JPS6196665A - Zinc alkaline primary battery - Google Patents
Zinc alkaline primary batteryInfo
- Publication number
- JPS6196665A JPS6196665A JP21972284A JP21972284A JPS6196665A JP S6196665 A JPS6196665 A JP S6196665A JP 21972284 A JP21972284 A JP 21972284A JP 21972284 A JP21972284 A JP 21972284A JP S6196665 A JPS6196665 A JP S6196665A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- conductive material
- primary battery
- resistant
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
- H01M4/08—Processes of manufacture
- H01M4/12—Processes of manufacture of consumable metal or alloy electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、負極活物質として亜鉛、電解液にアルカリ水
溶液、正極活物質として二酸化マンガン酸化銀、酸化水
銀、酸素等を用いる亜鉛アルカリ一次電池の改良に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is an improvement of a zinc-alkaline primary battery using zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and silver manganese dioxide oxide, mercury oxide, oxygen, etc. as a positive electrode active material. It is related to.
従来の技術
亜鉛アルカリ一次電池の共通した問題点として、保存中
の亜鉛負極の電解液による腐食が挙げられる。従来、i
l[鉛に4〜10重はチ程度の水銀を添加した汞化亜鉛
粉末を用いて水素過電圧を高め、実用的に問題のない程
度に腐食を抑制することが工業的な手法として採用され
ている。しかし、近年、低公害化のため、電池内の含有
水銀量を低減させることが社会的ニーズとして高まり、
種々の研究がなされている。例えば、亜鉛中に鉛、ガリ
ウム、インジウムなどを添加した合金粉末やこれらの元
素で亜鉛を被覆した粉末を用いて耐食性を向上させ、汞
化率を低減させる方法が提案されている。この方法は腐
食抑制には効果があるが、水化率を低減させることによ
り強放電性能が悪化す今
るという逆効果が見られる。これらの提案において低汞
化率とした場合に強放電性能が劣化する原因は不明確で
あるが、水銀が不足することにより、亜鉛表面と電解液
との拡散支配の電気化学的反応性が低下すること以外に
、負極の亜鉛粒子相互間、及び亜鉛粒子と集電体との電
子電導性が不十分になることが主因として考えられる。A common problem with conventional zinc-alkaline primary batteries is corrosion of the zinc negative electrode by the electrolyte during storage. Conventionally, i
[It has been adopted as an industrial method to increase the hydrogen overvoltage by using zinc chloride powder containing 4 to 10 parts of mercury to lead and to suppress corrosion to a level that poses no practical problems. There is. However, in recent years, there has been an increasing social need to reduce the amount of mercury contained in batteries in order to reduce pollution.
Various studies have been conducted. For example, methods have been proposed to improve corrosion resistance and reduce the rate of corrosion using alloy powders in which lead, gallium, indium, etc. are added to zinc, or powders in which zinc is coated with these elements. Although this method is effective in suppressing corrosion, it has the opposite effect of deteriorating strong discharge performance by reducing the hydration rate. In these proposals, the cause of the deterioration of strong discharge performance when the rate is lowered is unclear, but due to the lack of mercury, the diffusion-dominated electrochemical reactivity between the zinc surface and the electrolyte decreases. In addition to this, the main cause is thought to be insufficient electronic conductivity between the zinc particles of the negative electrode and between the zinc particles and the current collector.
上記の間覇ヲ解決するための提案は未だなぐ、後述の本
発明の内容と一見、類似した関連技術が]ブー案さnて
いるが、いづれも、目的1作用効果が基本的に異り、こ
の問題の解決にはならない。即ち、その一つとしてボタ
ン型アルカリ電池の小形化技術として水化亜鉛粉末と汞
化させた易汞化性金属粉末とを混合した負極を用いるこ
とが提案されているI(特開昭56−147363号)
。しかしこの提案は通常の亜鉛に5〜25重量%という
高市化率で水銀全含有させた粉末全負極に用い、その秤
量精度の向上と負極の充填の均一性、負極集電面の汞化
の迅速性など全目的とし、そのため5〜25重量%の汞
化率の易汞化性金属粉を汞化亜鉛の50〜100%とい
う多量に用いるものである。従って、本発明の目的とす
る低水化率での耐食性9強放電性能の充足に対しては、
多量の水銀を用いる事を前提とした提案なので適用する
ことができない。There are still no proposals to solve the above-mentioned problems, and there are some related technologies that are seemingly similar to the content of the present invention described below, but they all have fundamentally different objectives 1 and effects. , does not solve this problem. Specifically, as one of the techniques for downsizing button-type alkaline batteries, it has been proposed to use a negative electrode made of a mixture of zinc hydrate powder and easily viscous metal powder. No. 147363)
. However, this proposal uses ordinary zinc for a powder negative electrode containing all mercury at a marketable rate of 5 to 25% by weight, improving weighing accuracy, uniformity of filling of the negative electrode, and making the current collecting surface of the negative electrode less cloudy. The purpose of this is to speed up the process, and for that purpose, a large amount of easily viscous metal powder with a viscosity rate of 5 to 25% by weight is used, which is 50 to 100% of the viscosity of zinc. Therefore, in order to satisfy the corrosion resistance and discharge performance of 9+ at a low water conversion rate, which is the objective of the present invention,
This proposal cannot be applied because it is based on the assumption that a large amount of mercury will be used.
さらに関連技術として強いて付言すると、二次電池の技
術分野において汞化亜鉛負極中に金、銀。Furthermore, as a related technology, I would like to add that in the technical field of secondary batteries, gold and silver are used in zinc chloride negative electrodes.
