Nothing Special   »   [go: up one dir, main page]

JPS6179519A - Face milling cutter - Google Patents

Face milling cutter

Info

Publication number
JPS6179519A
JPS6179519A JP19948884A JP19948884A JPS6179519A JP S6179519 A JPS6179519 A JP S6179519A JP 19948884 A JP19948884 A JP 19948884A JP 19948884 A JP19948884 A JP 19948884A JP S6179519 A JPS6179519 A JP S6179519A
Authority
JP
Japan
Prior art keywords
cutting edge
radius
tooth
blade
tooth bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19948884A
Other languages
Japanese (ja)
Other versions
JPH0565290B2 (en
Inventor
Nobuteru Hitomi
人見 宣輝
Akira Nakayama
章 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19948884A priority Critical patent/JPS6179519A/en
Publication of JPS6179519A publication Critical patent/JPS6179519A/en
Publication of JPH0565290B2 publication Critical patent/JPH0565290B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • B23F21/12Milling tools
    • B23F21/22Face-mills for longitudinally-curved gear teeth

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Gear Processing (AREA)

Abstract

PURPOSE:To enable a desired tooth profile to be designed, by decreasing a stress concentration coefficient by an increase by an edge point radius in a dedendum cutting edge and increasing bending strength. CONSTITUTION:An edge point radius Rk1 in a dedendum cutting edge 11b, 12b is increased in no relation to the conventional standard. In this way, a cutter, increasing also a dedendum radius, decreases a stress concentration coefficient. The cutting edge 11b, 12b lowers exceeding a tooth bottom line in accordance with an increase of the radius Rk1, but a curved tooth bottom cutting edge 11c, 12c rises up successively to the tooth bottom line, forming a new tooth bottom line. A position of the new tooth bottom line in a range on calculation is set by adjusting a mutual relation between the edge point radius Rk1 of the dedendum cutting edge 11b, 12b, radius of curvature Rb of the tooth bottom cutting edge 11c, 12c, and the position of a flank 11d, 12d.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマガリ歯カサ歯車、ハイポイド歯車などを切削
するフェースミルカッタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a face mill cutter for cutting gears such as bevel gears and hypoid gears.

(従来の技術) 上記フェースミルカッタとしては、歯切盤の主軸に取付
けるための中心ボアをそなえb盤状ボディの外周にそれ
ぞれ片側面面と歯底とを切削する外刃ブレードおよび内
刃ブレードを交互に植す」けた11」成用または成形用
両刃カッタ、ちるいは上記ブレードのほかに歯底のみを
切削する中央ブレードを植付けた成形用トリプレックス
カッタなどが知られている。
(Prior art) The above face mill cutter has an outer blade and an inner blade that cut one side surface and the tooth bottom on the outer periphery of a disk-shaped body, respectively, and have a central bore for attachment to the main shaft of a gear cutting machine. Known are double-edged cutters for forming or shaping that have 11 girder blades alternately planted, and triplex cutters for forming that have a center blade that cuts only the bottom of the tooth in addition to the above-mentioned blades.

第5図は従来の上記両刃カッタにおける外刃ブレードお
よび内刃ブレードの相対配置関係を、また第6図はこれ
によって切l+!dでnfc菌溝の形状をそれぞれ示す
ものである。
FIG. 5 shows the relative arrangement of the outer blade and inner blade in the conventional double-edged cutter, and FIG. 6 shows the cutting l+! d shows the shape of the NFC fungal groove.

第5図に2いて、1に外歯ブレード、2は内刃ブレード
でおる。外回ブレード1において、1aは片側面面を切
削する歯面切刃、1bヒ歯元の7一ル部を切削する歯元
切刃、1cFi歯底を切削する苗床切刃、1dに歯面切
刃1aの反対側に形成した逃面であって、内刃ブレード
2にも同様にして歯面切刃2a、歯元切刃2b。
In Fig. 5, 2 is shown, 1 is an externally toothed blade, and 2 is an internally toothed blade. In the external blade 1, 1a is a tooth surface cutting blade that cuts one side surface, 1b is a tooth root cutting blade that cuts the 7th round part of the tooth root, 1c is a seedbed cutting blade that cuts the tooth bottom, and 1d is a tooth surface cutting blade. The inner blade 2 also has a flank cutting edge 2a and a root cutting edge 2b, which are flanks formed on the opposite side of the cutting edge 1a.

