JPS6186403A - Ozonizer constructed with ceramic - Google Patents
Ozonizer constructed with ceramicInfo
- Publication number
- JPS6186403A JPS6186403A JP20855184A JP20855184A JPS6186403A JP S6186403 A JPS6186403 A JP S6186403A JP 20855184 A JP20855184 A JP 20855184A JP 20855184 A JP20855184 A JP 20855184A JP S6186403 A JPS6186403 A JP S6186403A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- corona discharge
- ozonizer
- substrate
- discharge electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 91
- 230000006698 induction Effects 0.000 claims abstract description 29
- 230000001590 oxidative effect Effects 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 89
- 229910052751 metal Inorganic materials 0.000 claims description 49
- 239000002184 metal Substances 0.000 claims description 49
- 239000012809 cooling fluid Substances 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 18
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 239000010937 tungsten Substances 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 229910052573 porcelain Inorganic materials 0.000 claims description 4
- 238000007639 printing Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 claims 1
- 238000005192 partition Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 abstract description 22
- 238000007599 discharging Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 38
- 230000005684 electric field Effects 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241001274216 Naso Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/10—Dischargers used for production of ozone
- C01B2201/12—Plate-type dischargers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/20—Electrodes used for obtaining electrical discharge
- C01B2201/22—Constructional details of the electrodes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は,短間隙の気中放電と洛面枚電の双方を発生
せしめるオゾナイザ−装置に関するものであり+ 02
の酸化による03の製造を主たる利用分野とするが,こ
の他者種放電化学作用を利用してNOxやSOxの酸化
による脱硝,脱硫等乞□行ったり,更には放電時の生成
プラズマを利用して強力なイオン源とし,物体の荷電や
除電を行うのにも利用しうるものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an ozonizer device that generates both short-gap air discharge and surface discharge.
The main field of application is the production of 03 by the oxidation of 03, but this other species discharge chemistry can also be used to perform denitrification and desulfurization by oxidizing NOx and SOx, and furthermore, the plasma generated during discharge can be used. This makes it a powerful ion source and can also be used to charge or remove static electricity from objects.
ここでオノ゛す・fザーとは誘電体層を介して電極を設
け,商用周波の高電圧,あるいはパルス状高電!Eない
し極短パルス状高電圧を印加することにより放電を発生
せしめ,これによりオゾン生成等の放電化学作用を行わ
しめ,また正・負イオンより成るプラズマを生成せしめ
るものである。Here, an onosu/fzer is an electrode that is provided through a dielectric layer, and is operated with a commercial frequency high voltage or a pulsed high voltage! By applying E or a high voltage in the form of extremely short pulses, a discharge is generated, which causes discharge chemical actions such as ozone generation to occur, and also generates plasma consisting of positive and negative ions.
従来オゾナイザ−は,一般にガラス等の誘電体層及び空
隙を介して平板状または円筒状の平行電極を設け,これ
に商用周波の交流高電圧を印加して空隙に,いわゆる無
声放電を発生,そこに02を含むガスを流してその放電
化学作用により02’ を酸化して03を製造するもの
であるが,過大な電圧を用いることなく有効に03を発
生せしめるには空隙の間隙長をできるだけ小さくする必
要がある。しかし、容量の大きい装置とするには一般に
大きな平板または円筒を要し,電極を上記短間隙を保ち
つつ完全に平行に絶縁保持する必要上,極めて高価とな
った。その上,放電に伴う熱の発生と温度の上昇は03
生成効率を低下するので,これに対して常に充分に両電
極を冷却する必要があるが,その間に高電圧を印カロさ
れており,かつ両電極が互に独立しておるので双方とも
冷却するのは極めて難かしぐ,この面でも大型,かつ高
価となる。更にガラス誘電体の寿命が短い等々の欠点を
まぬがれな7う1つだ。Conventional ozonizers generally have flat or cylindrical parallel electrodes interposed between a dielectric layer such as glass and a gap, and apply a commercial frequency AC high voltage to this to generate a so-called silent discharge in the gap. 03 is produced by flowing a gas containing 02 through the discharge chemical action to oxidize 02', but in order to effectively generate 03 without using excessive voltage, the gap length of the air gap must be made as small as possible. There is a need to. However, a device with a large capacity generally requires a large flat plate or cylinder, and the electrodes must be kept completely parallel and insulated while maintaining the above-mentioned short gap, making the device extremely expensive. Moreover, the generation of heat and the rise in temperature associated with discharge are
This reduces the generation efficiency, so it is necessary to constantly cool both electrodes sufficiently, but since a high voltage is applied during that time and both electrodes are independent of each other, it is necessary to cool both electrodes. It is extremely difficult to do so, and in this respect, it is also large and expensive. Another disadvantage is that the glass dielectric material has a short lifespan.
これに対して本発明者は,別発明「電界装置及び電界装
置の製造方法」(特願昭57−155617号)及び「
物体の静電的処理装置」(特願昭57−155618号
)において、高純度アルミナ等の高電気絶縁性・高熱伝
導性の極めてうすいファインセラミック基板(厚さが2
關以下で好まL < ハ0. 5〜l, Q mmの範
囲)の表面にタングステンまたはモリブデン等より成る
薄く,かつ幅の狭いストリノプ状のコロナ電極(厚さ約
50〜100μm,巾約1 mm )を、まだ該基板裏
面に少くとも該コロナ電極に向き合う部位全体をおおう
如くに同じくタングステンまたはモリブデン等より成る
面状の誘導電極をIC多層配線基本を製造する手法を用
いて一体として焼成形成し,両電極間に高周波高電圧を
印加して,該コロナ電極より該ファインセラミック基板
表面に高周波沿面放電を発生せしめ,これによりO2を
酸化して03を発生せしめる新規のオゾナイザ−を提案
した。このオゾナイザ−はガラス誘電体を使用し、無声
放電を利用する従来型オゾナイザ−に比べて、(1)誘
電体として機械的・熱的・電気的にはるか(で丈夫な高
純度アルミナ等のファインセミラックを用いるので寿命
が著るしく永い、 +z+ Lだがって5〜1OKHz
まだはそれ以上の高周波高電圧を使用しても劣化がなく
、著るしく小型となる(オゾン生成量は周波数に比例す
る) 、 +31該ファインセラミンク基本の裏面のみ
を直接空冷ないし水冷により冷却すれば。In response, the present inventor has proposed another invention "Electric field device and method for manufacturing the electric field device" (Japanese Patent Application No. 155617/1982) and "
"Electrostatic Processing Device for Objects" (Japanese Patent Application No. 57-155618) uses an extremely thin fine ceramic substrate (with a thickness of 2
Preferably less than L < C 0. A thin and narrow strinop-shaped corona electrode (approximately 50 to 100 μm thick, approximately 1 mm wide) made of tungsten or molybdenum is placed on the surface of the substrate (in the range of 5 to 1, Q mm), and a small amount is placed on the back surface of the substrate. A planar induction electrode made of tungsten or molybdenum, etc., is formed by firing as a single unit so as to cover the entire area facing the corona electrode, using a method for manufacturing IC multilayer wiring, and a high frequency and high voltage is applied between both electrodes. We have proposed a new ozonizer that generates a high-frequency creeping discharge from the corona electrode on the surface of the fine ceramic substrate, thereby oxidizing O2 and generating O3. This ozonizer uses a glass dielectric material, and compared to conventional ozonizers that use silent discharge, (1) the dielectric material is far mechanically, thermally, and electrically Since semilac is used, the life is extremely long, +z+L so 5~1OKHz
There is no deterioration even when using higher frequency and high voltage, and it becomes significantly smaller (the amount of ozone produced is proportional to the frequency).+31 Only the back side of the fine ceramic base is directly cooled by air or water cooling. if.
浴面放電域、コロナ電極、誘電体層をことごとく有効に
冷却できる(ファインセミラク層が熱伝導率が比較的高
い上、コロナ電極はこれ〈密着している) 、 +4+
構造が簡単で製造コストが極めて安く、かつ無声放電と
異り空隙間隙長を一定に保つ必要もないので組立上のコ
スト上昇もない。等の数々の利点が達成され、従来型オ
ゾナイザ−の欠点の大多数を解決することに成功した。The bath surface discharge area, the corona electrode, and the dielectric layer can all be effectively cooled (the fine Semirak layer has relatively high thermal conductivity, and the corona electrode is in close contact with it), +4+
The structure is simple, the manufacturing cost is extremely low, and unlike silent discharge, there is no need to keep the gap length constant, so there is no increase in assembly costs. A number of advantages have been achieved, and most of the drawbacks of conventional ozonizers have been successfully overcome.
しかし乍ら、上記沿面放電利用のオゾナイザ−にあって
は、そのオゾン発生量、オゾン発生エネルギー効率が充
分でないという別の大きな欠点があった。However, the above-mentioned ozonizer using creeping discharge has another major drawback in that the amount of ozone generated and the ozone generation energy efficiency are insufficient.
上記ファインセラミック基板を用い沿面放電を利用する
オゾナイザ−においてオゾン発生量。Amount of ozone generated in an ozonizer that uses the above fine ceramic substrate and uses creeping discharge.
オゾン発生エネルギー効率が低くなるという欠点は、放
電時において、オゾン生成のだめの各種化学的活性種を
形成する電子の加速電界を高くとれないという所にその
根本原因が存することを本発明者は見出した。すなわち
、モリブデン・インキまたはタングステン・インキを用
い厚膜印刷により形成して焼成した 50〜100μm
程度の薄いストリップ状のタングステンのコロナ電極は
、その両側縁が余りにも尖鋭で。The present inventor discovered that the root cause of the disadvantage of low ozone generation energy efficiency lies in the inability to maintain a high electric field for accelerating the electrons that form the various chemically active species that prevent ozone generation during discharge. Ta. That is, the thickness is 50 to 100 μm formed by thick film printing using molybdenum ink or tungsten ink and fired.
The thin strip-shaped tungsten corona electrode has very sharp edges on both sides.
この部に電界が局部集中し易く、沿面放電始発の瞬間に
おける電界分布を見ると、上記コロナ電極両側縁近傍の
狭い領域にあっては電界強度は充分に(ス) IJ−マ
始発に足るだけ)強く。The electric field tends to be locally concentrated in this area, and looking at the electric field distribution at the moment of the start of the creeping discharge, the electric field strength in the narrow area near both sides of the corona electrode is sufficient for the initial start of the IJ-ma. )strongly.
