completely closed loop in terms of geometric structure. That is, it has a completely closed structure without any connection terminals to the outside.

その上で、書き込みモードにおける書き込み用制御線を
当該超伝導閉ループに磁気的に結合させるようにし、ま
た、読み出しモードにおける読み出し用制御線も同様に
センス・ゲートを介してこの超伝導閉ループに磁気的に
結合させるようにする。
Then, the write control line in the write mode is magnetically coupled to the superconducting closed loop, and the read control line in the read mode is similarly magnetically coupled to this superconducting closed loop via the sense gate. so that it is combined with

このようにすると、従来のように互いに異なる系にある
信号電流間のタイミング・シーケンス、例えば回路電流
1gの系と書き込み指令室mix、Iyの系とのタイミ
ング・シーケンスや同じく回路電流1gの系と読み出し
指令電流Igの系とのタイミング・シーケンス等に精緻
な考慮を払う必要は全くなくなり、周辺回路系は著しく
簡単化する外、回路動作の信頼性も高めることができる
In this way, the timing sequence between signal currents in different systems as in the past, for example, the timing sequence between the circuit current 1g system and the write command room mix, Iy system, or the same circuit current 1g system. There is no need to pay careful consideration to timing and sequence with respect to the read command current Ig system, and not only the peripheral circuit system is significantly simplified, but also the reliability of the circuit operation can be improved.

尚、一般には書き込み指令電流及び読み出し指令電流は
、夫々、X、Yの各アドレス指定のために二つの電流成
分1x、■y;lx’、 Iy’から構成されるが、そ
うした場合、本発明の構成による記憶素子では、当該ア
ドレス指定と同時に書き込み動作、読み出し動作を行う
ことができる。
Generally, the write command current and the read command current are composed of two current components 1x, y; lx', Iy' for X and Y addressing, respectively. In the memory element having the configuration described above, a write operation and a read operation can be performed simultaneously with the address specification.

また、消去モードは、等測的に論理°゛0°゛の書き込
みと考えて良いので、本書でも消去モードは書き込みモ
ードに含めて考える。
Furthermore, since the erase mode can be isometrically considered to be a logical write of 0°, this book also considers the erase mode to be included in the write mode.

こうした本発明の思想に沿って構成された基本的な一実
施例の記憶素子10が第3図に示されている。
A basic embodiment of a memory element 10 constructed in accordance with the idea of the present invention is shown in FIG.

デジタル情報を記憶するための磁束量子の捕獲には、既
述のようにジョゼフソン素子11と超伝導線路で構成さ
れたrf−3QUID型の閉ループ10を用いる。
To capture magnetic flux quanta for storing digital information, the RF-3 QUID type closed loop 10 composed of the Josephson element 11 and the superconducting line is used as described above.

本発明の一つの特徴は、先にも述べたように、この記憶
機能に関与する主たる閉ループ10が、物理的、幾何的
にも完全な閉ループになってしすることである。即ち、
第1.2図示従来例に見られたようなゲート電流線路4
を接続するため等の外部回路への引き出し端子2,3等
は一切、これを有していない。
One feature of the present invention, as mentioned above, is that the main closed loop 10 involved in this storage function is a completely closed loop both physically and geometrically. That is,
Gate current line 4 as seen in the conventional example shown in Figure 1.2
There are no lead-out terminals 2, 3, etc. for connecting to external circuits.

このような超伝導閉ループ10に対し、記憶させるべき
入力デシタル情報の論理値の如何によってこの閉ループ
10に選択的に永久電流を誘起するため、書き込みモー
ド専用のX、Yアドレス指定兼書き込み用制御線12.
13が仮想線の枠14で囲って示すように雀に磁気結合
している。
In order to selectively induce a persistent current in the superconducting closed loop 10 depending on the logical value of the input digital information to be stored, an X, Y address designation and write control line dedicated to the write mode is provided. 12.
13 is magnetically coupled to the sparrow, as shown surrounded by a phantom line frame 14.