錫など水素過電圧の大きい金属を添加することにより亜
鉛負極の充放電性を良好にする方法が提案されている(
%公昭45−6733号)。A method has been proposed to improve the charging and discharging properties of zinc negative electrodes by adding metals with high hydrogen overvoltage, such as tin (
% Kosho No. 45-6733).
上記の提案の中では、添加金属の作用は放電の際に汞化
亜鉛から離脱する水銀全アマルガムとして捕捉し、水銀
の粒の粗大化を抑制し、電気抵抗を低減、安定化させる
とともに、充電の際の亜鉛の析出核の絶対量を確保して
均一に亜鉛を析出させることを主眼としており、二次電
池のうち、特に亜鉛負極に比較的多量の水銀を含有する
場合にのみ有用な改良技術である。In the above proposal, the action of the additive metal is to capture the mercury as a total amalgam released from zinc chloride during discharge, suppress the coarsening of mercury grains, reduce and stabilize the electrical resistance, and reduce the charging The main focus is to ensure the absolute amount of zinc precipitation nuclei and uniformly deposit zinc during the process, and is an improvement that is useful only in secondary batteries, especially when the zinc negative electrode contains a relatively large amount of mercury. It's technology.
また、上記の提案で開示されている4重量%という比較
的高い汞化率の亜鉛負極では耐食性5強放電性能ともだ
支障なく得られ、一次電池としてはほぼ十分な水銀が亜
鉛負極に金座れていることが経験的に判断される。In addition, with the zinc negative electrode with a relatively high oxidation rate of 4% by weight as disclosed in the above proposal, corrosion resistance and discharge performance of 5 strong can be obtained without any problems, and almost enough mercury can be deposited on the zinc negative electrode as a primary battery. It is determined empirically that
発明が解決しようとする問題点
本発明で改良の対象とする一次電池の亜鉛負極は、水化
率が2重量%程度以下で、耐食性9強放電性能を確保す
るには水銀量が不足する場合である。従って、特殊な耐
食性合金を負極に用いた上で、強放電性能を確保するた
め水銀の機能を補完、もしくは代替できる新たな手段全
確立する必要がある。係る低汞化率の場合、放電反応に
よって亜鉛粒子の表面に水酸化亜鉛、酸化亜鉛が不溶解
物として堆積した時に、亜鉛粒子内の含有水銀が少いの
で水銀が容易には亜鉛粒子から離脱せず、粒子間に介在
して電子電導の媒体となるべき細粒状の水銀が不足して
内部抵抗が増大し、強放電性能が悪化する。従って、本
発明は関連技術として前記した提案と目的9作用効果、
及び技術分野を異にするもので、前記の提案金そのまま
一次電池に適用しても効果が乏しい。以上の如く、耐食
性と強放電性能を兼ね備えた低水化率亜鉛負極の技術を
確立し、低公害の亜鉛アルカリ一次電池全実現させるこ
とが本発明の目的である。Problems to be Solved by the Invention The zinc negative electrode of the primary battery that is the subject of improvement in the present invention has a hydration rate of about 2% by weight or less, and the amount of mercury is insufficient to ensure corrosion resistance and discharge performance of 9 strong. It is. Therefore, in addition to using a special corrosion-resistant alloy for the negative electrode, it is necessary to establish all new means that can supplement or replace the function of mercury in order to ensure strong discharge performance. In the case of such a low rate of reduction, when zinc hydroxide and zinc oxide are deposited as insoluble substances on the surface of the zinc particles due to the discharge reaction, the mercury does not easily separate from the zinc particles because the amount of mercury contained in the zinc particles is small. Otherwise, the fine granular mercury that should be interposed between the particles and serve as a medium for electronic conduction is insufficient, increasing the internal resistance and deteriorating the strong discharge performance. Therefore, the present invention combines the above-mentioned proposal as a related art, and achieves the following objectives:
However, since the proposed method is applied in a different technical field to a primary battery, it would have little effect. As described above, it is an object of the present invention to establish a technology for a zinc negative electrode with a low hydration rate that combines corrosion resistance and strong discharge performance, and to realize a complete low-pollution zinc-alkaline primary battery.
問題点を解決するだめの手段
本発明は、電解液にか性カリ、か性ソーダなどを主成分
とするアルカリ水溶液、負極活物質に亜鉛、正極活物質
に二酸化マンガン、酸化銀、酸化水銀、酸素などを用い
るいわゆる亜鉛アルカリ一次電池において、少くともイ
ンジウムを含有し、汞化率が2重量%以下の耐食性亜鉛
合金粉を主体とし、粒状、繊維状又は鱗片状で少くとも
表面が耐アルカリ性、易汞化性でかつ亜鉛より貴な金属
又は合金からなる導電材を混在させ友負極を用いたこと
を特徴とするものである。さらに詳述すると、導電材の
少くとも表面層の物質は銀、タリウム、ガリウム、イン
ジウム、錫、鉛、銅、金、又はこれらを主成分として含
む例えば、真鍮の如き合金である。又、導電材は表面の
みならず全体が上記の物質で構成されている場合の他に
、中心部が難汞化性の固体状物質で、その表面層が上記
の物質で被覆された形態を採ることができる。例えば、
中心部の材質としては、ポリエチレン、ポリプロピレン
、ナイロン、ポリエステル、アクリル樹脂、ポリスチレ
ン樹脂、フッ素系樹脂、セルロース及びその誘導体など
の耐アルカリ性樹脂、アルミナの如き耐アルカリ性セラ
ミック、ガラスなど非導電性のものでもよい。さらに導
電性物質としては炭素、及び炭素を導電フィラーとして
用いた耐アルカリ性樹脂、金属では雛型化性で亜鉛より
貴な金属、例えばニッケル、ステンレス鋼、あるいはニ
ッケルを主成分とする合金などを用いることができる。Means to Solve the Problems The present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as its main components as an electrolyte, zinc as a negative electrode active material, and manganese dioxide, silver oxide, mercury oxide, or mercury oxide as a positive electrode active material. In so-called zinc-alkaline primary batteries that use oxygen, etc., the main component is a corrosion-resistant zinc alloy powder containing at least indium and having an agglomeration rate of 2% by weight or less, which is granular, fibrous, or scaly and has at least an alkali-resistant surface. It is characterized by the use of a negative electrode mixed with a conductive material made of a metal or alloy that is easily oxidized and nobler than zinc. More specifically, the material of at least the surface layer of the conductive material is silver, thallium, gallium, indium, tin, lead, copper, gold, or an alloy containing these as main components, such as brass. In addition, in addition to cases where the conductive material is composed not only of the surface but also of the above-mentioned substances, there are also cases where the center is made of a solid substance that is resistant to deterioration, and the surface layer is coated with the above-mentioned substances. You can take it. for example,
Materials for the core include polyethylene, polypropylene, nylon, polyester, acrylic resin, polystyrene resin, fluorine resin, alkali-resistant resins such as cellulose and its derivatives, alkali-resistant ceramics such as alumina, and non-conductive materials such as glass. good. Furthermore, as conductive substances, carbon and alkali-resistant resins using carbon as a conductive filler are used, and as metals, metals that can be modeled and are more noble than zinc, such as nickel, stainless steel, or alloys mainly composed of nickel, are used. be able to.