歯底切刃2c、および逃面2dが形成されている。まf
cB−Bは歯底線、X−Xは歯底中心線、Wはポイント
印、Rkは目元切刃1b、2bに附した月光アール、C
kは頂隙、第6図において、Rzは歯元アール、Fは歯
底に形成された平面部、Hlkは有効歯タケである。
A tooth bottom cutting edge 2c and a flank 2d are formed. Maf
cB-B is the tooth root line, X-X is the root center line, W is the point mark, Rk is the moonlight radius attached to the eye cutting blades 1b and 2b, C
In FIG. 6, k is the top clearance, Rz is the root radius, F is the flat surface formed on the bottom of the tooth, and Hlk is the effective tooth thickness.

刃先アールRkは上記平面部Fを形成する必要と歯元切
刃の強度および耐摩耗性の面からその寸法がおおよそ標
準化され、グリーソンのカッタ表その他の標準によれば
、このRkはポイント巾W C) 172未満ないしほ
ぼ1/4 (0間に定められている。
The dimensions of the cutting edge radius Rk are roughly standardized due to the need to form the above-mentioned flat part F and the strength and wear resistance of the root cutting edge.According to Gleason's cutter table and other standards, this Rk is the point width W. C) Less than 172 to approximately 1/4 (defined between 0.

(問題点) ところで、かかる標準を採用して歯切をするときは、例
えば歯厚減少等の歯車に施こしたい修正が制約され、そ
のため所望の歯形を設計することができないという問題
がある。その理由はつぎのどとぐである。
(Problem) By the way, when gears are cut using such standards, there is a problem in that modifications to be made to the gear, such as reduction in tooth thickness, are restricted, and as a result, a desired tooth profile cannot be designed. The reason is as follows.

すなわち、歯の曲げ強度にはかみあい率、圧力角、歯タ
ケ、歯厚等の要因が関与するが、曲げ強度を低下させる
ような修正、例゛えば歯厚を減少させようとするときは
、これによる曲げ強度の低下を歯元に生じる応力の分散
によって補償すること、具体的には歯元アールRzを増
大して応力集中係数を小ならしめることが極めて有効で
ある。ところが歯元アールは刃先アールRkの関数とし
て定まり、この刃先アールは前述した制約をうけるので
、強度の補償にもおのづと限度が生じるからである。
In other words, factors such as contact ratio, pressure angle, tooth thickness, and tooth thickness are involved in the bending strength of the teeth, but when attempting to make modifications that reduce the bending strength, such as reducing the tooth thickness, It is extremely effective to compensate for this decrease in bending strength by dispersing the stress generated at the root of the tooth, specifically by increasing the root radius Rz and reducing the stress concentration factor. However, the tooth base radius is determined as a function of the cutting edge radius Rk, and this cutting edge radius is subject to the above-mentioned restrictions, so there is a limit to strength compensation.

そこで本発明の課題は、刃先アールの設定に当ρ、従来
の標準にとられれることなく、これを大きくなしうるよ
うにすることである。
Therefore, an object of the present invention is to make it possible to set the cutting edge radius to a large value without following the conventional standard.

(発明の手段) 上記課題を解決した本発明の手段は、歯面切刃に続く歯
元切刃の刃先アールをポイント巾のl/2以上に設定す
るとともに、歯元切刃に@いて逃面に連らなるわん曲し
た歯底切刃を形成したものである。
(Means of the Invention) The means of the present invention that solves the above problems is to set the cutting edge radius of the root cutting edge following the tooth flank cutting edge to 1/2 or more of the point width, and to It has a curved tooth bottom cutting edge that is connected to the surface.

(作用) 上記手段は、歯元切刃の刃先アールを従来の標準にかか
わシなく増大させるので歯元アールも増加し、これによ
って応力集中係数を小ならしめる。
(Function) The above means increases the cutting edge radius of the dedendum cutting edge regardless of the conventional standard, so the dedendum radius also increases, thereby reducing the stress concentration factor.

然して、刃先アールの増大にともなって歯元切刃が従来
の歯底線を超えて立下るけれども、わん曲した歯底切刃
がこれに連続して立上るので、適宜のところに新たな歯
底線を形成しうる。
However, as the cutting edge radius increases, the root cutting edge falls beyond the conventional tooth root line, but since the curved tooth root cutting edge continues to rise, a new tooth root line is created at an appropriate location. can be formed.

よって歯元切刃の刃先アール、歯底切刃の曲率半径、お
よび逃面位置の相互関係を調整することにより、計算上
の範囲において新たな歯底線位置、したがって頂[!l
&を設定することができる。
Therefore, by adjusting the mutual relationship between the cutting edge radius of the root cutting edge, the radius of curvature of the root cutting edge, and the flank position, a new root line position can be established within the calculated range, and therefore the apex [! l
& can be set.