電子加速も充分であるが、それ以外の領域では電界強度
は急激に低下する。したがって沿面ストリーマ−放電の
進展時にはその先端の電界集中部位にあっても、その電
界はストリーマ−進展と共に急激に低下し、電子の加速
が不充分となり、結局、放電域全体について眺めると、
平均的には電子加速に利用できる電界は高くならないの
である。これはコロナ電極形成に、上述の様にIC多層
配線基板製造に用いられる厚膜印刷・焼成方法を用いる
限り、その両側縁が尖鋭となることはさけられないとい
う根本的理由にもとづくものである。Although electron acceleration is sufficient, the electric field strength drops rapidly in other regions. Therefore, even if the electric field is concentrated at the tip of the creeping streamer discharge as it progresses, the electric field will drop rapidly as the streamer progresses, and the electrons will not be sufficiently accelerated.In the end, if we look at the entire discharge area,
On average, the electric field that can be used to accelerate electrons does not become high. This is based on the fundamental reason that as long as the thick film printing and firing method used in the manufacture of IC multilayer wiring boards is used to form the corona electrode, as described above, both edges will inevitably become sharp. .
本発明は、ファインセラミック基板を用い沿面放電を利
用するオノ“ナイザーの上記問題を解決し、小型・安価
・高性能のオゾナイザ−を提供しようとするものである
。The present invention aims to solve the above-mentioned problems of an ozonizer using a fine ceramic substrate and utilizing creeping discharge, and to provide a compact, inexpensive, and high-performance ozonizer.
しかして本発明は、上記オゾナイザ−のファ・rンセラ
ミノク基板Aの表面に、厚さが薄く巾の狭いコロナ電極
を厚膜印刷により形成の上。Accordingly, the present invention forms a corona electrode with a thin thickness and a narrow width on the surface of the ceramic substrate A of the ozonizer by thick film printing.
焼成して構成する代りに1円形ないしだ円形断面を有す
る金属線ないし金属管、多角形断面を有し、かつ各頂部
を面とりした角形ないし平形の金属線ないし金属管、波
形形状で各頂部が尖鋭でない様に形成せる波形金属板な
いし、この極な形状であって表面に導電層を形成せるセ
ラミック等の波形絶縁板、多数の尖端が尖鋭でない尖起
を有する金属板ないし、この様な形状を有する表面に導
電層を形成せるセラミ’)り等の絶縁板、その他最小有
効曲率半径右キが少くともQ、 l am以上、好まし
くはQ、 5 nttr以上の尖鋭でない放電部を有す
るコロナ電極を用い、これをその尖鋭でない放電部が上
記面状誘導電極を背面に有するファインセラミック基板
Aの表面に直接接する如く、あるいは少くとも極く短い
間隙をもって近接する如くに附設することによって解決
する。Instead of being constructed by firing, metal wires or metal tubes with a circular or oval cross section, square or flat metal wires or metal tubes with a polygonal cross section and chamfered tops, and corrugated tops with chamfered tops. A corrugated metal plate formed so that the edges are not sharp, a corrugated insulating plate made of ceramic or the like that has an extreme shape and which forms a conductive layer on the surface, a metal plate that has many cusps that are not sharp, and An insulating plate made of ceramic or the like on which a conductive layer is formed on a shaped surface, or other corona having a non-sharp discharge part with a minimum effective radius of curvature of at least Q, 1 am or more, preferably Q, 5 nttr or more. This can be solved by using an electrode and attaching it so that its non-sharp discharge part is in direct contact with the surface of the fine ceramic substrate A having the planar induction electrode on the back surface, or at least in close proximity with an extremely short gap. .
すなわち本発明による新規のオゾナイザ−は。That is, the novel ozonizer according to the present invention.
厚さが2朋以下の絶縁性セラミックより成るセラミック
基板の1面に曲率半径が0.1 am以上の放電極を有
するコロナ放電極を、その放電部が該セラミック基板の
一面に実質的に接する如くに配設し、また該セラミック
基板の他面に、少くとも上記コロナ電極の該セラミック
基板との接触部位に向い合う部分全体を覆う如くに面状
の誘導電極を該セラミック基板と一体焼成することによ
り設け9両電極間に交流高電圧を印加し、酸化させる気
体を上記セラミック基板の該コロナ放電極が配設された
側の表面に沿って流通せしめることを特徴とする。セラ
ミックを用いたオゾナイザ−である。A corona discharge electrode having a discharge electrode with a radius of curvature of 0.1 am or more on one surface of a ceramic substrate made of insulating ceramic having a thickness of 2 mm or less, the discharge part of which is substantially in contact with one surface of the ceramic substrate. Further, on the other surface of the ceramic substrate, a planar induction electrode is integrally fired with the ceramic substrate so as to cover at least the entire portion of the corona electrode facing the contact portion with the ceramic substrate. Accordingly, an alternating current high voltage is applied between the two electrodes, and the gas to be oxidized is caused to flow along the surface of the ceramic substrate on the side where the corona discharge electrode is disposed. This is an ozonizer using ceramic.
この様にすると、コロナ電極の放電部表面と基板Aの表
面との間の間隙距離は両者の接触点においてゼロ、接触
点から離れるに従って次第に増加する。そこで、該コロ
ナ電極と誘導電極間に交流高電圧を印加すると、まずパ
ッシェンの法則に従う最少火花間隙dmの位置で該放電
部表面と基板Aの表面間に火花放電を生じ、更に基板上
の火花放電柱の基点から基板表面に沼ってコロナ電極側
方向に沿面放電を生ずる。この場合、火花の発生する間
隙距離dmはガスの組成と温度・圧力(本質的には電子
に対する平均自由行程)で異るが、常温常圧の空気中で
約7.5μmと極めて短かく、かつ火花電圧は約327
Vである。従って、この時の放電空間の電界は約436
KV/c1rLと極めて高い値をとる上。In this way, the gap distance between the surface of the discharge portion of the corona electrode and the surface of the substrate A is zero at the point of contact between the two, and gradually increases as the distance from the point of contact increases. Therefore, when an AC high voltage is applied between the corona electrode and the induction electrode, a spark discharge is first generated between the surface of the discharge part and the surface of the substrate A at the position of the minimum spark gap dm according to Paschen's law, and then sparks on the substrate A creeping discharge is generated from the base point of the discharge column to the substrate surface in the direction toward the corona electrode. In this case, the gap distance dm where sparks occur varies depending on the gas composition and temperature/pressure (essentially the mean free path for electrons), but it is extremely short at about 7.5 μm in air at room temperature and pressure. And the spark voltage is about 327
It is V. Therefore, the electric field in the discharge space at this time is approximately 436
It takes an extremely high value of KV/c1rL.
コロナ電極の曲率半径γmに比べて放電間隙距離dmが
著るしく小さいので、火花放電域ではほぼ平等電界とな
る。このことは、従来型オゾナイザ−において電極間隙
を著るしく小さい値に保ったことに相当し、火花放電始
発時における放電域の電界強度は放電域全体にわたって
上述の如く、従来のオゾナイザ−より一桁以上も高くな
って充分な電子の加速が行われる。またこれに対応して
、火花放電柱基点から始発する沿面放電にあっても、そ
の始発時の沿面方向電界強度が極めて高くなり、ここで
も充分な電子の加速が達成される。これらの結果として
、オゾン生成量及びオゾン発生エネルギー効率の両方が
著るしく向上するのである。Since the discharge gap distance dm is significantly smaller than the radius of curvature γm of the corona electrode, the electric field is approximately equal in the spark discharge region. This corresponds to keeping the electrode gap to a significantly small value in the conventional ozonizer, and the electric field strength in the discharge region at the beginning of the spark discharge is much higher than that in the conventional ozonizer, as described above throughout the discharge region. The temperature becomes higher by more than an order of magnitude, and sufficient acceleration of electrons is achieved. Correspondingly, even in the case of a creeping discharge starting from the base point of the spark discharge column, the electric field strength in the creeping direction at the beginning becomes extremely high, and sufficient acceleration of electrons can be achieved here as well. As a result, both the amount of ozone produced and the energy efficiency of ozone production are significantly improved.
但しこの場合、一般に誘導電極はコロナ電極の対向部位
と同等ないし、これよりも狭い部位のみおおうようにす
ると誘導電極の鋭い端縁部とコロナ電極の放電部が直接
対向するか交叉することとなり、ここに電界が集中して
基板の絶縁破壊を促進する。したがって、誘導電極はコ
ロナ放電極の放電部の存在域全体を含み、かつこれより
広い面積をおおう如くに配設する必要がある。また、該
誘導電極と該放電部の間のセラミック基板の肉厚は一般
に0.5〜1.0關と極めて薄くするのが使用電圧を低
くするのに必要であるが、この場合、基板の機械的強度
を補うため、該誘導電極の背後にいま一つのセラミック
層を一体として附加焼成し、実質的に該誘導電極が該セ
ラミック基板内に埋入された構造とするのが好適である
。However, in this case, the induction electrode is generally the same as the opposing part of the corona electrode, and if it covers only a narrower area, the sharp edge of the induction electrode and the discharge part of the corona electrode will directly oppose or intersect, The electric field concentrates here, promoting dielectric breakdown of the substrate. Therefore, the induction electrode needs to be arranged so as to include the entire region where the discharge portion of the corona discharge electrode exists and cover a wider area than this. In addition, it is necessary to make the thickness of the ceramic substrate between the induction electrode and the discharge part extremely thin, generally about 0.5 to 1.0, in order to lower the operating voltage. In order to supplement the mechanical strength, it is preferable that another ceramic layer is integrally added and fired behind the induction electrode, so that the induction electrode is substantially embedded in the ceramic substrate.
次に1本発明を図面により説明する。 Next, one embodiment of the present invention will be explained with reference to the drawings.
g1図は本発明のオゾナイザ−の最も簡単な一例で、ウ
ェーハー形構成の基本ブロックを示す組立斜視図で、A
、Bは高純度のアルミナ磁器、窒化珪素磁器等より成る
ファインセラミックの緻密質の基板(以下、単に基板と
略栴する)である。Aは上面に、Bは下面に、それぞれ
面状電極1.2を有する。該電極は1例えばモリブデン
又はタングステン等のメタライズ層とその上に設けたニ
ッケルメッキにより形成され。Figure g1 is the simplest example of the ozonizer of the present invention, and is an assembled perspective view showing the basic block of wafer type configuration.