こ八らの中心部の物質の粒状、短繊維状、あるいは鱗片
状のものに前記の易うP化性金属の表面層を形成して導
電材とすることができるが、その方法として、中心部が
非電導性の物質の場合は例えば化学メッキ、あるいは化
学メッキ層の上に電気メッキで表面層を形成すればよい
。It is possible to form a surface layer of the above-mentioned easily phosphorizable metal on the particles, short fibers, or scales of the material at the center of the kohachi to make it a conductive material. If the part is made of a non-conductive material, a surface layer may be formed by, for example, chemical plating or electroplating on the chemical plating layer.
また、中心部が導電性物質である場合は上記の他に、電
気メッキだけでも表面層を形成できる。Further, when the center portion is made of a conductive material, the surface layer can be formed by electroplating alone in addition to the above.
尚、本発明で用いる耐食性亜鉛合金粉は、インジウムを
はじめとする添υ口元素を溶融亜鉛中に添加してほぼ均
一な分布で添加したのち噴射法で粉体化したもの、ある
いは純亜鉛粉、又は亜鉛合金粉の表面に置換メッキや蒸
着、あるいは汞化時の水銀に含有させて添加元素を付着
させたもののいづれ音用いても同様の効果が得られる。The corrosion-resistant zinc alloy powder used in the present invention may be obtained by adding additive elements such as indium to molten zinc in a nearly uniform distribution and then pulverizing it by an injection method, or pure zinc powder. Alternatively, the same effect can be obtained by applying an additive element to the surface of zinc alloy powder by displacement plating or vapor deposition, or by incorporating it into mercury at the time of oxidation.
作用
本発明において耐食性亜鉛合金粉としてインジウムを含
有する合金を使用する理由は、2重量%以下の低水化率
で亜鉛アルカリ一次電池用負極として十分な耐食性を確
保するために最も実現性が高いためである。即ち、イン
ジウムは亜鉛の耐食性を高めるための合金添加元素とし
て、鉛、タリウム、カドミウム、ガリウムなど他の添加
元素に較べて最も効果が大きくインジウムの添加なしに
は防食の決め手となる亜鉛合金を得ることは困難である
。勿論、インジウムを単に添加した合金よりも、さらに
上記の各元素やアルミニウム、カルノウムなどとインジ
ウムを適切な組合せで添加することにより、より耐食性
のすぐれた亜鉛合金が得られ、これらの耐食性亜鉛合金
粉を用いることが、本発明の一つの重要な要件である。Function The reason why an alloy containing indium is used as the corrosion-resistant zinc alloy powder in the present invention is that it is the most practical to ensure sufficient corrosion resistance as a negative electrode for zinc-alkaline primary batteries with a low hydration rate of 2% by weight or less. It's for a reason. In other words, indium is the most effective alloy additive element for increasing the corrosion resistance of zinc compared to other additive elements such as lead, thallium, cadmium, and gallium, and without the addition of indium, a zinc alloy can be obtained that is the decisive factor in corrosion resistance. That is difficult. Of course, by adding indium in an appropriate combination with each of the above elements, aluminum, carnoum, etc., a zinc alloy with better corrosion resistance can be obtained than with an alloy simply adding indium, and these corrosion-resistant zinc alloy powders One important requirement of the present invention is to use .