勿論、閉ループ10中のジョゼフソン素子11は公知の
rf−3QLIIOと同様、磁束を捕獲する時のスイ・
ソチとして働く。
Of course, the Josephson element 11 in the closed loop 10 is similar to the known RF-3QLIIO, and has a high speed when capturing magnetic flux.
Work as Sochi.

一方、読み出しモード専用のX、Yアドレス指定兼読み
出し用制御線12’、 13’の中、この場合Y座標用
のアドレス指定兼制御線13′はその線路中tこ直列に
センス・ゲー)15を有し、当該センス・ケート15は
仮想線の磁気結合部分19を介して主たる閉ループIO
に結合している。
On the other hand, among the X and Y address designation and readout control lines 12' and 13' dedicated to the read mode, in this case, the Y coordinate address designation and control line 13' has a sense gate connected in series with the line. The sense gate 15 connects to the main closed loop IO via the virtual wire magnetic coupling part 19.
is combined with

他方、X座標用のアドレス指定兼制御線12′は、仮想
線の磁気結合部分20にて示すように、閉ループ10と
の磁気結合部分18とは異なる位置にて上記センス・ゲ
ート15に磁気的に結合するべく配されている。
On the other hand, the X-coordinate addressing and control line 12' magnetically connects the sense gate 15 at a different position from the magnetic coupling section 18 with the closed loop 10, as shown by the magnetic coupling section 20 in phantom. It is arranged to be connected to.

また、センス・ゲート15にはこの実施例では三つのジ
ョゼフソン接合素子18.17.18を用いた公知の三
接合非対象dc−5QIJrDを採用しており、読み出
し感度及び読み出し電流利得の向上を図っていのダンピ
ング抵抗である。
Furthermore, in this embodiment, the sense gate 15 employs a known three-junction asymmetric dc-5QIJrD using three Josephson junction elements 18, 17, and 18, improving read sensitivity and read current gain. This is the intended damping resistance.

但し、センス・ゲー)15の構成自体はこれ悟−ること
なく、超伝導閉ループIOに対して磁気的ニー結合する
ものであれば公知既存のものは勿論、任意に構成された
もので良い。
However, the structure of the sense game 15 itself does not need to be understood, and may be of any known or existing structure as long as it is magnetically coupled to the superconducting closed loop IO.

本記憶素子の論理値”l゛の書き込み動作は次の通りで
ある。
The writing operation of the logical value "l" of this memory element is as follows.

書き込み専用のX、Y各アドレス指定兼制御線12.1
3に、アドレス指定兼書き込み指令電論パルスlx 、
 Iyを同方向に流すと、当該パルスがその過渡的状態
において電流値を増大させていくに伴い、超伝導閉ルー
プlOには相俟ってこの両電流成分が誘起する磁場を打
ち消す方向に環電流が生じ、この環電流の大きさが当該
rf−9QUI[l内のジョゼフソン素子11の直流ジ
ョゼフソン臨界電流値を越えると、当該素子11を介し
て超伝導ループlo内に磁束量子が捕獲され、永久電流
ILが生ずる。即ち、超伝導ループ10内に永久電流I
Lが流れている時を論理゛1”に対応させれば、当該論
理°“l”が記憶されたことになる。
Write-only X and Y address designation and control lines 12.1
3, address designation and write command electronic pulse lx,
When Iy flows in the same direction, as the current value increases in the transient state of the pulse, a ring current is generated in the superconducting closed loop lO in a direction that cancels out the magnetic field induced by both current components. occurs, and when the magnitude of this ring current exceeds the DC Josephson critical current value of the Josephson element 11 in the rf-9 QUI[l, magnetic flux quanta are captured in the superconducting loop lo through the element 11. , a persistent current IL occurs. That is, there is a persistent current I in the superconducting loop 10.
If the time when L is flowing corresponds to logic "1", then the logic "1" will be stored.