, B is a fine ceramic dense substrate (hereinafter simply referred to as the substrate) made of high-purity alumina porcelain, silicon nitride porcelain, or the like. A has a planar electrode 1.2 on the top surface, and B has a planar electrode 1.2 on the bottom surface. The electrode is formed by a metallized layer of, for example, molybdenum or tungsten, and nickel plating provided thereon.
端部にそれぞれ端子1a、2aを有し、かつ端子を有し
ない側の基板A、Bの上面及び下面の両側端にはそれぞ
れ柱状体3,3および4,4がある。また基板Bの4,
4と異る両側端の上面側には別の柱状体5.5がある。The substrates A and B have terminals 1a and 2a at their ends, respectively, and columnar bodies 3, 3 and 4, 4 are provided at both ends of the upper and lower surfaces of the substrates A and B, respectively, on the sides that do not have terminals. Also, 4 of board B,
There is another columnar body 5.5 on the upper surface side of both ends different from 4.
6は波形金属板より成るコロナ電極で端子6aを有し、
基板A、B及び柱状体5,5に囲まれる空間に6を挿入
し、基板A、Bを支えると共にその上下の頂部6L)、
6Cが放電部を形成してA、Bの下面及び上面に接し
、A、Bを介して面状誘導電極1゜2に対向し、端子1
a −za (両者は接続する)と6a間に交流高電圧
を印加することにより。6 is a corona electrode made of a corrugated metal plate and has a terminal 6a;
6 is inserted into the space surrounded by the substrates A and B and the columnar bodies 5 and 5, and supports the substrates A and B, and their upper and lower tops 6L),
6C forms a discharge part and contacts the lower and upper surfaces of A and B, and faces the planar induction electrode 1°2 via A and B, and the terminal 1
By applying an AC high voltage between a-za (both are connected) and 6a.
6b+6cより基板A、Bの下面及び上面に対して、す
でに述べた如く火花放電につづく浴面放電を行う。この
基板A、B及び柱状体5に囲まれる空間に矢印7の方向
に酸化される気体9例えば充分に除湿した空気ないし純
酸素を送入流通せしめると、上記放電の化学作用で1例
えば02ならば有効に酸化されて03となり、オゾナイ
ザ−として作用する。この時、柱状体3,4が5と直交
する方向を有するので、これに遮断されて酸化される気
体は基板A、Bの上部及び下部を通過することはできな
い。From 6b+6c, bath surface discharge following spark discharge is performed on the lower and upper surfaces of substrates A and B, as described above. When an oxidizing gas 9, for example, sufficiently dehumidified air or pure oxygen, is introduced and distributed in the direction of the arrow 7 into the space surrounded by the substrates A and B and the columnar body 5, the chemical action of the discharge causes 1, for example, 02. It is effectively oxidized to 03, which acts as an ozonizer. At this time, since the columns 3 and 4 have a direction perpendicular to 5, the gas that is blocked and oxidized cannot pass through the upper and lower portions of the substrates A and B.
基板Aの柱状体3.3の上及び基板Bの柱状体4,4の
下にはそれぞれ電極を有しない基板C,Df:設けてあ
り、基板A、Oと柱状体3゜3で囲まれる空間、ならび
に基板B、Dと柱状体4.4で囲まれる空間にはそれぞ
れ金属、セラミック、プラスチック、その他適当な材料
から成る支持用波形板8,9を6と直交する方向に挿入
して基板C,DをA、Hに対して支持する。そしてこの
空間に矢印10111の方向に水。Above the columnar body 3.3 of the substrate A and below the columnar bodies 4, 4 of the substrate B, substrates C, Df: each having no electrode are provided, and are surrounded by the substrates A, O and the columnar body 3.3. Supporting corrugated plates 8 and 9 made of metal, ceramic, plastic, or other suitable material are inserted into the space and the space surrounded by the substrates B and D and the columnar body 4.4 in a direction perpendicular to the substrate 6. Support C and D against A and H. And water in this space in the direction of arrow 10111.
空気、絶縁油フロン等の冷却流体を送入流動させること
により、放電で発生する熱を基板A。By supplying and flowing a cooling fluid such as air or insulating oil Freon, the heat generated by the discharge is transferred to the substrate A.
Bを介して除去し、A、B及び6を有効に冷却する。そ
して、冷却流体と02又は03は混合することはない。B is removed, effectively cooling A, B and 6. And the cooling fluid and 02 or 03 never mix.
ここで支持体8,9を基板A。Here, the supports 8 and 9 are the substrate A.
B、O,Dと同一材料で構成するときは、これらと一体
に焼成できて便利である。When it is made of the same material as B, O, and D, it is convenient because it can be fired together with them.
なお、コロナ電極6は必ずしも波形金属板でなくてもよ
く、ガスを矢印7の方向に流通せしめ基板に接する部分
が尖鋭でない適当な如何なる形状、構造、材料で構成さ
れたものでもよい。Incidentally, the corona electrode 6 does not necessarily have to be a corrugated metal plate, but may be made of any suitable shape, structure, or material that allows gas to flow in the direction of the arrow 7 and that does not have a sharp point in contact with the substrate.
例えば、第2図に示す如く金属板を折り曲げて尖鋭でな
い上下放電部12を、形成せる細長い平行電極体】3を
等間隔に中央でA、Hに平行な連結部赫により基板A、
Bと直交する如く連結せる構造の多重十字形電極15と
してもよい。また第3図の様に、断面が円形まだはだ円
形の細長い線′状またはパイプ状の多数の等間隔、かつ
平行な電極体16を、その中央部両母線で連結体14に
より連結した平行線状電極17としてもよい。For example, as shown in FIG. 2, a metal plate is bent to form upper and lower discharge portions 12 which are not sharp. Elongated parallel electrode bodies 3 are connected at equal intervals in the center by connecting portions parallel to A and H on the substrate A,
The multiple cross-shaped electrodes 15 may have a structure in which they are connected perpendicularly to B. Further, as shown in FIG. 3, a large number of equally spaced and parallel electrode bodies 16 each having a circular or oval cross section and a long thin line or pipe shape are connected by a connecting body 14 at both central generatrices. A linear electrode 17 may also be used.
この場合、電極体16がパイプであるときは、この中を
酸化される気体が流れない様に、これを適当な方法で閉
塞する必要があり、あるいはこの中に水、空気、絶縁油
、フロン等の冷却流体を送入流動させてコロナ電極自体
を冷却してもよい。また本発明に用いるコロナ電極は、
第4図に示す如く平行、かつ等間隔に配列した多数のコ
イルスプリングから成る電極体18をもって構成せるコ
イルスプリング電極19としてもよく。In this case, if the electrode body 16 is a pipe, it is necessary to close it in an appropriate manner so that the oxidizing gas does not flow therein, or it is necessary to close it in an appropriate manner so that the oxidizing gas does not flow therein, or there is The corona electrode itself may be cooled by supplying and flowing a cooling fluid such as the like. Furthermore, the corona electrode used in the present invention is
As shown in FIG. 4, a coil spring electrode 19 may be constructed of an electrode body 18 consisting of a large number of coil springs arranged in parallel and at equal intervals.
この場合には該コイルスプリング18を支持張架するた
めの適当なフレーム四を用いてもよいが。In this case, a suitable frame 4 for supporting and tensioning the coil spring 18 may be used.
第5図に示す如く単にコイルスプリング18を基板A、
Bと柱状体5て囲まれだ空間に逐次蛇行する如く充填す
るのみでもよい。As shown in FIG. 5, simply connect the coil spring 18 to the substrate A.
It is also possible to simply fill the space surrounded by B and the columnar body 5 in a meandering manner.
まだ、コロナ電極自体を積極的に冷却するため、第6図
に示す如くその支持体を兼ねた矩形状函体21を設け、
その前方及び後方に冷却流体の送入及び排出用のパイプ
u、73を設けて21の内部に冷却流体を流動せしめ、
21の上面及び下面にそ凡ぞれ上記波形コロナ電極6
,6′を常接したもの(同図■)、あるいは線状ないし
パイプ状電極体16 、16’を常接したもの(同図@
)。In order to actively cool the corona electrode itself, a rectangular box 21 which also serves as a support for the corona electrode is provided as shown in FIG.
A pipe u, 73 for supplying and discharging cooling fluid is provided in front and behind the cooling fluid to flow the cooling fluid inside 21,
The above-mentioned corrugated corona electrode 6 is placed on the upper and lower surfaces of 21, respectively.
, 6' in constant contact (■ in the same figure), or in constant contact with linear or pipe-shaped electrode bodies 16 and 16' (in the same figure @
).
あるいは尖端を曲げて尖鋭でない様にしたフィン状電極
体24 + 24’を常接したもの(同図0)を用いて
もよい。また、同図■において函体21を省略し、2枚
の波形電極6,6′を直接重ねてその間の間隙に冷却流
体を流゛したもの(同図O)を用いてもよい。Alternatively, a fin-shaped electrode body 24 + 24' whose tip is bent so that it is not sharp may be used (see FIG. 0). It is also possible to omit the box 21 in FIG. 3 and use a structure in which the two waveform electrodes 6, 6' are stacked directly and the cooling fluid flows into the gap between them (FIG. 0).
11の方向に流通せしめ、かつ支持作用を有するもので
あれば適当な如何なる形状・構造・材料のものを用いて
もよく1例えば第7図に示す如き格子状物部を使用する
こともできる。この場合、格子状物部は両端部に板状部
渓、カを有するので1両側端の柱状体3,4が不要とな
って経済的である。Any suitable shape, structure, and material may be used as long as it allows flow in the direction 11 and has a supporting function.For example, a grid-like member as shown in FIG. 7 may also be used. In this case, since the lattice-like portion has plate-like portions and holes at both ends, the columnar bodies 3 and 4 at one side end are not required, which is economical.
次に、第1図に示すオゾナイザ−の基板A。Next, the substrate A of the ozonizer shown in FIG.