前記の如く、2重量%以下の低水化率の亜鉛負極ノ耐食
性を確保した上で、さらに強放電性能をも充足させねば
ならず、そのための有効な手段として先述の導電材を負
極に混在させるのが本発明の他の重要な要件である。前
述の如く、亜鉛負極の放電反応に伴い、亜鉛粒子の表面
に放電生成物が堆積し粒子間の電気的導通が悪くなるが
、この問題を、従来は4〜10重量−程度の水化率で亜
鉛中に水銀を含有させ、放電と同時に亜鉛粒子の表面層
から遊離して細粒状となった水銀を亜鉛粒子間に介在さ
せることにより電子電導を確保して解決してきた。しか
し2重量%以下の低うR化率の場合は放電によって消費
される亜鉛粒子表面層に含有されている水銀は亜鉛粒子
の内部に拡散するのが大部分で、亜鉛粒子間の導通の媒
体となり得る細粒状水銀の遊離が殆んど行われない。そ
の結果、負極活物質問の電子電導が不足し、強放電性能
が悪化する。本発明で用いる導電材の役割の一つは上記
の遊離水銀の作用全補完もしくは代替するもので、その
ために、下記の条件全極えた導電材を用いる。即ち、耐
アルカリ性、導電性が良く、亜鉛に優先して放電するこ
となく、放電末期1で消耗しないこと、さらに水素過電
圧が高いか、容易に水化され、汞化状態で水素過電圧が
高くなり、局部作用により亜鉛を腐食させないこと、さ
らには、亜鉛粒子中に混在させた場合、各粒子間の接触
の媒体となり得る形状であることが必要である。As mentioned above, in addition to ensuring the corrosion resistance of the zinc negative electrode with a low hydration rate of 2% by weight or less, it is also necessary to satisfy strong discharge performance, and an effective means for achieving this is to mix the above-mentioned conductive material in the negative electrode. Another important requirement of the present invention is to make it possible. As mentioned above, as a result of the discharge reaction of the zinc negative electrode, discharge products accumulate on the surface of the zinc particles and electrical conductivity between the particles worsens, but this problem has conventionally been solved by reducing the hydration rate to about 4 to 10% by weight. The problem has been solved by incorporating mercury into zinc and interposing fine granular mercury, which is liberated from the surface layer of the zinc particles upon discharge, between the zinc particles to ensure electronic conduction. However, in the case of a low porosity of 2% by weight or less, most of the mercury contained in the surface layer of the zinc particles consumed by discharge diffuses into the interior of the zinc particles, and becomes a medium for conduction between the zinc particles. There is almost no release of fine particulate mercury, which can become mercury. As a result, the electronic conductivity of the negative electrode active material becomes insufficient, and the strong discharge performance deteriorates. One of the roles of the conductive material used in the present invention is to completely complement or replace the above-mentioned effects of free mercury, and for this purpose, a conductive material that satisfies all of the following conditions is used. In other words, it has good alkali resistance and conductivity, does not discharge preferentially to zinc, and is not consumed in the final discharge stage 1, and has a high hydrogen overvoltage or is easily hydrated and has a high hydrogen overvoltage in the hydrated state. It is necessary that zinc not be corroded by local action, and furthermore, that it be in a shape that can serve as a medium for contact between each particle when mixed in zinc particles.
さらに好ましくは導電材の表面層に高濃度の水銀が担持
され、中心部に水銀を存在させず、少量の水銀で導電材
を汞化するのみで実質的な機能を果させるため表面層の
みを易汞化性金属で被覆した導電材を用いるのが、低公
害化に有効である。More preferably, a high concentration of mercury is supported on the surface layer of the conductive material, and no mercury is present in the center, so that only the surface layer is allowed to perform its substantial function by simply turning the conductive material into a liquid with a small amount of mercury. Using a conductive material coated with an easily oxidized metal is effective for reducing pollution.
先に列記した導電材は係る条件を満したもので、これら
を用いた本発明の作用効果についてさらに説明を加える
。耐食性低水化亜鉛合金粉末と完配の導電材が相互に接
触した状態で混在した加圧成型負極、もしくはゲル状負
極として電解液が負極に接触すると、汞化亜鉛合金粉か
ら水銀が徐々に拡散して導電材の表面層が汞化される。The conductive materials listed above satisfy these conditions, and the effects of the present invention using these materials will be further explained. When an electrolyte comes into contact with a pressure-molded negative electrode in which a corrosion-resistant low-hydration zinc alloy powder and a fully conductive material are mixed in contact with each other, or a gel-like negative electrode, mercury is gradually released from the zinc alloy powder. It diffuses and the surface layer of the conductive material becomes transparent.
従って、! 電池構成時、あるいは構成直後
に上記の水化が進行して導電材と亜鉛合金粉との局部腐
食のない状態が形成され、電池保存時の負極の耐食性が
確保される。この局部腐食のない状態をより確実に形成
するには、予め導電材の表面t =p−化したのち、低
汞化亜鉛合金粉に混在させて電池を構成するのが良く、
無汞化もしくはこれに近い水化率の亜鉛合金粉を負極活
物質に用いる場合は特にこの方法が必要である。Therefore,! During or immediately after battery construction, the above hydration progresses to form a state in which there is no local corrosion between the conductive material and the zinc alloy powder, ensuring corrosion resistance of the negative electrode during battery storage. In order to more reliably form this state free of local corrosion, it is best to make the surface of the conductive material t=p- in advance and then mix it with the low-corrosion zinc alloy powder to form a battery.
This method is especially necessary when a zinc alloy powder with a hydration rate of zero or a hydration rate close to this is used as the negative electrode active material.