(実施例) 第1図は2:発明に係る両側カッタの一例を示すもので
、11は外刃ブレード、12は内刃ブレードである。外
刃ブレード11訃よび内刃ブレード12には、それぞれ
、従来と同様な歯面切刃1iaおよび12a1刃先アー
ルRklの歯元切刃11bおよび12bX 曲率半径R
bをもってわん曲した歯底切刃lieおよび1000逃
面11dおよび12dが一連に形成してろる。第2図は
本発明に係るトリプレンクスカンタの一例を示すもので
、前記外刃ブレード11と内刃ブレード12との間に前
述した中央ブレード13ヲ配設しである。Rrはこの中
央ブレードの刃先13aの曲率半径である。
(Example) FIG. 1 shows an example of a double-sided cutter according to the invention, 11 is an outer blade, and 12 is an inner blade. The outer blade 11 and the inner blade 12 have the same tooth surface cutting edges 1ia and 12a1 as the conventional ones, root cutting edges 11b and 12b of the cutting edge radius Rkl, respectively, and a radius of curvature R.
A curved tooth bottom cutting edge 11d and 12d are formed in series. FIG. 2 shows an example of a triplex canter according to the present invention, in which the aforementioned central blade 13 is disposed between the outer blade 11 and the inner blade 12. Rr is the radius of curvature of the cutting edge 13a of this central blade.

第3図の実線は第1図の両側力フタで切削した歯溝の形
状を示すもので、11a’および12a’は歯面切刃1
1aおよび12aで切削された歯面、11b!および1
2b′は歯元切刃11bおよび12bで切削された歯元
、Rzlはその歯元アール、11c′および12c′は
歯底切刃11cおよび12cで切削された歯底で、該歯
底は曲率半径Rb’をもって突起している。
The solid line in Fig. 3 shows the shape of the tooth groove cut with the double-sided force cap in Fig. 1, and 11a' and 12a' are the tooth surface cutting edge 1.
Tooth flanks cut with 1a and 12a, 11b! and 1
2b' is the tooth root cut by the root cutting edges 11b and 12b, Rzl is the tooth root radius, 11c' and 12c' are the tooth bottoms cut by the tooth root cutting edges 11c and 12c, and the root has a curvature. It protrudes with a radius Rb'.

2点鎖線13′は第2図のトリプレンクスカツタの中央
ブレード13によって切削された場合の切削線を示すも
ので、上記の朶起部が大男除去されている。
The two-dot chain line 13' shows the cutting line when the central blade 13 of the triplex cutter shown in FIG.

第4図は外刃ブレード11を例にとってその切刃形状を
拡大して示したものであり、前記従来の外刃ブレード1
の切刃形状を2点鎖i!j!をもって併記しである。
FIG. 4 shows an enlarged view of the cutting edge shape of the outer cutter blade 11 as an example, and shows the outer cutter blade 1 as an example.
The cutting edge shape is a two-point chain i! j! It is also written with .

この従来のものにおいて、Tは歯元切刃1bと歯面切刃
1aとの接点、O′は刃先アールRkの中心点、またR
k −w/2であって、B−BおよびCkはこの一合の
前記歯底線および頂詠でわる。
In this conventional type, T is the contact point between the root cutting edge 1b and the tooth flank cutting edge 1a, O' is the center point of the cutting edge radius Rk, and R
k-w/2, where B-B and Ck are divided by the root line and the top line of this combination.

実凡例において、刃先アールRklは前述したように上
記のポイント巾Wの1/2以上とされ、実験上の最適値
はぐ0.7〜0.9)W″’cある。Oは線分子O’の
延長上に設定した歯元切刃11bの中心点(TO=Rk
l )、BJ−Blは歯底線、Cklは頂隙、ΔCkI
U従来の頂隙Ckに対する増分、Ckzは計算上の頂隙
、△Ckzはその増分でおる。
In the actual legend, the cutting edge radius Rkl is set to be 1/2 or more of the above point width W, as mentioned above, and the experimentally optimum value is 0.7 to 0.9)W'''c.O is the line molecule O The center point of the root cutting edge 11b set on the extension of ' (TO=Rk
l), BJ-Bl is the root line, Ckl is the top gap, ΔCkI
U The increment relative to the conventional top gap Ck, Ckz is the calculated top gap, and ΔCkz is the increment.

頂隙Ckzは通常の手法によって次のように計算する。The top gap Ckz is calculated by the usual method as follows.