B、コロナ電極6.柱状体3,3と5,5及び支持体8
より成る基本プClツクを第8図に示す如く多層に何層
も積み重ねだ上、それぞれ図示の如く誘導電極1. 2
. I’、2’、I“、2“、l“′。B. Corona electrode 6. Column bodies 3, 3 and 5, 5 and support body 8
As shown in FIG. 8, basic blocks consisting of a plurality of layers are stacked in multiple layers as shown in FIG. 8, and induction electrodes 1. 2
.. I', 2', I", 2", l"'.
fの端子1a + za l l’a + 2”a
+ ”’を互に接続して共通導線27を介して交流高
圧電源路の出力端子の一つで接地された端子穴に、また
コロナ電極6 + 6’1 6″+ 6”の端子G
a 、 5’3 、 6%・・・を互に接続して別の
共通導線30を介してあの別の出力端子31に接続する
ことによって、極めて空間占積率の高い小容積、大発生
容量のオゾナイザ−を構成できることも云うまでもない
。f terminal 1a + za l l'a + 2”a
+ ``'' are connected together through the common conductor 27 to the terminal hole grounded at one of the output terminals of the AC high voltage power supply path, and also to the terminal G of the corona electrode 6 + 6'1 6'' + 6''.
a, 5'3, 6%... are connected to each other and connected to another output terminal 31 via another common conductor 30, a small volume with an extremely high space occupancy factor and a large generated capacity can be achieved. Needless to say, it is possible to construct an ozonizer.
次に1本発明に使用するセラミック基板は単に平板状の
みならず9円板状、短冊状2円筒状。Next, the ceramic substrate used in the present invention is not only in the form of a flat plate, but also in the form of 9 discs, 2 strips, and 2 cylinders.
その他適当な任意の形状に構成することができると共に
1例えば円筒状セラミック基板(以下基板筒体と略梅す
る)を用いる場合には、コロナ電極を基板筒体の外側に
設けることも、内側と
に設けることも、内側卒外側の双方に設けることも可能
である。In addition, the corona electrode can be configured in any other suitable shape.1 For example, when using a cylindrical ceramic substrate (hereinafter referred to as the substrate tube), the corona electrode may be provided on the outside of the substrate tube or on the inside. It is also possible to provide it on both the inner and outer sides.
第9図は、セラミック基板筒体Eの肉厚内部に円筒面状
の誘導電極32を埋入焼成し、筒体Eの外部に断面が円
形の線状コロナ電極33をらせん状に一定間隔をもって
張力をかけつつ巻きつけ1両端でEに固定せる金属固定
環34.35に溶接固定することにより本発明を実施せ
る例の縦断面図である。ここでEの内面に誘導電極を設
けてもよいことは云うまでもないが、上記の様にEの円
筒肉厚内に埋入することにより肉厚を大きくしてEの機
械的強度を向上できる。In FIG. 9, a cylindrical induction electrode 32 is embedded and fired inside the thick wall of a ceramic substrate cylindrical body E, and linear corona electrodes 33 with a circular cross section are spirally spaced at regular intervals on the outside of the cylindrical body E. FIG. 6 is a longitudinal cross-sectional view of an example in which the present invention can be carried out by winding the ring under tension and welding it to a metal fixing ring 34, 35 fixed to E at both ends of the ring. It goes without saying that an induction electrode may be provided on the inner surface of E, but by embedding it within the cylindrical wall thickness of E as described above, the wall thickness is increased and the mechanical strength of E is improved. can.
図において、 36137はセラミック、プラスチック
又は金属等で構成せるカップ状端板で、中央に左右に突
出せる筒体ア、39を有し、またその外周壁には円状基
底部より内方に突出せる環状堤体40+41を有して1
図の如くセラミック基板筒体Eの端部42,43と嵌合
し、嵌合面44.45はセメント、シリコンゴム、ヱボ
キシ樹脂等で水密に接着されている。また羽、39は冷
却流体の入口及び出口を構成、38より矢印46の方向
に送入された冷却流体はEの内部47を矢印48の方向
に流動してこれを冷却の上、38より矢印49の方向に
排出される。50はEの上流端内部にとりつけられた旋
回翼で、冷却流体に強力な旋回運動を与えてその冷却効
果を高める。旋回翼50を設ける代りに筒体あの右端に
基板筒体Eの内壁に向けて切線方向に冷却流体を噴出す
る如き噴出ノズルを設けて旋回運動を与えることも出来
る。51はコロナ放電極33を外側を覆う金属またはプ
ラスチック製の円筒状カバーで、その両端52.53は
カップ状端板36.37の環状堤体40,41の外壁5
4 、’、+5に気密に接着または溶接され、更にその
両端52+53の近傍に酸化されるガスの入口56と出
口57を有する。58はコロナ放電極33の5?
端子で、碍管iを介してカバー51を貫通の上。In the figure, 36137 is a cup-shaped end plate made of ceramic, plastic, metal, etc., which has a cylindrical body 39 in the center that can protrude to the left and right, and has a cylindrical body 39 on its outer peripheral wall that protrudes inward from the circular base. 1 with an annular embankment body 40+41
As shown in the figure, the ends 42 and 43 of the ceramic substrate cylinder E are fitted, and the fitting surfaces 44 and 45 are watertightly bonded with cement, silicone rubber, epoxy resin, or the like. Wings 39 constitute the inlet and outlet of the cooling fluid, and the cooling fluid sent from 38 in the direction of arrow 46 flows through the interior 47 of E in the direction of arrow 48 to cool it, and then from 38 to the direction of arrow 46. It is ejected in the direction of 49. 50 is a swirling vane installed inside the upstream end of E, which imparts a strong swirling motion to the cooling fluid to enhance its cooling effect. Instead of providing the swirling blades 50, it is also possible to provide a swirling motion by providing a jetting nozzle at the right end of the cylinder for jetting cooling fluid in the tangential direction toward the inner wall of the substrate cylinder E. Reference numeral 51 denotes a cylindrical cover made of metal or plastic that covers the outside of the corona discharge electrode 33, and both ends 52 and 53 of the cover are connected to the outer walls 5 of the annular embankments 40 and 41 of the cup-shaped end plates 36 and 37.
4, ', +5, and further has an inlet 56 and an outlet 57 for the oxidizing gas near both ends 52+53. 58 is corona discharge electrode 33 5? The terminal passes through the cover 51 via the insulator tube i.
金属固定環32に導通する。また60は接地せる誘導電
極32の端子でカップ状端板%を貫通の上32に導通し
ている。いま両端子58.60間に交流高電圧を印加す
ると、線状コロナ放電極より上述の火花放電と表面放電
を発生し、入口56より矢印01の方向に酸化されるガ
スを供給すると、ガスはカバー51と基板筒体Eの外壁
の間の空隙62を矢印63の方向に流れて03を生成、
出口57より矢印64の方向に排出される。この場合、
ガス入口56はガスが空隙62に切線方向に流入する如
くカバー51に偏心的に設けると、ガスの流動攪拌を促
進して、コロナ放電極33の冷却効果を更に高め、オゾ
ンの収率を上げることが出来る。It is electrically connected to the metal fixed ring 32. Further, 60 is a terminal of the induction electrode 32 to be grounded, which passes through the cup-shaped end plate and is electrically connected to the upper part 32. Now, when an AC high voltage is applied between both terminals 58 and 60, the above-mentioned spark discharge and surface discharge are generated from the linear corona discharge electrode, and when the gas to be oxidized is supplied from the inlet 56 in the direction of arrow 01, the gas 03 is generated by flowing in the direction of arrow 63 through the gap 62 between the cover 51 and the outer wall of the substrate cylindrical body E,
It is discharged from the outlet 57 in the direction of the arrow 64. in this case,
When the gas inlet 56 is provided eccentrically on the cover 51 so that the gas flows into the gap 62 in the tangential direction, it promotes the flow and agitation of the gas, further enhances the cooling effect of the corona discharge electrode 33, and increases the ozone yield. I can do it.
また本例において、線状コロナ放電極33はEの外周面
に沿って軸方向に多数配列してもよく。Further, in this example, a large number of linear corona discharge electrodes 33 may be arranged in the axial direction along the outer peripheral surface of E.
更に第1O図に断面を示す如く、波形金属板65をその
頂部稜線66がBの軸方向に向く様にEの外周部に巻き
つけてコロナ放電極を構成してもよい。この場合、稜線
部66がEの外壁に接して放電部を形成し、波形金属板
65とEの外部に囲まれた多数の通路67に酸化される
ガスを流動せしめる。但し、65とカバー51の内壁で
囲まれる通路68には酸化されるガスが流れない様に、
これを閉塞する必要があり、ここに冷却流体を流してコ
ロナ放電極65f:冷却しても、Lい。これらの場合、
誘導電極を接地軟着で使用する時はカバー51は絶縁物
をもって構成する必要があるが。Furthermore, as shown in cross section in FIG. 1O, a corona discharge electrode may be constructed by wrapping a corrugated metal plate 65 around the outer periphery of E so that its top ridgeline 66 faces in the axial direction of B. In this case, the ridgeline portion 66 contacts the outer wall of E to form a discharge portion, causing the gas to be oxidized to flow into a large number of passages 67 surrounded by the corrugated metal plate 65 and the outside of E. However, in order to prevent oxidizing gas from flowing into the passage 68 surrounded by the inner wall of the cover 51 and the passage 65,
It is necessary to close this, and even if cooling fluid is flowed here to cool the corona discharge electrode 65f, it is still small. In these cases,
When the induction electrode is used with a grounding bond, the cover 51 must be made of an insulating material.
逆にコロナ放電極65を接地し、誘導電極を大地から絶
縁の上使用してもよく、この場合には。Conversely, the corona discharge electrode 65 may be grounded and the induction electrode may be used while being insulated from the ground; in this case.
第11図に断面を示す如くカバー51を取り除くことが
出来る。なおこれらの場合、水を冷却媒体に用いる時は
基板筒体Eの内面には適当な防水膜をほどこすことによ
り、セラミックを通して水分子がコロナ放電極33の近
傍て達するのを防ぐが、その放電作用の低下を防ぐのに
有効である。The cover 51 can be removed as shown in cross section in FIG. In these cases, when water is used as a cooling medium, an appropriate waterproof film is applied to the inner surface of the substrate cylinder E to prevent water molecules from reaching the vicinity of the corona discharge electrode 33 through the ceramic. This is effective in preventing a decline in discharge performance.