次いで、この電池全放電すると亜鉛合金粉の表面に電気
抵抗の大きい反応生成物が徐々に堆積するが、これにつ
れて負極の見掛は上の体積が著しく増大し、その圧縮力
を受けて亜鉛合金粉の粒子間に介在させた導電材が上記
の堆積層に部分的に圧入されて亜鉛合金粉の未反応部分
と接触を保ち続ける。これにより、上記の高抵抗の堆積
層にさまたげられることなく、各亜鉛合金粉の活性表面
の相互間の電気的導通が放電初期から末期に至るまで確
実に維持され、実質的に、従来法で遊離水銀の細粒が果
して来た機能を導電材で補完もしくは代行させることが
できる。かくして、水銀含有量の少い状態でも放電中の
実質的な反応表面積の拡大が可能となり、内部抵抗の増
大も抑制されるので、特に大電流密度でも放電電圧が高
く、大容量の電池特性が得られる。又、導電材の役割と
して、上記の亜鉛合金粉相互間の導通媒体としての機能
の他に負極集電体と亜鉛合金粉との電気的導通を維持す
る役割があり、その双方の役割全果すことによって負極
の特性が総合的に改善される。Next, when the battery is fully discharged, reaction products with high electrical resistance are gradually deposited on the surface of the zinc alloy powder, and as a result, the apparent volume of the negative electrode increases significantly, and under the compression force, the zinc alloy powder A conductive material interposed between the powder particles is partially press-fitted into the deposited layer and remains in contact with the unreacted portions of the zinc alloy powder. As a result, electrical continuity between the active surfaces of each zinc alloy powder is reliably maintained from the early stage to the final stage of discharge, without being hindered by the above-mentioned high-resistance deposited layer. The function previously performed by fine particles of free mercury can be supplemented or replaced by a conductive material. In this way, even with a low mercury content, it is possible to substantially expand the reaction surface area during discharge, and the increase in internal resistance is also suppressed, resulting in a battery with high discharge voltage and large capacity, especially at high current densities. can get. In addition, the role of the conductive material is to maintain electrical continuity between the negative electrode current collector and the zinc alloy powder in addition to the function as a conductive medium between the zinc alloy powders, and the conductive material fulfills both roles. As a result, the characteristics of the negative electrode are comprehensively improved.
即ぢ、従来の比較的汞化率の高い亜鉛負極の場合には、
放電に伴って遊離した水銀が集電体との導通の媒体とし
て作用していたが、本発明の場合は、それに代る媒体と
して集電体の近傍に存在する導電材がその近傍の亜鉛合
金粉と集電体表面との電気的導通全果す。その働きは前
述の亜鉛合金相互間の場合と同様に考えて理解できるの
で説明全省略する。以上のように、本発明は負極に低木
化率の耐食性亜鉛合金を用い、本文詳記の導電材をこれ
に混在させることにより、放電性能と貯蔵性を兼ね備え
た亜鉛アルカリ一次電池を実現したもので、以下、実施
例により詳細に説明する。In other words, in the case of the conventional zinc negative electrode, which has a relatively high conversion rate,
Mercury liberated during discharge acts as a medium for conduction with the current collector, but in the case of the present invention, as an alternative medium, the conductive material present near the current collector is a zinc alloy in the vicinity. Complete electrical continuity between the powder and the surface of the current collector. The function can be understood by thinking in the same way as the case between zinc alloys described above, so a complete explanation will be omitted. As described above, the present invention has realized a zinc-alkaline primary battery that has both discharge performance and storability by using a corrosion-resistant zinc alloy with a low wood reduction rate for the negative electrode and mixing it with the conductive material described in detail in the text. This will be explained in detail below using examples.
実施例
第1図は本発明の効果を確認するための実験に用いた筒
形のアルカリマンガン電池の断面図であり、第2図は要
部を拡大した図である。第1.第2図において、1は鉄
にニッケルメノキヲ施した正極ケースで、内部には二酸
化マンガンに黒鉛全混合して加圧成型した正極2、ポリ
プロピレンの不織布からなるセパレータ3、セルロース
製底板4、カルボキシルメチルセルロースでゲル化した
か性カリ水溶液の電解液に後述する各種のノjシ化もし
くは無汞化の亜鉛合金粉5と各種の導電材6を混合して
分散させたゲル状の負極7を収容している。第2図は粒
状の導電材6を用いた場合の負極の一部7′ヲ拡大した
ものである。8はケース1の開口部を封口したポリプロ
ピレン製の封口板で、中央部には真鍮製の負極集電子9
を固定している。EXAMPLE FIG. 1 is a sectional view of a cylindrical alkaline manganese battery used in an experiment to confirm the effects of the present invention, and FIG. 2 is an enlarged view of the main parts. 1st. In Fig. 2, numeral 1 is a positive electrode case made of iron with nickel agate, inside of which is a positive electrode 2 made of a mixture of graphite and manganese dioxide and pressure molded, a separator 3 made of polypropylene non-woven fabric, a bottom plate 4 made of cellulose, and a bottom plate made of carboxymethyl cellulose. A gel-like negative electrode 7 is housed in which various kinds of non-oxidized or non-oxidized zinc alloy powders 5 and various conductive materials 6 are mixed and dispersed in an electrolyte of a gelled caustic potassium aqueous solution. There is. FIG. 2 is an enlarged view of a part 7' of the negative electrode when granular conductive material 6 is used. 8 is a sealing plate made of polypropylene that seals the opening of the case 1, and a negative electrode current collector 9 made of brass is placed in the center.
is fixed.