勿論、一旦、°“1 ”が記憶されれば、入力電流パル
スlx、Iyが立ち下がっても永久電流ILは超伝導閉
ループ10内を減衰することなく流れ続け、当該記憶状
態を維持することができる。
Of course, once ° "1" is stored, even if the input current pulses lx and Iy fall, the persistent current IL continues to flow in the superconducting closed loop 10 without attenuation, and the stored state can be maintained. can.

対して情報論理“o”の書き込み(乃至消去)は、書き
込み指令電流パルスIx 、 Iyの方向を先のように
論理“°1パを書き込んだ時とは逆方向に両者同時に変
えることで行なえる。
On the other hand, writing (or erasing) the information logic "o" can be done by simultaneously changing the direction of the write command current pulses Ix and Iy to the direction opposite to that when writing the logic "°1" as before. .

但し、一方のみが流れていなかったり、或いは互いに逆
方向に流れている時には情報“O′”及び“l゛′の書
き込みは共に生じないようにする。
However, if only one of them is not flowing, or if they are flowing in opposite directions, the writing of information "O'" and "I'" should not occur at the same time.

これは各電流の大きさや超伝導閉ループの臨界電流値、
磁気結合度等を設計的に配慮することにより実現できる
が、このようにすると、この実施例の記憶素子を一般的
なX、Y二次元平面アレイに組んで集積回路を構成した
場合、論理“l“の書き込み詩にも論理” o ”の書
き込み時にも、電流■IとIyとがどちらに流れている
かはともかく、共に正負いづれか同方向に流れて同じ大
きさとなるの゛はアドレス指定兼制御線12.13の交
点に位置する唯一つの素子のみとすることができるから
、当該アドレス指定された唯一の素子にのみ、その時の
両電流lx、Iyの正負に応じて°“0′”を書き込ん
だり“1′を書き込んだりすることができるようになる
This is the magnitude of each current, the critical current value of the superconducting closed loop,
This can be realized by considering the degree of magnetic coupling, etc. in the design, but in this way, when the memory elements of this embodiment are assembled into a general X, Y two-dimensional plane array to form an integrated circuit, the logic " Whether it's the writing of ``l'' or the logic of ``o,'' regardless of which direction the currents I and Iy are flowing, they both flow in the same direction (positive or negative) and have the same magnitude, which is both addressing and control. Since there can be only one element located at the intersection of the lines 12.13, write ° "0'" only to the addressed only element, depending on the sign of both currents lx and Iy at that time. or write "1'".

次いで本記憶素子からの記憶情報の読み出しに就いて説
明する。
Next, reading of stored information from this memory element will be explained.

読み出しモードにおいては、書き込み時に使用した制御
線12.13は全く用いず、専用のアドレス指定兼読み
出し用制御線12’、 +3’を用いる。
In the read mode, the control lines 12 and 13 used during writing are not used at all, but dedicated addressing and reading control lines 12' and +3' are used.

両線路+2’、 13’にX座標用アドレス指定兼読み
出し指令電流Ix’ とY座標用アドレス指定兼読み出
し指令電流HyI とを流すと、センス・ゲート15は
検出可能状態、即ち、そのままでは未だ電圧状態にスイ
ッチはしないが、外部から伺加的な磁気エネルギが与え
られるとこれを検出して容易に電圧状態に遷移できるイ
ネーブル状態になる。
When the X-coordinate addressing/reading command current Ix' and the Y-coordinate addressing/reading command current HyI are passed through both lines +2' and 13', the sense gate 15 is in a detectable state, that is, the voltage still remains as it is. It does not switch to the state, but when additional magnetic energy is applied from the outside, it detects this and becomes an enable state that can easily transition to the voltage state.

従って、超伝導閉ループ10に論理“1”が記憶されて
いて永久電流ILが流れていると、これが誘起する磁場
が付加されて、当該センス・ゲート15は電圧状態に遷
移し、これをもって論理゛1 ”の読み出しが行なわれ
る。
Therefore, when a logic "1" is stored in the superconducting closed loop 10 and a persistent current IL is flowing, the magnetic field induced by this is added, and the sense gate 15 changes to a voltage state, which causes a logic "1" to flow. 1” is read.