第12図は、セラεツク基板筒体Eの肉厚内部に円筒面
状誘導電極32を埋入焼成し、基板筒体Eの内部に断面
形状が円形の線状コロナ電極69をEの内壁に密着する
如く、らせん状に一定間隔をもって配設し1両端でEの
内壁に圧着固定せる金属固定環70.71に溶接固定す
ることにより本発明で実施せる例の縦断面図を示す。図
において、 72 、73はセラミック、プラスチック
又は金属等をもって構成せるカップ状端板で、その外周
壁には円状基底部より内方に突出せる環状堤体74.7
5を有して図の如きバッキング76177を介してセラ
ミック基板筒体Eの端部42,43と嵌合している。そ
して端板72.73はその中央部を貫通し、更に筒体E
の内部をその中心軸に沿りて貫通する所の両端にネジ溝
を有する締付用金属棒78と、該ネジ溝に嵌合するナソ
)79+80妃よって左右より締め付けることにより、
Eの内部の気密性を保っている。81.82はバッキン
グ+ 83184は座金である。締付用金属棒78は右
端の一部あを除いて中空円筒状をなし、その左端部はは
ガス入口を兼ね、ここから矢印87の方向に導入された
酸化されるガスは中空円筒内部器を矢印89の方向に流
動して、その右端近傍の。In FIG. 12, a cylindrical induction electrode 32 is embedded and fired in the thick inside of a ceramic substrate cylinder E, and a linear corona electrode 69 with a circular cross-sectional shape is placed inside the substrate cylinder E on the inner wall of E. 7 is a vertical cross-sectional view of an embodiment of the present invention, which is fixed by welding to metal fixing rings 70 and 71, which are arranged in a helical manner at regular intervals so as to be in close contact with the inner wall of E, and which are crimped and fixed at both ends to the inner wall of E. In the figure, reference numerals 72 and 73 are cup-shaped end plates made of ceramic, plastic, metal, etc., and the outer peripheral wall thereof has an annular embankment body 74.7 that protrudes inward from the circular base.
5 and is fitted to the ends 42 and 43 of the ceramic substrate cylinder E via a backing 76177 as shown in the figure. The end plates 72 and 73 pass through the central part of the end plates 72 and 73, and further extend through the cylindrical body E.
By tightening from the left and right with a metal tightening rod 78 having thread grooves at both ends of the part that penetrates the inside of the rod along its central axis, and a naso (79+80) fitting into the thread grooves,
Maintains the airtightness of the interior of E. 81.82 is backing + 83184 is washer. The tightening metal rod 78 has a hollow cylindrical shape except for a part at the right end, and the left end also serves as a gas inlet, from which the oxidized gas introduced in the direction of arrow 87 flows into the hollow cylindrical internal chamber. flows in the direction of arrow 89, and near the right end thereof.
端板73の内側基底部頭の手前位置に設けられた穴91
より基板筒体Eの右端43の内側部に放出され、更に締
付棒と筒体Eの内壁の間の空間92を矢印93の方向に
流動し、この間て放電作用によって酸化され、端板72
に設けられたガス出口94より外部に排出される。%は
コロナ放′fjL極69の端子で、端板72を貫通する
碍管%を介して金属固定環70に接続されている。また
97は誘導電極32の端子で基板筒体Eを貫いて32に
接続されている。98はセラεツク基板筒体Eの外壁に
焼成形成せるタングステン薄層で、その外面にニッケル
メッキを施してあり、防水膜を形成している。99は筒
体Eの外側をとり巻く円筒状の金属製ンヤケノトで、そ
の両端フランジ部100.101において上記金属層9
日に溶接され、かつ100゜101の近傍に接線方向に
とりつけられた冷却用流体の入口+02及び出口103
を有する。そして入口102より矢印104の方向に導
入せる冷却用流体は/ヤケノド99と筒体Eの外壁との
間の間隙+05を旋回しつつ矢印106の方向に進行し
つつ筒体Eを冷却し、出口103より外部に放出される
。いま端子95と97の間に交流高電圧を印加すると、
コロナ放電極69より火花放電及び沿面放電を生じ、こ
れにより間隙92の内部を矢印93の方向に進行する酸
化されるガスが強力に酸化され+ 03を発生すること
は云うまでもない。Hole 91 provided in front of the inner base head of the end plate 73
It is discharged to the inner side of the right end 43 of the substrate cylindrical body E, and further flows in the direction of the arrow 93 in the space 92 between the tightening rod and the inner wall of the cylindrical body E, during which time it is oxidized by the discharge action, and the end plate 72
The gas is discharged to the outside from a gas outlet 94 provided in the. % is a terminal of the corona radiation fjL pole 69, which is connected to a metal fixed ring 70 through an insulator tube % passing through an end plate 72. Further, reference numeral 97 denotes a terminal of the induction electrode 32, which penetrates through the substrate cylindrical body E and is connected to 32. Reference numeral 98 denotes a thin tungsten layer formed by firing on the outer wall of the ceramic substrate cylinder E, the outer surface of which is plated with nickel to form a waterproof film. 99 is a cylindrical metal sleeve surrounding the outside of the cylinder E, and the metal layer 9 is connected to the flanges 100 and 101 at both ends.
Cooling fluid inlet +02 and outlet 103 welded together and tangentially mounted in the vicinity of 100° 101
has. The cooling fluid introduced from the inlet 102 in the direction of the arrow 104 cools the cylinder E while circulating in the gap +05 between the burn throat 99 and the outer wall of the cylinder E in the direction of the arrow 106, and then exits. 103 to the outside. If we now apply an AC high voltage between terminals 95 and 97,
Needless to say, a spark discharge and a creeping discharge are generated from the corona discharge electrode 69, whereby the oxidized gas traveling inside the gap 92 in the direction of the arrow 93 is strongly oxidized to generate +03.
この場合、オゾン発生の収率及び効率は、ガス圧力を増
加するほど上昇するが、第12図の構造はガス圧力の上
昇に適している。In this case, the yield and efficiency of ozone generation increases as the gas pressure increases, and the structure of FIG. 12 is suitable for increasing the gas pressure.
第12図の実施例において、筒体Eの冷却には必ずしも
ジャケット99を用いる必要はなく。In the embodiment shown in FIG. 12, it is not necessary to use the jacket 99 for cooling the cylinder E.
これをとり除いて、直接筒体Eを冷却流体内に端板72
が液面上にある如く、垂直に挿入冷却してもよく、ある
いは筒体Eの外部に水を噴霧してもよく、マた筒体Eの
外壁に適当な冷却用フィンをとりつけて自然又は強制空
冷により冷却してもよい。との場合、第13図■に示す
如く金属板を逆T字状に成形の上、その左右垂直部に多
数の切込1(17を入れた逆T字状冷却フィン108を
、同図O及びθに示す如く筒体Eの外壁に張力をかけつ
つ、らせん状に巻きつけて両端でニッケルメッキ付金属
層98に溶接固定し、更には筒体Eの外壁に接する1字
部の頂部109を全体にわたって98に溶接すると・フ
ィンtOSへの筒体Eからの熱伝導がよくなって冷却効
果が大巾に向上する。By removing this, the cylinder body E is directly inserted into the cooling fluid at the end plate 72.
It may be inserted vertically to cool the cylinder so that it is above the liquid level, or water may be sprayed onto the outside of the cylinder E. Appropriate cooling fins may be attached to the outer wall of the cylinder E to cool it naturally or Cooling may be performed by forced air cooling. In this case, a metal plate is formed into an inverted T-shape as shown in Fig. 13 (■), and an inverted T-shaped cooling fin 108 with a large number of notches 1 (17) in the left and right vertical parts is formed into an inverted T-shaped cooling fin 108 as shown in Fig. As shown in and θ, while applying tension to the outer wall of the cylinder E, it is wound spirally and fixed by welding to the nickel-plated metal layer 98 at both ends, and furthermore, the top 109 of the 1-shaped part that is in contact with the outer wall of the cylinder E is fixed. By welding 98 over the entire surface, the heat conduction from the cylindrical body E to the fin tOS will be improved, and the cooling effect will be greatly improved.
第12図の実施例において、線状コロナ放電極69は基
板筒体Eの内壁に必ずしもらせん状に配設する必要はな
く、場合により筒体Eの中心軸に直交する多数の輪状構
造としてもよく、あるいは金網ないし金属格子を円筒状
に曲げて筒体Eの内壁に密着させてコロナ放電極を構成
してもよい。また第14図に断面を示す如く、波形金属
板65をその頂部稜線印が筒体Eの中心軸とほぼ平行な
いし一定の角度をなす如く円筒状に曲げて、該頂部稜線
66が筒体Eの内壁に接する如くその内部に挿入して圀
を放電部とすることによりコロナ放電極を構成してもよ
い。この場合、酸化反応域は波形金属板65と筒体Eの
内壁で囲まれた通路67であるから、酸化されるガスは
必ずこの通路を通る様にする必要がある。In the embodiment shown in FIG. 12, the linear corona discharge electrodes 69 do not necessarily need to be arranged in a spiral shape on the inner wall of the substrate cylinder E, but may be arranged in a plurality of ring-shaped structures perpendicular to the central axis of the cylinder E. Alternatively, the corona discharge electrode may be constructed by bending a wire mesh or a metal grid into a cylindrical shape and bringing it into close contact with the inner wall of the cylinder E. Further, as shown in the cross section in FIG. 14, the corrugated metal plate 65 is bent into a cylindrical shape so that its top ridgeline mark is approximately parallel to or at a certain angle with the central axis of the cylinder E, and the top ridgeline 66 is aligned with the cylinder E. A corona discharge electrode may be constructed by inserting the electrode into the inner wall of the electrode so as to make contact with the inner wall of the electrode, and using the wall as a discharge portion. In this case, since the oxidation reaction region is a passage 67 surrounded by the corrugated metal plate 65 and the inner wall of the cylinder E, the gas to be oxidized must necessarily pass through this passage.
第14図では、波形金属板65は基板筒体Eと同軸の支
持用金属円筒110に図の如く溶接支持されており2円
筒110と波形金属板65で囲まれた通路68はガスが
通らない様に閉塞されている。In FIG. 14, the corrugated metal plate 65 is welded and supported by a supporting metal cylinder 110 coaxial with the substrate cylinder E, and gas does not pass through the passage 68 surrounded by the two cylinders 110 and the corrugated metal plate 65. It's kind of blocked.
しかし1通路6Bに冷却用流体を通して波形金属板65
を冷却しても良く、あるいは円筒110を二重円筒とし
てその間隙に冷却用流体を流しても良く、あるいは円筒
110自体に冷却用流体を流しても良いことは云うまで
もない。However, the corrugated metal plate 65 is passed through the cooling fluid through one passage 6B.