10は負極端子板、1111″i正極端子板、12.1
3は絶縁リング、14は熱収縮性樹脂チー−ブ、16は
金属製外装缶である。試作した電池は単3形のアルカリ
マンガン電池で、比較例として同時に試作した電池のう
ちには負極に導電材6を用いないものや、伸鉛合金粉6
の代りに高純度亜鉛(99,997多以上)の粉末を用
いたものがあるが、電池の構成は基本的には第1図と同
様である。亜鉛合金粉及び純亜鉛粉の粒度はいづれも5
0〜150メツツユで、これらの粉末は以下の方法で作
成した。即ち、純度99 、997 %以上の亜鉛地金
に後に第1表に示す元素全添加して各種の亜鉛合金を作
成し、約500”Cで溶融して圧縮空気に工り噴射して
粉体化し、上記の粒度範囲にふるい分けした。次いで、
上記の粉末に汞化を必要とする場合には、か性カリの1
0重量%水溶液中に上記粉体を投入し、攪拌し乍ら所定
量の水銀を滴下して汞化した。その後水洗し、アセトン
で置換して乾燥し、汞化亜鉛粉又は汞化亜鉛合金粉を作
成した。導電材には100〜300メツンユの銅、又は
銀の粉末、あるいは100〜300メツシーのガラスの
粉末の表面に銅を無電解メッキで厚さ、 1〜
2μ付着させたもの、さらには繊維径6〜20μ、長さ
2〜5UILの黒鉛繊維の表面に無電解メッキで厚さ0
.5〜1μの銅を付着させたものを用いた。又、導電材
を電池構成前に予め汞化する場合は、昇水を溶解した希
塩酸溶液中に銅粉又は銅を付着させた黒鉛繊維を投入し
て攪拌し、水洗。10 is a negative terminal plate, 1111″i is a positive terminal plate, 12.1
3 is an insulating ring, 14 is a heat-shrinkable resin tube, and 16 is a metal exterior can. The prototype batteries were AA-sized alkaline manganese batteries; among the batteries prototyped at the same time as comparative examples, there were batteries that did not use conductive material 6 for the negative electrode, and batteries that did not use conductive material 6 for the negative electrode.
Although there is a battery using powder of high purity zinc (more than 99,997) in place of the battery, the structure of the battery is basically the same as that shown in FIG. The particle size of both zinc alloy powder and pure zinc powder is 5.
These powders, ranging from 0 to 150 Metsutsuyu, were made in the following manner. That is, various zinc alloys are prepared by adding all the elements listed in Table 1 to zinc ingots with a purity of 99. and sieved to the above particle size range.
If the above powder requires oxidation, use 1 part of caustic potash.
The above powder was put into a 0% by weight aqueous solution, and while stirring, a predetermined amount of mercury was added dropwise to form a solution. Thereafter, it was washed with water, substituted with acetone, and dried to produce a zinc oxide powder or a zinc oxide alloy powder. For the conductive material, copper or silver powder of 100 to 300 meters, or glass powder of 100 to 300 meters is electrolessly plated with copper to a thickness of 1 to 300 meters.
Electroless plating is applied to the surface of graphite fibers with a fiber diameter of 6 to 20 μ and a length of 2 to 5 UIL to a thickness of 0.
.. The one to which 5 to 1 μm of copper was attached was used. In addition, if the conductive material is to be pre-condensed before constructing the battery, copper powder or copper-attached graphite fibers are added to a dilute hydrochloric acid solution containing dissolved water, stirred, and washed with water.
乾燥処理して銅を汞化した。導電材中の水銀の量は銅粉
の場合、重量比で銅に対し4チ、調音付着させた黒鉛繊
維の場合、重量比で2%とした。After drying, the copper was converted into water. The amount of mercury in the conductive material was 4% by weight relative to copper in the case of copper powder, and 2% by weight in the case of graphite fibers attached with tuning.
第1表に、これらの材料を用いて試作した単3形アルカ
リマンガン電池の内訳を示す。尚、各電池の負極中の亜
鉛重量は2.6f、導電材は、b−化前の重量で亜鉛に
対し4%(0,1y−)に統一した。Table 1 shows the details of the AA alkaline manganese batteries prototyped using these materials. The weight of zinc in the negative electrode of each battery was 2.6f, and the weight of the conductive material was unified to 4% (0.1y-) relative to zinc by weight before b- conversion.
又、汞化率は亜鉛の重量に対する水銀の重量係、亜鉛合
金中の添加元素の含有量は、亜鉛合金の重量に対する重
量%で表わした。Further, the oxidation rate was expressed as the ratio of the weight of mercury to the weight of zinc, and the content of added elements in the zinc alloy was expressed as weight % with respect to the weight of the zinc alloy.
以下余白
次いで、第1表のように試作した各電池全45゛Cで3
力月間貯蔵後、20’Cにおいて1QΩの連続放電性能
、電池の膨張度合い全各々評価した。Below are the margins, and as shown in Table 1, each of the prototype batteries was tested at 45°C.
After storage for one month, the continuous discharge performance of 1 QΩ and the degree of expansion of the battery were evaluated at 20'C.
第2表に−tの評価結果を示す。Table 2 shows the evaluation results for -t.
第2表
第1表、第2表に見られるように、比較例とし骨
で挙げたうち、インジウムを含む耐食性亜鉛音用いない
で、2係という低汞化率の場合(比較例1゜3)は導電
材を用いているにもかかわらず、放電性能が著しく悪い
。これは、電池の総高変化(膨張)が、他にくらべて大
きいことからも判るように負極の耐食性が乏しく、亜鉛
の腐食反応に伴う水素ガスの発生量が多いため、発電要
素中に気体が介在することや内圧上昇による変形で接触
不良が起こることにエリ放電反応が阻害されているもの
と考えられる。又、比較例2はノP化率が4チと高く、
負極の耐食性もほぼ十分で、放電性能も実施例に対して
遜色ないが電池−個当り、100111gという多量の
水銀全必要とするのが欠点である。Table 2 As shown in Tables 1 and 2, among the comparative examples listed below, the case where corrosion-resistant zinc containing indium was not used and the reduction rate was as low as 2% (Comparative Example 1゜3 ) has extremely poor discharge performance despite using a conductive material. This is because the corrosion resistance of the negative electrode is poor, as can be seen from the fact that the total height change (expansion) of the battery is larger than that of other batteries, and a large amount of hydrogen gas is generated due to the corrosion reaction of zinc. It is thought that the EL discharge reaction is inhibited by the presence of the metal and by the deformation caused by the increase in internal pressure, which causes poor contact. In addition, Comparative Example 2 had a high conversion rate of 4,
The corrosion resistance of the negative electrode is almost sufficient, and the discharge performance is comparable to that of the examples, but the disadvantage is that a large amount of mercury, 100111 g, is required per battery.