勿論、上記から顕かなように、超伝導閉ループ10内に
論理“0パが記憶されていた場合、即ち永久電流ILが
流れていない場合、或いは逆方向に波れている場合には
、センス・ゲーI・15は零電圧状態を維持し、そのこ
とをして論理“0′”の読み出しが行なわれたことにな
る。
Of course, as is clear from the above, if the logic "0" is stored in the superconducting closed loop 10, that is, if the persistent current IL is not flowing or is wavering in the opposite direction, the sense Gate I.15 remains in a zero voltage state, thereby resulting in a logic "0'" reading.

以」−1本発明を一つの図示する実施例に就き説明した
が、こうしたメカニズムから理解されるように、集積化
すべき記憶素子としてではなく、単体で使われる記憶素
子、例えばラッチ回路用の1ビツト素子とする場合には
、当然、アドレス指定の要はないから、図示実施例では
X座標用とY座標用であった二本−組の書き込み用制御
線12.13は一本化することができ、またX座標用と
Y座標用の各読み出し用制御線12’、 13’もセン
ス・ゲート15に接続する一木のみにすることができる
Although the present invention has been described with reference to one illustrated embodiment, as can be understood from this mechanism, it is not intended to be used as a memory element to be integrated, but as a memory element used alone, such as a latch circuit. When using a bit element, there is naturally no need to specify an address, so the two sets of write control lines 12 and 13, one for the X coordinate and one for the Y coordinate in the illustrated embodiment, can be combined into one. Furthermore, each of the readout control lines 12' and 13' for the X and Y coordinates can also be reduced to only one line connected to the sense gate 15.

いづれにしても、本発明によれば、超伝導閉ループ〜の
供給電流及びそのための端子類を不要とすることができ
、構成自体を簡素化すると共に、周辺回路の負担も著し
く低減でき、更には書き込みモードと読み出しモードと
で完全に分離した専用の回路系を使用することができる
ため、回路設計自由度は大幅に高められ、動作余裕も十
分に採ることができる。
In any case, according to the present invention, it is possible to eliminate the need for the supply current of the superconducting closed loop and its terminals, simplifying the configuration itself, and significantly reducing the burden on peripheral circuits. Since it is possible to use completely separate dedicated circuit systems for the write mode and the read mode, the degree of freedom in circuit design is greatly increased and a sufficient operating margin can be provided.

殊にタイミング・シーケンスに就いて何等特殊な配慮を
しないで済むことは実際」二、極めて大きな効果となる
し、また、物理的な回路基板−Lでの配置構成にも大き
な自由度を見込むことができ、小型化のための最適設計
も容易になる等、この種記憶素子を用いた集積回路実現
のための大きな布石となる。
In fact, the fact that there is no need to take any special consideration, especially regarding the timing sequence, is an extremely large effect, and it also allows for a large degree of freedom in the layout and configuration of the physical circuit board L. This will be a major stepping stone to the realization of integrated circuits using this type of memory element, as it will make it easier to create an optimal design for miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の永久電流記憶型ジョゼフソン
記憶素子の代表的二個の基本的な構成図、第3図は本発
明のジョゼフソン記憶素子の一実施例の概略構成図、で
ある。 図中、10は交流超伝導量子干渉素子構成で成る超伝導
閉ループ、11はジョゼフソン接合素子、12.13は
書き込み用制御線、12’、 13’は読み出し用制御
線、15はセンス・ゲート、14,15.20は磁気結
合部分、である。
1 and 2 are two typical basic configuration diagrams of a conventional persistent current memory type Josephson memory element, and FIG. 3 is a schematic diagram of an embodiment of the Josephson memory element of the present invention. It is. In the figure, 10 is a superconducting closed loop consisting of an AC superconducting quantum interference device configuration, 11 is a Josephson junction element, 12 and 13 are control lines for writing, 12' and 13' are control lines for reading, and 15 is a sense gate. , 14, 15.20 is a magnetic coupling part.