It goes without saying that the cylinder 110 may be made into a double cylinder and a cooling fluid may be flowed through the gap therebetween, or the cooling fluid may be flowed through the cylinder 110 itself.
第15図は、基板筒体Eの内部てコロナ放電極を配設し
て本発明を実施せるいま一つの例の縦断面図、第16図
はそのX−X断面における横断面図を示す。図において
32より110までの番号の要素の名栴及び機能は、第
12図及び第14図における同一番号の要素の名稍及び
機能と同じである。図において、コロナ放電極は多数の
U字型のチャンネル状金属litより成り。FIG. 15 is a longitudinal cross-sectional view of another example in which the present invention can be implemented by disposing a corona discharge electrode inside the substrate cylinder E, and FIG. 16 is a cross-sectional view taken along the line X--X. The names and functions of the elements numbered 32 to 110 in the figures are the same as the names and functions of the elements numbered the same in FIGS. 12 and 14. In the figure, the corona discharge electrode consists of a number of U-shaped channel-shaped metal lits.
その基底部112は筒体Eの内部にこれと同軸に配設せ
る支持用金属円筒110の外表面に溶接固定され、11
1の両側面113の先端114は図の如く折り曲げて先
鋭でない放電部を形成、筒体Eの内壁面に接している。The base portion 112 is welded and fixed to the outer surface of a supporting metal cylinder 110 disposed coaxially inside the cylindrical body E.
The tips 114 of both side surfaces 113 of 1 are bent as shown in the figure to form a non-sharp discharge portion, and are in contact with the inner wall surface of the cylinder E.
支持用金属円筒110は筒体E及び両端板72.73を
貫通の上、その両端に有するネジ山部においてナツト7
9,80により端板72.73を筒体Eに締めつけて固
定する締め付棒の役目を果している。そして、該円筒1
10の一端115より冷却用流体が矢印116の方向に
導入され2円筒110の内部117を流動して110に
固定されたコロナ放電極111を冷却の上、他端118
より矢印+19の方向に排出される。120はコロナ放
電極l目の端子で、座金839円筒110を介してコロ
ナ放電極111に接続され、端子97と120間に交流
高電圧を印加することにより放電部114より火花放電
及び沿面放電を行う。The supporting metal cylinder 110 passes through the cylinder E and both end plates 72 and 73, and is fitted with a nut 7 at the threaded portions at both ends thereof.
9 and 80 serve as a tightening rod for tightening and fixing the end plates 72 and 73 to the cylinder E. And the cylinder 1
Cooling fluid is introduced in the direction of arrow 116 from one end 115 of 10, flows inside 117 of two cylinders 110, cools the corona discharge electrode 111 fixed to 110, and then cools the other end 118.
It is discharged in the direction of arrow +19. 120 is the lth terminal of the corona discharge electrode, which is connected to the corona discharge electrode 111 via a washer 839 and a cylinder 110, and by applying an AC high voltage between the terminals 97 and 120, spark discharge and creeping discharge are generated from the discharge part 114. conduct.
121は端板72に設けられたガス入口で、ここから矢
印+22の方向に導入された酸化されるガスは円筒11
0と基板筒体E及びコロナ放電極111で囲まれた通路
123を通過して03を生成の上。121 is a gas inlet provided in the end plate 72, and the gas to be oxidized introduced from here in the direction of arrow +22 enters the cylinder 11.
0, passes through a passage 123 surrounded by the substrate cylinder E and the corona discharge electrode 111, and generates 03.
端板73に設けられたガス出口124より矢印125の
方向に排出される。本実施例の大きな特徴は。The gas is discharged from a gas outlet 124 provided in the end plate 73 in the direction of an arrow 125. The major features of this embodiment are:
円筒110内部に冷却用流体を流すことにより。By flowing cooling fluid inside the cylinder 110.
コロナ放電[ii+xt及び酸化されるガスの双方を冷
却出来ることで、これによりオゾン発生の収率及び効率
は大巾に向上する。本例では基板筒体Eの外部に円筒状
ジャケット泉を設け、冷却用流体を間隙105に流して
筒体Eを外部より冷却しているが、シャケy)99を取
り除いてこれを水冷または空冷してもよく、また第13
図にきつけて冷却を施してもよいことは云うまでもない
。By being able to cool both the corona discharge [ii+xt and the gas to be oxidized, this greatly increases the yield and efficiency of ozone generation. In this example, a cylindrical jacket spring is provided outside the substrate cylinder E, and cooling fluid is flowed into the gap 105 to cool the cylinder E from the outside. You may also do the 13th
It goes without saying that cooling may be applied as shown in the figure.
なお1本発明による新規のオゾナイザ−は。Note that the new ozonizer according to the present invention is as follows.
(1)入口ガスを充分除湿するほど、(2)入口ガスを
冷却するほど、(3)ガス圧力を上げるほど、(4)筒
体E及びコロナ放電極を充分冷却するほど、高いオゾン
発生の収率と効率が得られ、また通常の空気の代りに酸
素を用いると約2倍の収率を得ることが出来る。また、
印加交流高電圧としては通常の商用周波数の交流電圧の
みならず。(1) The more the inlet gas is dehumidified, (2) the more the inlet gas is cooled, (3) the gas pressure is increased, and (4) the more the cylinder E and the corona discharge electrode are cooled, the higher the ozone generation will be. Yields and efficiencies are obtained, and yields can be approximately doubled when oxygen is used in place of regular air. Also,
The applied AC high voltage is not only the normal commercial frequency AC voltage.
高周波交流高電圧、パルス高電圧を用いることができt
との場合オゾン発生の収率は周波数に比例する。特にパ
ルス高電圧の巾が1マイクロセカンド以下の極短パルス
高電圧を用いるときはオゾン発生の効率は大巾に向上す
る。また入口ガスは、活性炭フィルター等の適当な吸着
剤を通して予めSO2+ NH3等の不純物ガスを除去
するのが、筒体Eの放電面の汚れを防ぐ上で望ましい。High frequency AC high voltage and pulsed high voltage can be used.
In this case, the yield of ozone generation is proportional to the frequency. In particular, when using an extremely short high voltage pulse with a width of 1 microsecond or less, the efficiency of ozone generation is greatly improved. It is also desirable to remove impurity gases such as SO2+NH3 from the inlet gas in advance through a suitable adsorbent such as an activated carbon filter in order to prevent the discharge surface of the cylinder E from becoming contaminated.
本発明は、絶縁用誘電体として厚さが極めて厚いファイ
ンセラミック層を用い、その−面に肩
面状誘導電極を、他面に尖鋭でない放電部を季するコロ
ナ放電極を設け、これに交流高電圧を印加して、火花放
電と浴面放電を発生せしめることによりオゾンを発生も
しくはガスを酸化するものであるが、電気的絶縁耐力と
機械的熱的強度の極めて強いファインセラミンクの使用
により、(1)その厚さを極めて薄くでき、電源電圧を
低くできて電源が安価となる。(2)高周波交流電圧を
使用できるので、この面でも電源が安価となるのみなら
ず、オゾン発生が周波数に比例するので、小型のオゾナ
イザ−で多量のオゾンを発生できる。(3)ファインセ
ラミックの熱伝導率が極めて高く、冷却効果が著るしく
向上する結果、オゾン生成の収率及び効率が高くなる。The present invention uses an extremely thick fine ceramic layer as an insulating dielectric, and provides a shoulder-shaped induction electrode on one side of the layer and a corona discharge electrode with a non-sharp discharge part on the other side. It generates ozone or oxidizes gas by applying high voltage and generating spark discharge and bath surface discharge, but by using fine ceramic with extremely strong electrical dielectric strength and mechanical and thermal strength. (1) The thickness can be made extremely thin, the power supply voltage can be lowered, and the power supply becomes cheaper. (2) Since high-frequency AC voltage can be used, the power supply is not only inexpensive, but also ozone generation is proportional to frequency, so a large amount of ozone can be generated with a small ozonizer. (3) The thermal conductivity of fine ceramics is extremely high, and the cooling effect is significantly improved, resulting in a higher yield and efficiency of ozone production.
(4)誘導電極をタングステンとし、これをセラミック
と共に焼成して形成するときは、タングステンの熱膨張
係数が高純度アルミナセラミックのそれと等しいので、
オゾナイザ−を強冷しても誘導電極がはがれる心配がな
い等々の効果を有する上、更に尖鋭でない放電部をセラ
ミック層表面に接して用いたことにより火花放電始発時
の電界ならびに清面放電移行時の初期電界を著るしく大
きくでき、充分に電子を力ロ速できる結果、多量の酸化
性化学活性種を効率よく生成でき、オゾン発生の収率及
び効率が著るしく向上する等の効果を生じ、それらの綜
合的結果として小型・安価で、かつ高収率、高効率のオ
ゾナイザ−を実現することが可能となったのである。(4) When using tungsten as the induction electrode and firing it together with ceramic, the coefficient of thermal expansion of tungsten is equal to that of high-purity alumina ceramic.
In addition to having the effect that there is no fear of the induction electrode peeling off even when the ozonizer is strongly cooled, the use of a non-sharp discharge part in contact with the ceramic layer surface improves the electric field at the beginning of spark discharge and the transition to clear surface discharge. As a result, the initial electric field can be significantly increased, and the electron velocity can be sufficiently increased, a large amount of oxidizing chemically active species can be efficiently generated, and the yield and efficiency of ozone generation can be significantly improved. As a result of these efforts, it has become possible to realize an ozonizer that is small, inexpensive, and has a high yield and high efficiency.
第1図は本発明の一実施例の組立斜視図、第2図、第3
図、第4図、第5図及び第6図は。
本発明に使用するコロナ放電極の種々の構成様態を示す
斜視図、第7図は格子状支持体の一構成様態の斜視図を
示す。第8図は第1図の実施例を基本ブロックとし、こ
れを多層に積み重ねて本発明を実施せるff1Jの縦断
面図を示す。第9図は本発明のい寸一つの実施例の縦断
面図、第10図、第11図はそれぞれその変形構成様態
の横断面図を示し、第12図は本発明のいま一つの別の
実施例の縦断面図、第13図はその変形構成形態の冷却
用フィン及びそのとりつけを示す図、第14図は第12
図の別の変形構成様態を示ず1黄断面図である。第15
図は本発明のい1一つの実施例の縦断面図、第16図は
その(16断面図を示す。
図における主要な要素の名稍は次の通りである。
A、B、C,D ・・・・ セラミンク基板E ・・・
・・・・ ・・・・・ セラミック基板筒体112、1
’+ 2’・・・・・・・誘導電極6 + 6Z 6″
+ 65 ・・・・波形金属板コロナ放電極8、9.