さらに、比較例4はインジウムを含む耐食性合金を用い
ているので、2チの汞化率で耐食性は十分であるが、放
電反応の進行に伴う負極の反応抵抗、 の増大により満
足な放電性能が得られない。これらの比較例の欠点を、
実施例の場合はすべて改善した特性を示している。すな
わち、インジウムを含む耐食性亜鉛合金を用いることに
J:す、低ノ1.′化率での耐食性を確保し、導電材の
作用によりすぐnた放電性能が得られる。中でも、導電
材の表面−のみに易汞化性金属を付着させた場合(実施
例1〜了)と、導電材が易汞化性金属のみで構成されて
いる場合(実施例8〜9)とでは、同一量の水銀を用い
て比較すると耐食効果と放電性能の改善効果が特に大き
い。又、当然のこと乍ら、実施例のうち比軟的、水化率
の高いものが良好ではあるが汞化率が0.5チ以下でも
、導電材を予め少量の水銀を用いて汞化して使用すれば
、実用的に十分な性能が得られることを示している。Furthermore, since Comparative Example 4 uses a corrosion-resistant alloy containing indium, the corrosion resistance is sufficient at a oxidation rate of 2. However, as the discharge reaction progresses, the reaction resistance of the negative electrode increases, resulting in unsatisfactory discharge performance. I can't get it. The disadvantages of these comparative examples are
All of the examples show improved characteristics. That is, the use of a corrosion-resistant zinc alloy containing indium is the lowest point. Corrosion resistance is ensured at a low corrosion rate, and excellent discharge performance can be obtained due to the action of the conductive material. Among these, cases in which the easily-fading metal is attached only to the surface of the conductive material (Examples 1 to 3) and cases in which the conductive material is composed only of the easily-fading metal (Examples 8 to 9) When compared using the same amount of mercury, the corrosion resistance effect and the improvement effect on discharge performance are particularly large. Of course, among the examples, those with relatively soft properties and a high hydration rate are good, but even if the hydration rate is less than 0.5 inch, the conductive material may be hydrated using a small amount of mercury in advance. It has been shown that sufficient performance can be obtained for practical use if used in the same way.
発明の効果
以上のように、本発明によれば、負極亜鉛の汞化率を低
減し、低公害で性能のすぐれた亜鉛アルカリ一次電池を
得ることができる。Effects of the Invention As described above, according to the present invention, a zinc-alkaline primary battery with low pollution and excellent performance can be obtained by reducing the filtration rate of negative electrode zinc.
第1図は本発明の実施例に用いた筒形のアルカリマンガ
ン電池の一部を断面にした側面図、第2図は同負極の要
部全拡大して示した図である。
2゛°・・・正極、3・・・・・セパレータ、5・・・
・・・耐食性亜鉛合金粉、6・・・・・・導電材、了・
・・・・・ゲル状負極。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第
1 図
第2図
5−−−一耐食ノIi豆誰紛
6、−一一一導電材FIG. 1 is a partially cross-sectional side view of a cylindrical alkaline manganese battery used in an example of the present invention, and FIG. 2 is an enlarged view of all essential parts of the same negative electrode. 2゛°...Positive electrode, 3...Separator, 5...
... Corrosion-resistant zinc alloy powder, 6 ... Conductive material, Completed.
...Gel-like negative electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 Figure 5--1 Corrosion resistant material 6, -111 Conductive material
Claims (9)
食性亜鉛合金粉を主体とし、これに粒状、繊維状又は鱗
片状で少くともその表面が耐アルカリ性、易汞化性で亜
鉛より貴な金属又は合金からなる導電材を混在した亜鉛
負極を有する亜鉛アルカリ一次電池。(1) Mainly consists of corrosion-resistant zinc alloy powder that has been bleached with 2% by weight or less of mercury or has not been bleached, and that has a granular, fibrous or scaly shape with at least the surface being alkali-resistant and easy-graining. A zinc-alkaline primary battery that has a zinc negative electrode mixed with a conductive material made of a metal or alloy nobler than zinc.
特許請求の範囲第1項記載の亜鉛アルカリ一次電池。(2) The zinc-alkaline primary battery according to claim 1, wherein the corrosion-resistant zinc alloy contains at least indium.
ガリウム、インジウム、鉛、金又はこれらを主成分とす
る合金からなる群より選ばれた一種以上で、構成されて
いる特許請求の範囲第1項又は第2項記載の亜鉛アルカ
リ一次電池。(3) At least the surface of the conductive material is copper, silver, tin, thallium,
The zinc-alkaline primary battery according to claim 1 or 2, which is composed of one or more selected from the group consisting of gallium, indium, lead, gold, or alloys containing these as main components.
特許請求の範囲第3項記載の亜鉛アルカリ一次電池。(4) The zinc-alkaline primary battery according to claim 3, in which the central portion of the conductive material is made of a solid material that is resistant to deterioration.
4項記載の亜鉛アルカリ一次電池。(5) The zinc-alkaline primary battery according to claim 4, wherein the center of the conductive material is glass.
る特許請求の範囲第4項記載の亜鉛アルカリ一次電池。(6) The zinc-alkaline primary battery according to claim 4, wherein the center portion of the conductive material is made of alkali-resistant plastic.
として含む導電性、耐アルカリ性プラスチックからなる
特許請求の範囲第4項記載の亜鉛アルカリ一次電池。(7) The zinc-alkaline primary battery according to claim 4, wherein the center of the conductive material is made of carbon or a conductive, alkali-resistant plastic containing carbon as a conductive filler.