Claims (1)

【特許請求の範囲】 1)交流超伝導量子干渉素子構成で成り、外部への接続
端子を持たない完全に閉じたループとして形成されたデ
ジタル情報記憶用超伝導閉ループと: 該超伝導閉ループに磁気的に結合された書き込み用制御
線と; センス・ゲートを介して上記超伝導閉ループに磁気的に
結合された読み出し用制御線と:から成ることを特徴と
するジョゼフソン記憶素子。 2)書き込み用制御線及び読み出し用制御線は、夫々、
アドレス指定のためにX座標用及びY座標用各一本の計
二本一組となっていることを特徴とする特許請求の範囲
1)に記載のジョゼフソン記憶素子。
[Scope of Claims] 1) A superconducting closed loop for digital information storage, which is composed of an AC superconducting quantum interference element configuration and is formed as a completely closed loop having no connection terminal to the outside; A Josephson memory device comprising: a write control line magnetically coupled to the superconducting closed loop; and a read control line magnetically coupled to the superconducting closed loop via a sense gate. 2) The write control line and the read control line are each
The Josephson memory element according to claim 1, characterized in that the Josephson memory element comprises a set of two wires, one for the X coordinate and one for the Y coordinate, for addressing.
JP59130615A 1984-06-25 1984-06-25 Josephson memory element Pending JPS619898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130615A JPS619898A (en) 1984-06-25 1984-06-25 Josephson memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130615A JPS619898A (en) 1984-06-25 1984-06-25 Josephson memory element

Publications (1)

Publication Number Publication Date
JPS619898A true JPS619898A (en) 1986-01-17

Family

ID=15038452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130615A Pending JPS619898A (en) 1984-06-25 1984-06-25 Josephson memory element

Country Status (1)

Country Link
JP (1) JPS619898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149761A (en) * 2016-09-02 2020-09-17 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Superconducting gate memory circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361927A (en) * 1976-11-16 1978-06-02 Fujitsu Ltd Programable reading exclusive memory unit
JPS5958692A (en) * 1982-09-27 1984-04-04 Mitsubishi Electric Corp Write and erase method of josephson element storage circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361927A (en) * 1976-11-16 1978-06-02 Fujitsu Ltd Programable reading exclusive memory unit
JPS5958692A (en) * 1982-09-27 1984-04-04 Mitsubishi Electric Corp Write and erase method of josephson element storage circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149761A (en) * 2016-09-02 2020-09-17 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Superconducting gate memory circuit

Similar Documents

Publication Publication Date Title
KR100592458B1 (en) Magnetic random access memory and its reading method
US6522576B2 (en) Magneto-resistive memory array
US6178111B1 (en) Method and apparatus for writing data states to non-volatile storage devices
JPS6034195B2 (en) superconducting latch circuit
JP3169233B2 (en) Magnetic read head with magnetoresistive effect
US4974205A (en) Josephson memory and read/write circuit
JPS619898A (en) Josephson memory element
US5260264A (en) Josephson memory circuit
JP3131632B2 (en) Superconducting memory cell and superconducting memory device using the same
JPH0775043B2 (en) Data read / write circuit for magnetic disk device
US3295115A (en) Thin magnetic film memory system
JPS6387697A (en) Josephson memory
US3702992A (en) Large capacity ferromagnetic thin film memory device
US4246648A (en) Phase controlled replicate/swap gate for bubble memories
JPS63276788A (en) Read method for memory content of superconductive memory loop
JPS583313B2 (en) Jiki Bubble Souch
JPH07326184A (en) Memory device
JPH0743939B2 (en) Superconducting circuit device
SU377868A1 (en) DEVICE FOR INFORMATION SAMPLE FROM Permanent TRANSFORMER STORAGE
JPS6255824A (en) Passing direction memory switch
JP2625392B2 (en) Josephson latch circuit
JPS6292519A (en) Programmable logic device provided with test circuit
JPS5855590B2 (en) Bubble magnetic domain transfer path switching device
SU546934A1 (en) Memory matrix
JPS624796B2 (en)