8′、 9’・−・・・・支持用波形板6b 、 6c
+ 12 、66 + 114−=−放電部1:’l
、 16. lli’、 17. +8.19.24.
・・・・コロナ放電極側 ・・・・ ・ ・・・・
交流高圧電源32 ・・ ・・・・・・・・ 円筒
状誘導電極33.69 ・・ ・ ・・・・・ らせ
ん状コロナ放電極36.37 ・・・・・・・・・・
・・・・・・・ 端板38.102. ■5 ・・・
・ 冷却用流体入口39、103 、 118 ・・・
仝上 出口51.99 ・・・・・・・・・−・・・
・・・ 円筒状/ヤケノド56+ 84++ 121
・・・・・・・・ ガス入口57、94. 124・
・・・・・・・・・・・ ガス出ロア8 ・・・・・・
・・・・・・・・・・・・・・・・締付用金属棒79.
80 ・・・・・・・・・・・・・・・・ ナツト+
08 ・・・・・・・・・・・・・・・ 逆T字状冷
却フィン+10 ・・ ・・・・・・・・・・・支持
用金属円筒+11 ・−・・・・・ ・・・・・・・
・・U字型チャンネル状コロナ放電極
以上Figure 1 is an assembled perspective view of one embodiment of the present invention, Figures 2 and 3 are
Figures 4, 5 and 6 are. FIG. 7 is a perspective view showing various configurations of the corona discharge electrode used in the present invention, and FIG. 7 is a perspective view of one configuration of the lattice-like support. FIG. 8 is a vertical sectional view of ff1J, which uses the embodiment of FIG. 1 as a basic block and stacks these blocks in multiple layers to implement the present invention. FIG. 9 is a longitudinal cross-sectional view of one full-scale embodiment of the present invention, FIGS. 10 and 11 are cross-sectional views of modified configurations thereof, and FIG. 12 is a longitudinal cross-sectional view of one embodiment of the present invention. A vertical cross-sectional view of the embodiment, FIG. 13 is a diagram showing cooling fins of a modified configuration and their attachment, and FIG.
FIG. 1 is a yellow cross-sectional view that does not show another modified configuration mode of the figure. 15th
The figure is a longitudinal sectional view of one embodiment of the present invention, and FIG. 16 is a sectional view thereof. The names of the main elements in the figure are as follows: A, B, C, D.・・・ Ceramink substrate E ・・・
... ... ... Ceramic substrate cylinder 112, 1
'+ 2'...Induction electrode 6 + 6Z 6''
+ 65... Corrugated metal plate corona discharge electrodes 8, 9.
8', 9'---Supporting corrugated plates 6b, 6c
+ 12, 66 + 114-=-discharge section 1:'l
, 16. lli', 17. +8.19.24.
・・・Corona discharge electrode side ・・・・ ・ ・・・・
AC high voltage power supply 32 ・・・・・・・・・ Cylindrical induction electrode 33.69 ・・・ ・ ・・・・・・ Spiral corona discharge electrode 36.37 ・・・・・・・・・
...... End plate 38.102. ■5...
- Cooling fluid inlet 39, 103, 118...
Exit 51.99 ・・・・・・・・・−・・・
... Cylindrical/burnt throat 56+ 84++ 121
...... Gas inlet 57, 94. 124・
・・・・・・・・・・・・ Gas outlet lower 8 ・・・・・・
・・・・・・・・・・・・・・・ Metal rod for tightening 79.
80 ・・・・・・・・・・・・・・・ Natsuto+
08 ・・・・・・・・・・・・・・・ Inverted T-shaped cooling fin +10 ・・・・・・・・・・・・・・・ Supporting metal cylinder +11 ・−・・・・・・・・・ ・・・・・・・・
・・U-shaped channel corona discharge electrode or higher
Claims (30)
ラミック基板の一面に曲率半径が0.1mm以上の放電
部を有するコロナ放電極を、その放電部が該セラミック
基板の一面に実質的に接する如くに配設し、また該セラ
ミック基板の他面に、少くとも上記コロナ電極の該セラ
ミック基板との接触部位に向い合う部分全体を覆う如く
に面状の誘導電極を該セラミック基板と一体焼成するこ
とにより設け、両電極間に交流高電圧を印加するための
交流高圧電源を備え、酸化させる気体を上記セラミック
基板の該コロナ放電極が配設された側の表面に沿って流
通せしめる通路を設けたことを特徴とする所のセラミッ
クを用いたオゾナイザー装置。(1) A corona discharge electrode having a discharge part with a radius of curvature of 0.1 mm or more on one surface of a ceramic substrate made of insulating ceramic with a thickness of 2 mm or less, and the discharge part substantially touching one surface of the ceramic substrate. Further, on the other surface of the ceramic substrate, a planar induction electrode is integrally fired with the ceramic substrate so as to cover at least the entire portion of the corona electrode facing the contact portion with the ceramic substrate. A high-voltage AC power supply is provided for applying an AC high voltage between the two electrodes, and a passage is provided for causing the oxidizing gas to flow along the surface of the ceramic substrate on the side on which the corona discharge electrode is disposed. This is an ozonizer device using ceramic, which is characterized by:
入焼成せることを特徴とする所の、特許請求範囲(1)
に記載のセラミックを用いたオゾナイザー装置。(2) Claim (1) characterized in that the planar induction electrode is embedded and fired inside the ceramic substrate A.
An ozonizer device using the ceramic described in .
、該誘導電極が厚膜印刷の方法により形成の上、該高純
度アルミナ磁器と一体焼成して成るタングステン薄膜層
より成ることを特徴とする所の、特許請求範囲(1)及
び(2)に記載のセラミックを用いたオゾナイザー装置
。(3) The ceramic substrate is made of high-purity alumina porcelain, and the induction electrode is made of a tungsten thin film layer formed by a thick film printing method and then integrally fired with the high-purity alumina porcelain. An ozonizer device using the ceramic according to claims (1) and (2).
対の側に、冷却用流体を流通せしめて該セラミック基板
を冷却することを特徴とする所の特許請求範囲(1)よ
り(3)までに記載のセラミックを用いたオゾナイザー
装置。(4) Claims (1) to (3) characterized in that the ceramic substrate is cooled by flowing a cooling fluid to the side of the ceramic substrate opposite to the side where the corona discharge portion is present. An ozonizer device using the ceramic described above.
対の側の表面に、これと密着して冷却用フインを配設せ
ることを特徴とする所の特許請求範囲(4)に記載のセ
ラミックを用いたオゾナイザー装置。(5) A cooling fin is provided on the surface of the ceramic substrate opposite to the side where the corona discharge portion is present, in close contact therewith. Ozonizer device using ceramic.
の逆T字状冷却フインであることを特徴とする所の、特
許請求範囲(5)に記載のセラミックを用いたオゾナイ
ザー装置。(6) The ozonizer device using ceramic according to claim (5), wherein the cooling fin is an inverted T-shaped cooling fin as described in the main text and FIG.
特徴とする所の、特許請求範囲(1)より(6)までに
記載のセラミックを用いたオゾナイザー装置。(7) An ozonizer device using the ceramic according to claims (1) to (6), characterized in that the corona discharge electrode is cooled by a cooling fluid.
設けたことを特徴とする所の、特許請求範囲(1)より
(7)までに記載のセラミックを用いたオゾナイザー装
置。(8) An ozonizer device using ceramic according to claims (1) to (7), characterized in that a dehumidifier is provided to dehumidify the gas to be oxidized in advance.
の該コロナ放電極が配設された側の表面に沿って流通せ
しめることを特徴とする所の、特許請求範囲(1)より
(8)までに記載のセラミックを用いたオゾナイザー装
置。(9) From claim (1), the gas to be oxidized is caused to flow under pressure along the surface of the ceramic substrate on which the corona discharge electrode is disposed. 8) An ozonizer device using the ceramic described above.
に平行に支持してその間にコロナ放電極を配設し、それ
ぞれのセラミック基板のコロナ放電極存在側と反対の側
に冷却用流体を流通せしめることを特徴とする所の、特
許請求範囲(1)より(9)までに記載のセラミックを
用いたオゾナイザー装置。(10) The ceramic substrate is a flat plate, the two plates are supported parallel to each other, a corona discharge electrode is disposed between them, and a cooling fluid is provided on the side of each ceramic substrate opposite to the side where the corona discharge electrode is present. An ozonizer device using the ceramic described in claims (1) to (9), characterized in that the ceramic is made to flow.
ックとし、これを酸化されるガスの通路と冷却用流体の
通路が隔離される如く隔壁を設けて多層に積重ねて成る
ことを特徴とする所の、特許請求範囲(1)より(10
)までに記載のセラミックを用いたオゾナイザー装置。(11) The device according to claim (10) is used as a basic block, and is stacked in multiple layers with a partition wall so that the passage for the gas to be oxidized and the passage for the cooling fluid are separated. Claim (1) to (10)
) An ozonizer device using the ceramic described above.
するための支持体を設けたことを特徴とする所の、特許
請求範囲(11)に記載のセラミックを用いたオゾナイ
ザー装置。(12) An ozonizer device using ceramic according to claim (11), characterized in that a support for supporting the upper and lower ceramic substrates is provided in the cooling fluid passage.
を特徴とする所の、特許請求範囲(1)より(9)まで
に記載のセラミックを用いたオゾナイザー装置。(13) An ozonizer device using the ceramic described in claims (1) to (9), wherein the ceramic substrate is a cylindrical substrate tube.
のカップ状端板を設けたことを特徴とする所の、特許請
求範囲(13)に記載のセラミックを用いたオゾナイザ
ー装置。(14) An ozonizer device using ceramic according to claim (13), characterized in that cup-shaped end plates are provided on both sides of the substrate cylinder for airtightly sealing it.
かつその内側に冷却用流体を流通せしめることを特徴と
する所の、特許請求範囲(13)及び(14)に記載の
セラミックを用いたオゾナイザー装置。(15) disposing a corona discharge electrode on the outer wall surface of the substrate cylinder;
An ozonizer device using the ceramic according to claims (13) and (14), characterized in that a cooling fluid is allowed to flow inside the ozonizer device.