マガリ歯カサ薗車を例にとって、その大歯車の歯数をN
1 ピッチ円径をDlねじれ角をWとすれば、平均円錐
距離での歯直角モジュール止は Mn = D Cog W/N であられされ、このときの有効歯タケ血はHk = K
−Mn (!”l) Kは歯タケ係数で一般に3.5〜4の値をとる。
Taking a large gear bevel wheel as an example, the number of teeth of the large gear is N.
1 If the pitch circle diameter is Dl and the torsion angle is W, then the normal module stop at the average cone distance is given by Mn = D Cog W/N, and the effective tooth thickness at this time is Hk = K
-Mn (!”l) K is a tooth bamboo coefficient and generally takes a value of 3.5 to 4.

頂諒Ckzは Ckz = 0.15 Hk +0.05= 0.15
 K−M n + 0.05= (0,525−0,6
) Mn + 0.05(−)また △Ckz = (0,+5〜0.25  )W   (
鵡)然して従来の頂隙Ckは刃先アールRkの前記制約
から計算上の値工りもかなυ小さなものとされている。
The top Ckz is Ckz = 0.15 Hk +0.05 = 0.15
K-M n + 0.05= (0,525-0,6
) Mn + 0.05 (-) and △Ckz = (0, +5 ~ 0.25) W (
However, the conventional top clearance Ck is calculated to be small υ due to the above-mentioned restriction on the cutting edge radius Rk.

Bz −B2にJ:5じ計算上の歯底線でめって、ΔC
kz ’lΔCkxの1.VJ係において前記歯底様B
t −Blの部位を設定する。(実施例ではΔCkz 
> 試kl)次に、この実通例の歯底切刃11cμ前記
ail率半径Rhを半径とする円弧状を呈し、山元切刃
11一 討臘続して歯底線Bl−Blに従したのち苗床中心線X
 −X ′に超えたところで逃油1idがこnに連らな
っている。半径Rbの値1グ、ブレード該部のNit摩
耗性や耐破損性を考慮して(0,25〜0.35)Wと
するのが適当である。
Bz - B2 to J: 5.Meet at the calculated tooth bottom line, ΔC
1 of kz 'lΔCkx. In the VJ section, the tooth bottom-like B
Set the site of t-Bl. (In the example, ΔCkz
>Test kl) Next, this usual tooth bottom cutting blade 11cμ has an arc shape with the ail rate radius Rh as its radius, and the Yamamoto cutting blade 11 continues to follow the tooth bottom line Bl-Bl, and then it is placed in the seedbed. center line
-X', the oil leak 1id is connected to this n. It is appropriate to set the value of the radius Rb to 1g and (0.25 to 0.35) W considering the Nit abrasion resistance and breakage resistance of the blade portion.

内刃ブレード12の鐸元切刃i2bおよび歯底切刃12
cもM様に形成さnl この場合歯底&it−外刃ブレ
ードの歯底線Bl−B1と一致6せるのが常道でろる。
The root cutting edge i2b of the inner blade 12 and the bottom cutting edge 12
c is also formed in the shape of M. In this case, it is common practice to match the tooth bottom & it with the tooth bottom line Bl-B1 of the outer blade.

また第2図のトリブレンクスカツタでは中央ブレード1
3の刃先13at計其上の歯底線Bz −B2に接する
まで下げることができ、刃先13aの曲率半径Rrl”
!該刃先の耐摩耗性や耐破損性を考慮して歯底切刃11
cの曲率半径Rbとほぼ同等に定められる。
In addition, in the tribulenx cutter shown in Figure 2, the center blade 1
3, the cutting edge 13at can be lowered until it touches the root line Bz -B2 on it, and the radius of curvature Rrl of the cutting edge 13a
! The tooth bottom cutting edge 11 is designed in consideration of the wear resistance and breakage resistance of the cutting edge.
It is determined to be approximately equal to the radius of curvature Rb of c.