カリ性金属又は合金である特許請求の範囲第4項記載の
亜鉛アルカリ一次電池。(8) The zinc-alkaline primary battery according to claim 4, wherein the central portion of the conductive material is made of a metal or alloy that is resistant to weathering and is nobler than zinc and resistant to alkali.
許請求の範囲第1〜第8項のいずれかに記載の亜鉛アル
カリ一次電池。(9) The zinc-alkaline primary battery according to any one of claims 1 to 8, wherein at least the surface of the conductive material is coated before battery construction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21972284A JPS6196665A (en) | 1984-10-18 | 1984-10-18 | Zinc alkaline primary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21972284A JPS6196665A (en) | 1984-10-18 | 1984-10-18 | Zinc alkaline primary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6196665A true JPS6196665A (en) | 1986-05-15 |
Family
ID=16739941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21972284A Pending JPS6196665A (en) | 1984-10-18 | 1984-10-18 | Zinc alkaline primary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6196665A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2634595A1 (en) * | 1988-07-25 | 1990-01-26 | Cipel | ELECTROCHEMICAL GENERATOR WITH ALKALINE ELECTROLYTE AND NEGATIVE ELECTRODE OF ZINC |
FR2634596A1 (en) * | 1988-07-25 | 1990-01-26 | Cipel | ELECTROCHEMICAL GENERATOR WITH ALKALINE ELECTROLYTE AND NEGATIVE ELECTRODE OF ZINC |
FR2634597A1 (en) * | 1988-07-25 | 1990-01-26 | Cipel | Electrochemical generator with an alkaline electrolyte and zinc negative electrode |
JPH0670650U (en) * | 1991-11-03 | 1994-10-04 | 稔 石田 | Chair with hanger |
WO1998020569A1 (en) * | 1996-11-01 | 1998-05-14 | Eveready Battery Company, Inc. | Zinc anode for an electrochemical cell |
JP2014026951A (en) * | 2011-08-23 | 2014-02-06 | Nippon Shokubai Co Ltd | Zinc negative electrode mixture, and battery arranged by use thereof |
JP2015072832A (en) * | 2013-10-03 | 2015-04-16 | 株式会社日本触媒 | Composition for zinc negative electrode and zinc negative electrode |
JP2021002499A (en) * | 2019-06-24 | 2021-01-07 | Fdk株式会社 | Alkali battery |
-
1984
- 1984-10-18 JP JP21972284A patent/JPS6196665A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2634595A1 (en) * | 1988-07-25 | 1990-01-26 | Cipel | ELECTROCHEMICAL GENERATOR WITH ALKALINE ELECTROLYTE AND NEGATIVE ELECTRODE OF ZINC |
FR2634596A1 (en) * | 1988-07-25 | 1990-01-26 | Cipel | ELECTROCHEMICAL GENERATOR WITH ALKALINE ELECTROLYTE AND NEGATIVE ELECTRODE OF ZINC |
FR2634597A1 (en) * | 1988-07-25 | 1990-01-26 | Cipel | Electrochemical generator with an alkaline electrolyte and zinc negative electrode |
JPH0670650U (en) * | 1991-11-03 | 1994-10-04 | 稔 石田 | Chair with hanger |
WO1998020569A1 (en) * | 1996-11-01 | 1998-05-14 | Eveready Battery Company, Inc. | Zinc anode for an electrochemical cell |
US6022639A (en) * | 1996-11-01 | 2000-02-08 | Eveready Battery Company, Inc. | Zinc anode for an electochemical cell |
JP2014026951A (en) * | 2011-08-23 | 2014-02-06 | Nippon Shokubai Co Ltd | Zinc negative electrode mixture, and battery arranged by use thereof |
JP2015072832A (en) * | 2013-10-03 | 2015-04-16 | 株式会社日本触媒 | Composition for zinc negative electrode and zinc negative electrode |
JP2021002499A (en) * | 2019-06-24 | 2021-01-07 | Fdk株式会社 | Alkali battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0172255B1 (en) | Zinc alkaline battery | |
JP2003502808A (en) | Alkaline battery with improved anode | |
JP3215446B2 (en) | Zinc alkaline battery | |
JP3215448B2 (en) | Zinc alkaline battery | |
JP3215447B2 (en) | Zinc alkaline battery | |
JPS6196665A (en) | Zinc alkaline primary battery | |
JPH05135776A (en) | Cylindrical alkaline battery | |
JP2507161B2 (en) | Zinc alloy for zinc alkaline battery, method for producing the same, and zinc alkaline battery using the same | |
US3617384A (en) | Zinc alkaline secondary cell | |
US4384028A (en) | Liquid cathode electrochemical cell additives | |
JP3261410B2 (en) | Method for producing hydrogen storage electrode | |
JPH0745282A (en) | Nickel electrode for alkaline storage battery | |
JPH0513070A (en) | Alkaline battery | |
JPH0369143B2 (en) | ||
JPS6123707A (en) | Production of zinc alloy powder for negative electrode of alkali battery without addition of mercury | |
JPH05299075A (en) | Zinc alkaline battery | |
JPS636749A (en) | Zinc alkaline battery | |
JP5486329B2 (en) | Flat battery | |
JPS636747A (en) | Zince alkaline battery | |
JPH01279564A (en) | Manufacture of amalgamated zinc alloy powder | |
JPH0234433B2 (en) | ||
JPS60177553A (en) | Zinc alkaline primary battery | |
JPS58131652A (en) | Alkaline cell | |
JPH0534778B2 (en) | ||
JPH0584027B2 (en) |