する如く両端が基板筒体に密着し、かつ両端附近にガス
の入口と出口を備えた円筒状のジャケットを設けたこと
を特徴とする所の、特許請求範囲(15)に記載のセラ
ミックを用いたオゾナイザー装置。(16) A cylindrical jacket is provided on the outside of the corona discharge electrode of the substrate cylindrical body, so as to surround it, both ends of which are in close contact with the substrate cylindrical body, and having gas inlets and outlets near both ends. An ozonizer device using the ceramic according to claim (15).
て、該基板筒体内に酸化されるガスを流通せしめ、かつ
該基板筒体の外側に冷却用流体を流通せしめることを特
徴とする所の、特許請求範囲(13)及び(14)に記
載のセラミックを用いたオゾナイザー装置。(17) A corona discharge electrode is disposed on the inner wall surface of the substrate cylinder to allow gas to be oxidized to flow inside the substrate cylinder and to allow cooling fluid to flow outside the substrate cylinder. An ozonizer device using the ceramic according to claims (13) and (14).
とする所の、特許請求範囲(1)より(17)までに記
載のセラミックを用いたオゾナイザー装置。(18) An ozonizer device using the ceramic described in claims (1) to (17), wherein the corona discharge electrode is made of a corrugated metal plate.
る所の、特許請求範囲(1)より(17)までに記載の
セラミックを用いたオゾナイザー装置。(19) An ozonizer device using the ceramic described in claims (1) to (17), wherein the corona discharge electrode is made of a metal wire.
特徴とする所の、特許請求範囲(1)より(17)まで
に記載のセラミックを用いたオゾナイザー装置。(20) An ozonizer device using the ceramic described in claims (1) to (17), wherein the corona discharge electrode is made of a spiral metal wire.
とする所の、特許請求範囲(1)より(17)までに記
載のセラミックを用いたオゾナイザー装置。(21) An ozonizer device using ceramic according to claims (1) to (17), wherein the corona discharge electrode is made of a metal pipe.
する所の、特許請求範囲(1)より(17)までに記載
のセラミックを用いたオゾナイザー装置。(22) An ozonizer device using the ceramic described in claims (1) to (17), wherein the corona discharge electrode is made of a metal wire mesh.
する所の、特許請求範囲(1)より(17)までに記載
のセラミックを用いたオゾナイザー装置。(23) An ozonizer device using the ceramic described in claims (1) to (17), wherein the corona discharge electrode is made of a metal grid.
ることを特徴とする所の、特許請求範囲(1)より(1
7)までに記載のセラミックを用いたオゾナイザー装置
。(24) From claim (1) to (1), wherein the corona discharge electrode is made of a helical metal spring.
7) An ozonizer device using the ceramic described above.
部を構成せる細長い金属ストリップより成ることを特徴
とする所の、特許請求範囲(1)より(17)までに記
載のセラミックを用いたオゾナイザー装置。(25) The ceramic according to claims (1) to (17) is used, wherein the corona discharge electrode is composed of an elongated metal strip with one edge bent to form a non-sharp discharge part. ozonizer device.
型チャンネル状金属より成ることを特徴とする所の、特
許請求範囲(1)より(17)までに記載のセラミック
を用いたオゾナイザー装置。(26) An ozonizer using the ceramic described in claims (1) to (17), characterized in that the corona discharge electrode is made of the U-shaped channel-shaped metal described in the main text and FIG. Device.
内部に流通せる基板筒体内にこれと同軸に配設せる支持
用金属円筒の外表面に固定せることを特徴とする所の、
特許請求範囲(17)に記載のセラミックを用いたオゾ
ナイザー装置。(27) The base of the U-shaped channel-shaped metal is fixed to the outer surface of a supporting metal cylinder disposed coaxially within a substrate cylinder through which a cooling fluid flows,
An ozonizer device using the ceramic according to claim (17).
流高圧電源であることを特徴とする所の、特許請求範囲
(1)より(27)までに記載のセラミックを用いたオ
ゾナイザー装置。(28) An ozonizer device using ceramic according to claims (1) to (27), wherein the AC high voltage power source is a high frequency AC high voltage power source with a frequency of 5 KHz or more.
徴とする所の、特許請求範囲(1)より(27)までに
記載のセラミックを用いたオゾナイザー装置。(29) An ozonizer device using the ceramic described in claims (1) to (27), characterized in that the AC high voltage power source is a high voltage pulse power source.
以下の極短高圧パルス電圧を発生する所の極短高圧パル
ス電源であることを特徴とする所の特許請求範囲(29
)に記載のセラミックを用いたオゾナイザー装置。(30) Claims (29) characterized in that the high voltage pulse power source is an extremely short high voltage pulse power source that generates an extremely short high voltage pulse voltage with a pulse width of 1 microsecond or less.
) An ozonizer device using the ceramic described in ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20855184A JPS6186403A (en) | 1984-10-04 | 1984-10-04 | Ozonizer constructed with ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20855184A JPS6186403A (en) | 1984-10-04 | 1984-10-04 | Ozonizer constructed with ceramic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6186403A true JPS6186403A (en) | 1986-05-01 |
Family
ID=16558057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20855184A Pending JPS6186403A (en) | 1984-10-04 | 1984-10-04 | Ozonizer constructed with ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6186403A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63114991A (en) * | 1986-11-01 | 1988-05-19 | Shinryo Air Conditioning Co Ltd | Ozonizer and production of aqueous ozone by using same |
JPS63129004A (en) * | 1986-11-17 | 1988-06-01 | New Japan Radio Co Ltd | Ozonizer |
JPS63137748A (en) * | 1986-12-01 | 1988-06-09 | Ebara Res Co Ltd | Gas discharge reaction apparatus |
JPS63209657A (en) * | 1987-02-27 | 1988-08-31 | 増田 佳子 | Apparatus for disinfecting and sterilizing dental instrument |
JPS6472902A (en) * | 1987-09-16 | 1989-03-17 | Asahi Glass Co Ltd | Electrode for ozonizer |
JPH01133902A (en) * | 1987-08-26 | 1989-05-26 | Applied Materials Inc | ozone generator cell |
JPH02149722U (en) * | 1989-05-24 | 1990-12-21 | ||
JPH0350103A (en) * | 1989-07-19 | 1991-03-04 | Tsuneyoshi Ohashi | Electric discharger for generating ozone |
US5102629A (en) * | 1987-07-23 | 1992-04-07 | Asahi Glass Company, Ltd. | Field formation apparatus |
JP2002273169A (en) * | 2001-03-22 | 2002-09-24 | Mitsubishi Electric Corp | Halogen-containing gas processing equipment |
JP2010058118A (en) * | 2009-12-07 | 2010-03-18 | Mitsubishi Electric Corp | Apparatus for treating halogen-containing gas |
JP2010142758A (en) * | 2008-12-19 | 2010-07-01 | Daihatsu Motor Co Ltd | Exhaust gas purification device |
JP2020083708A (en) * | 2018-11-27 | 2020-06-04 | アール・ビー・コントロールズ株式会社 | Ozone generator |
-
1984
- 1984-10-04 JP JP20855184A patent/JPS6186403A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63114991A (en) * | 1986-11-01 | 1988-05-19 | Shinryo Air Conditioning Co Ltd | Ozonizer and production of aqueous ozone by using same |
JPS63129004A (en) * | 1986-11-17 | 1988-06-01 | New Japan Radio Co Ltd | Ozonizer |
JPS63137748A (en) * | 1986-12-01 | 1988-06-09 | Ebara Res Co Ltd | Gas discharge reaction apparatus |
JPS63209657A (en) * | 1987-02-27 | 1988-08-31 | 増田 佳子 | Apparatus for disinfecting and sterilizing dental instrument |
US5102629A (en) * | 1987-07-23 | 1992-04-07 | Asahi Glass Company, Ltd. | Field formation apparatus |
JPH01133902A (en) * | 1987-08-26 | 1989-05-26 | Applied Materials Inc | ozone generator cell |
JPS6472902A (en) * | 1987-09-16 | 1989-03-17 | Asahi Glass Co Ltd | Electrode for ozonizer |
JPH02149722U (en) * | 1989-05-24 | 1990-12-21 | ||
JPH0350103A (en) * | 1989-07-19 | 1991-03-04 | Tsuneyoshi Ohashi | Electric discharger for generating ozone |
JP2002273169A (en) * | 2001-03-22 | 2002-09-24 | Mitsubishi Electric Corp | Halogen-containing gas processing equipment |
JP2010142758A (en) * | 2008-12-19 | 2010-07-01 | Daihatsu Motor Co Ltd | Exhaust gas purification device |
JP2010058118A (en) * | 2009-12-07 | 2010-03-18 | Mitsubishi Electric Corp | Apparatus for treating halogen-containing gas |
JP2020083708A (en) * | 2018-11-27 | 2020-06-04 | アール・ビー・コントロールズ株式会社 | Ozone generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4960570A (en) | Ozone generator | |
JPS6186403A (en) | Ozonizer constructed with ceramic | |
US4725412A (en) | Ozone generator | |
US4320301A (en) | Device for the production of ozone | |
KR20070108880A (en) | Chillers including electro-hydraulic pumps and electro-hydraulic pumps | |
JPS6346265B2 (en) | ||
JP4292629B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2012079429A (en) | Plasma processing apparatus | |
JP2001193441A (en) | Exhaust emission control device for internal combustion engine | |
CA1198200A (en) | Apparatus for the generation of laser radiation | |
RU2155421C1 (en) | Electrode device with preliminary ionization by ultraviolet light produced by corona discharge | |
RU2057059C1 (en) | Small-sized ozone generator | |
KR20060017191A (en) | Air purifier | |
JPH10182109A (en) | Ozone generator | |
US20060239873A1 (en) | Double dielectric barrier discharge electrode device and system | |
JPS63242903A (en) | Ozonizer | |
KR100327598B1 (en) | A small-sized efficient ozone generator | |
RU2153465C2 (en) | Ozone generator | |
KR0130733B1 (en) | Plasma discharge generating apparatus | |
KR101582315B1 (en) | Ozone Generator | |
CN215249564U (en) | Discharge body, electric field device and ozone generator | |
JP2824069B2 (en) | Excimer laser device | |
US20040256225A1 (en) | Air purification system and device | |
CN114314519A (en) | Discharge body, electric field device and ozone generator | |
JPH0328365B2 (en) |