(効果) 以上説明したように本発明は、歯元における応力集中係
数を小ならしめて曲げ強度の増大をはか9うるものであ
るから、口車を修正するに際してその自F!3度を高め
ることかでさる。
(Effects) As explained above, the present invention reduces the stress concentration coefficient at the root of the tooth and increases the bending strength. It's about raising the third degree.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ不発明の実施例を示すフ
ェース、ミルカッタの要部説明図、第3図は第り図およ
び第2図のカンタによって切削さnた歯溝形状を示す説
明図、第4図に第1図および第2図の更に要部を拡大し
て示ア説明図、第5図は従来のフェースミルカッタの要
部説明図、第6図は第5図のカンタに:つて切削ざnf
c歯溝形状を示す説明図である。 1.11・・・外見ブレード 2.12・・−内刃ブレード 13・・−中央ブレード 1 a 、 11a、2a、12a・−・歯面切刃Ib
 、 llb、2b、12b・−・歯元切刃1c 、 
Ilc、2c、12c・・・歯底切刃1 d 、 li
d、2d、12d・・・逃油Rk、Rkl・・・歯元切
刃の刃先アールRb・−・歯底切刃の曲率半径 W・・・ポイント巾
Figures 1 and 2 are explanatory views of the main parts of the face and mill cutter showing an embodiment of the invention, respectively, and Figure 3 is an explanatory view showing the shape of the tooth groove cut by the canters of Figures 1 and 2. , Fig. 4 is an explanatory diagram that further enlarges the main parts of Figs. : Tsute cutting zone nf
c is an explanatory diagram showing the tooth groove shape. 1.11...Outer blade 2.12...-Inner blade blade 13...-Central blade 1a, 11a, 2a, 12a...Tooth surface cutting edge Ib
, llb, 2b, 12b -- root cutting edge 1c,
Ilc, 2c, 12c... tooth bottom cutting edge 1 d, li
d, 2d, 12d... Oil escape Rk, Rkl... Cutting edge radius Rb of the tooth root cutting edge -- Curvature radius W of the tooth bottom cutting edge... Point width

Claims (1)

【特許請求の範囲】[Claims] 外刃ブレードと内刃ブレードとをそなえる歯切用のフェ
ースミルカッタにおいて、これらのブレードの歯面切刃
に続く歯元切刃の刃先アールをポイント巾の1/2以上
に設定するとともに、歯元切刃に続いてブレードの逃面
に連らなるわん曲した歯底切刃を形成したフェースミル
カッタ。
In a face mill cutter for gear cutting equipped with an outer blade and an inner blade, the cutting edge radius of the root cutting edge following the tooth surface cutting edge of these blades is set to 1/2 or more of the point width, and the tooth A face mill cutter with a curved bottom cutting edge that continues from the original cutting edge to the flank of the blade.
JP19948884A 1984-09-26 1984-09-26 Face milling cutter Granted JPS6179519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19948884A JPS6179519A (en) 1984-09-26 1984-09-26 Face milling cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19948884A JPS6179519A (en) 1984-09-26 1984-09-26 Face milling cutter

Publications (2)

Publication Number Publication Date
JPS6179519A true JPS6179519A (en) 1986-04-23
JPH0565290B2 JPH0565290B2 (en) 1993-09-17

Family

ID=16408640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19948884A Granted JPS6179519A (en) 1984-09-26 1984-09-26 Face milling cutter

Country Status (1)

Country Link
JP (1) JPS6179519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543596A (en) * 2005-06-27 2008-12-04 ザ グリーソン ワークス Cutting edge with full width

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118129U (en) * 1981-01-12 1982-07-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118129U (en) * 1981-01-12 1982-07-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543596A (en) * 2005-06-27 2008-12-04 ザ グリーソン ワークス Cutting edge with full width

Also Published As

Publication number Publication date
JPH0565290B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US4969371A (en) Gear type flexible coupling
US4990035A (en) Contour milling cutter
US9387547B2 (en) Power skiving tool for power skiving gear teeth on a crown wheel workpiece
EP1803974B1 (en) Gear wheel with chamfered portions
EP2988025B1 (en) Straight bevel gear with spherical involute configuration
CN105073316A (en) Insert for drill and cutting blade replacement-type drill
JPS6179519A (en) Face milling cutter
US20020128101A1 (en) Sprocket for a chain with teeth having a different flank profile on the same sprocket
US5288179A (en) Hob for generating face gears
CN209256013U (en) A kind of salient angle type hobboing cutter
CN101208170B (en) Full point width cutting blades
US2306854A (en) Gear
US2278737A (en) Rotary finishing cutter
JPS6334010A (en) Roughing end mill
US3918314A (en) Bevel gear drive with circle-arc teeth
USRE28926E (en) Gear tooth design
US3820414A (en) Gear tooth design
US2324003A (en) Double helical gear cutter
CN210172718U (en) Double-spliced curve type gear hob
US2594186A (en) Method of shaving gears
US2801459A (en) Gear shaper cutter
EP3945225A1 (en) Differential gear mechanism and design method therefor
US1610571A (en) Modified gear-shaping cutter
JPS591866A (en) Gear and manufacture thereof
US5626443A (en) Convex-concave hobs

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees