JPS6169907A - Production of pulverous tungsten powder - Google Patents
Production of pulverous tungsten powderInfo
- Publication number
- JPS6169907A JPS6169907A JP19326884A JP19326884A JPS6169907A JP S6169907 A JPS6169907 A JP S6169907A JP 19326884 A JP19326884 A JP 19326884A JP 19326884 A JP19326884 A JP 19326884A JP S6169907 A JPS6169907 A JP S6169907A
- Authority
- JP
- Japan
- Prior art keywords
- tungsten
- powder
- composite oxide
- composite
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は粒径0.5μ■以下のタングステン微粉末の製
造法に関する。これら微粉末はタングステン焼結体ある
いはタングステン合金焼結体の製造用原料として用いら
れる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing fine tungsten powder having a particle size of 0.5 μm or less. These fine powders are used as raw materials for manufacturing tungsten sintered bodies or tungsten alloy sintered bodies.
通常タングステン粉は、パラタングステン酸アンモニウ
ムの加熱分解によって得られるタングステン酸化物を、
水素雰囲気中で還元することにより作られる。Tungsten powder is usually made from tungsten oxide obtained by thermal decomposition of ammonium paratungstate.
It is made by reduction in a hydrogen atmosphere.
タングステン又はタングステン合金焼結体の製造に際し
、微細なタングステン粉を原材料として用いると比較的
低い温度で高密度焼結体が得られることが知られている
が、従来の水素還元法では0.5μm程度が限界でそれ
以下の微細なタングステン粉の製造は困難であった。It is known that when producing tungsten or tungsten alloy sintered bodies, a high-density sintered body can be obtained at a relatively low temperature by using fine tungsten powder as a raw material. There was a limit to the degree of tungsten powder, and it was difficult to produce fine tungsten powder.
水素還元に際し、還元ボート上の粉末層を薄くし水素流
量を多くすれば微細なタングステン粉が得られることは
従来より知られており、特開昭47−15361号には
、反応ボート上の粉末層の厚さを1〜71QO1に制限
し、原料WO3粉末の単位重量当りの水素流量を0.0
5R/a+in。It has long been known that fine tungsten powder can be obtained by thinning the powder layer on the reduction boat and increasing the hydrogen flow rate during hydrogen reduction. The layer thickness is limited to 1 to 71QO1, and the hydrogen flow rate per unit weight of raw material WO3 powder is 0.0.
5R/a+in.
d以上とするタングステン微粉末の製造方法が述べられ
ている。A method for producing fine tungsten powder having a particle diameter of d or more is described.
但し、このような方法によった場合には、還元ボート内
の粉末量ならびに単位水素量当りの粉末量が制限され、
生産性が著しく悪くなる等の難点があった。However, when using this method, the amount of powder in the reduction boat and the amount of powder per unit amount of hydrogen are limited,
There were drawbacks such as a significant drop in productivity.
例えば前記特開昭47−15361号では。For example, in the above-mentioned Japanese Patent Application Laid-Open No. 15361/1983.
粒径0.1μ5(BET平均粒径)程度のタングステン
微粉末を得るために、酸化物層の厚さ5nusの場合0
.02 A /win、 ailgの水素が、又酸化物
層の厚さ10m11の場合は0 、3 fl /min
、cnf、gの水素が必要であると記載されている。(
通常のタングステンの還元では酸化物の層の厚さ10〜
20mTnにおいて、水素流量は0.003 u/ll
l1n−cxl、g以下である。)
本発明は上記従来法の欠点を解消し、生産性の高いタン
グステン微粉末の製造法を提供するものである。In order to obtain fine tungsten powder with a particle size of about 0.1 μ5 (BET average particle size), when the thickness of the oxide layer is 5 ns,
.. 02 A/win, ailg hydrogen and 0,3 fl/min when the oxide layer thickness is 10 m11
, cnf, g of hydrogen are required. (
In normal tungsten reduction, the thickness of the oxide layer is 10~
At 20mTn, hydrogen flow rate is 0.003 u/ll
l1n-cxl, g or less. ) The present invention eliminates the drawbacks of the above-mentioned conventional methods and provides a method for producing fine tungsten powder with high productivity.
〔問題点を解決するための手段〕
本発明は各種タングステン複合酸化物の還元挙動を種々
検討の結果完成されたもので、本発明の特徴とするとこ
ろは、タングステンと他の元素の複合酸化物粉末を水素
雰囲気中で加熱して分解・還元し、得られたタングステ
ン複合粉末を酸処理してタングステンを遊離することに
あり、タングステンと複合酸化物を形成する元素として
銅あるいはアルミニウムを用いることである。[Means for solving the problems] The present invention was completed as a result of various studies on the reduction behavior of various tungsten composite oxides. The method involves heating the powder in a hydrogen atmosphere to decompose and reduce it, and then treating the resulting tungsten composite powder with acid to liberate tungsten.By using copper or aluminum as an element to form a composite oxide with tungsten, be.
各種のタングステン複合酸化物粉末の製造法は従来より
公知である。多くの複合酸化物はタングステン酸塩水溶
液に複合酸化物を形成する他の元素化合物の水溶液を添
加することにより生成することができる1本発明者等は
これらタングステン複合酸化物の還元挙動を種々検討し
た結果、タングステン複合酸化物の還元に際し、タング
ステンと複合酸化物を形成する構成元素の種類により、
i)タングステンと構成元素の両者共に金属まで還元さ
れ合金を形成する場合、it)両者共に金属まで還元さ
れるものの合金を形成せず、互に分散した複合粉末を形
成する場合(例えば銅−タングステン複合酸化物はその
代表的−例である。)、=)タングステンのみ金属まで
還元され、他の構成元素は還元されないか又は低級酸化
物を形成し複合粉末となる場合(アルミニウムータング
ステン複合酸化物はその一例である。)のあることを見
出した。さらに上記ii)および■)に該当する複合酸
化物粉末を還元後酸処理して構成元素を除去し、タング
ステンを遊離する場合には微細なタングステン粉の得ら
れる事を見出した。複合酸化物粉末中で還元生成された
タングステン粒子は通常の還元条件においても粒成長が
少なく微細であるが、これは複合粉末中に介在する構成
元素が複合粉末中で隣接するタングステン同士の接触を
防げ、タングステン粒子の成長を押えるためと考えられ
る。本発明の方法により得られるタングステン粉の粒子
径は通常0.1μm程度である。Methods for producing various tungsten composite oxide powders are conventionally known. Many composite oxides can be produced by adding aqueous solutions of other elemental compounds that form composite oxides to an aqueous tungstate solution. The present inventors have conducted various studies on the reduction behavior of these tungsten composite oxides. As a result, when reducing tungsten composite oxide, depending on the type of constituent elements forming the composite oxide with tungsten,
i) When both tungsten and the constituent elements are reduced to a metal to form an alloy, and (i) When both are reduced to a metal but do not form an alloy and form a composite powder in which they are mutually dispersed (e.g. copper-tungsten). Complex oxides are a typical example. ), =) When only tungsten is reduced to metal, other constituent elements are not reduced or form lower oxides and become composite powders (aluminum-tungsten composite oxides). is an example of this.) Furthermore, it has been found that fine tungsten powder can be obtained when the composite oxide powder corresponding to ii) and ii) above is reduced and then treated with an acid to remove constituent elements and liberate tungsten. The tungsten particles produced by reduction in the composite oxide powder are fine with little grain growth even under normal reduction conditions, but this is because the constituent elements present in the composite powder prevent adjacent tungsten particles from coming into contact with each other in the composite powder. This is thought to be to prevent the growth of tungsten particles. The particle size of the tungsten powder obtained by the method of the present invention is usually about 0.1 μm.
本発明の実施に当り、タングステンと複合酸化物を形成
する元素としては、■複合酸化物が前記五)又は■)の
還元挙動をとること ■還元後酸処理により容易に除去
できること、が必要で、ここではその代表として銅とア
ルミニウムを選んだ。In carrying out the present invention, it is necessary for the element that forms a composite oxide with tungsten that: (1) the composite oxide exhibits the reduction behavior described in 5) or (2) above; and (2) it must be easily removed by acid treatment after reduction. , here we have selected copper and aluminum as representative examples.
以下実施例に従い本発明の内容をより詳細に説明する。The content of the present invention will be explained in more detail below with reference to Examples.
実施例1゜
WO,濃度約151/V%のタングステン酸アンモニウ
ム水溶液に硝酸調水溶液を1重量比でWO,:Cuが1
0 : 2.7になるよう添加し、生成物を水洗・濾過
後乾燥して青色の銅−タングステン複合酸化物粉末を得
た。X線回折によるll!I!察の結果得られた粉末は
無定形であったが。Example 1゜WO:Cu was added to a nitric acid aqueous solution at a weight ratio of 1 to an ammonium tungstate aqueous solution having a concentration of about 151/V%.
0:2.7, and the product was washed with water, filtered, and dried to obtain a blue copper-tungsten composite oxide powder. ll by X-ray diffraction! I! However, the powder obtained was amorphous.
粉末を空気中600℃で焙焼した時はCu W O4の
ピークが観察された6
乾燥後の複合酸化物粉末を耐熱鋼製のボートに入れ、水
素雰囲気中650℃〜700℃において150分還元し
た。When the powder was roasted at 600°C in air, a peak of Cu WO 4 was observed.6 The dried composite oxide powder was placed in a heat-resistant steel boat and reduced for 150 minutes at 650°C to 700°C in a hydrogen atmosphere. did.
還元時のWo、100g当り゛の水素流量は2゜0m3
/hrとした。(WOS単位重量当りのパイプ内単位断
面積を流れる水素流量に換算すると、約0 、 OO4
6n /min、a#、 gとなる。)これは通常のタ
ングステンの還元と火路ない条件である。The hydrogen flow rate per 100g of Wo during reduction is 2゜0m3
/hr. (When converted to the flow rate of hydrogen flowing through the unit cross-sectional area of the pipe per unit weight of WOS, it is approximately 0, OO4
6n/min, a#, g. ) This is the normal tungsten reduction and no-flame condition.
第3図に還元生成物のX線回折図形を示す。FIG. 3 shows the X-ray diffraction pattern of the reduction product.
複合酸化物粉末中の銅・タングステン共に金属まで還元
されている。Both copper and tungsten in the composite oxide powder have been reduced to metal.
次に得ら九た還元生成物を濃塩酸中で1時間煮沸して複
合粉末中の銅を溶解した6次いで粉末を希アンモニア水
で洗い、さらに水洗およびアルコールで洗浄し、最後に
80℃以下の低温で乾燥してタングステン微粉末を得た
。Next, the obtained reduced product was boiled in concentrated hydrochloric acid for 1 hour to dissolve the copper in the composite powder.Then, the powder was washed with dilute ammonia water, further washed with water and alcohol, and finally at 80℃ or less. Fine tungsten powder was obtained by drying at a low temperature.
第1図は得られたタングステン粉末の電子顕微鏡写真を
示したもので、粉末は粒径0.1μm程度の微粒子より
成る。FIG. 1 shows an electron micrograph of the obtained tungsten powder, which consists of fine particles with a particle size of about 0.1 μm.
尚、タングステン微粉末中の残留鋼はCuとして2.8
%であった。In addition, the residual steel in the tungsten fine powder is 2.8 as Cu.
%Met.
〔実施例2〕
wo、1度約15W/V%のタングステン酸アンモニウ
ム水溶液に硝酸アルミニウム水溶液を、モ)L/比テW
o、 : A Q20.が5:2になるよう添加した後
煮沸し、次いで生成物を水洗・濾過後乾燥して白色のア
ルミニウムータングステン複合酸化物粉末を得た。X線
回折による観察の結果得られた粉末は無定形であったが
、粉末を空気中600’C焙焼した時はAl120.・
3WO,又は2Au、O,・5WO,のピークが示され
た。[Example 2] wo, once an aluminum nitrate aqueous solution is added to an ammonium tungstate aqueous solution of about 15 W/V%, m) L/ratio W
o, : A Q20. The mixture was added at a ratio of 5:2 and then boiled, and the product was washed with water, filtered, and dried to obtain a white aluminum-tungsten composite oxide powder. The powder obtained as a result of observation by X-ray diffraction was amorphous, but when the powder was roasted in air at 600'C, it became Al120.・
A peak of 3WO, or 2Au, O, .5WO, was shown.
乾燥後の複合酸化物粉末を耐熱mlのボートに入れ、水
素雰囲気中800’Cで2時間還元した。還元時のWo
、100g当りの水素流量は1.3m3/hrとした。The dried composite oxide powder was placed in a heat-resistant ml boat and reduced in a hydrogen atmosphere at 800'C for 2 hours. Wo at the time of reduction
, the hydrogen flow rate per 100 g was 1.3 m3/hr.
(wo、単位重量当りのパイプ内単位断面積を流れ
る水素流量に換算すると約0 、 OO312/min
、ai、 gとなる。)。(WO, when converted to the hydrogen flow rate flowing through a unit cross-sectional area in the pipe per unit weight, it is approximately 0, OO312/min
, ai, g. ).
第4図に還元生成物のX線回折図形を示したが、タング
ステンのピークのみ観察されてアルミニウム化合物のピ
ークはl!!!察されない、アルミニウムは恐らく無定
形の酸化アルミニウムになっているものと思われる。Figure 4 shows the X-ray diffraction pattern of the reduction product, where only the tungsten peak was observed and the aluminum compound peak was 1! ! ! The aluminum is probably amorphous aluminum oxide.
次に得られた還元生成物を濃塩酸中で1時間煮沸し、さ
らに濃度約20%の弗酸中に室温で約2時間授精してア
ルミニウムを除去した1次いで水洗ならびにアルコール
で洗浄し、最後に80℃以下の低温で乾燥してタングス
テン微粉末を得た6
第2図は得られたタングステン粉末の電子顕微鏡写真を
示したもので、粉末は粒径0.1μm程度の微粒子より
成る。Next, the obtained reduction product was boiled in concentrated hydrochloric acid for 1 hour, and further fertilized in hydrofluoric acid with a concentration of about 20% at room temperature for about 2 hours to remove aluminum.Then, it was washed with water and alcohol, and finally A fine tungsten powder was obtained by drying at a low temperature of 80° C. or less.6 Figure 2 shows an electron micrograph of the obtained tungsten powder, and the powder consists of fine particles with a particle size of about 0.1 μm.
尚、タングステン微粉末中の残留アルミニウムはAl、
0.0.095%であった。In addition, the residual aluminum in the tungsten fine powder is Al,
It was 0.0.095%.
以上述べてきたように、本発明の方法によれば0.5μ
m以下のタングステン微粉末が容易にしかも能率良く製
造できる。本発明の方法は工業的規模でのタングステン
微粉末の製造が可能でその利用価値は大きい。As described above, according to the method of the present invention, 0.5μ
Fine tungsten powder of less than m can be easily and efficiently produced. The method of the present invention enables the production of fine tungsten powder on an industrial scale, and has great utility value.
第1図ならびに第2図は本発明の方法で作られたタング
ステン微粉末の電子顕微鏡写真で、第3図ならびに第4
図は本発明の方法で作られた還元生成物のX線回折図形
を示したものである。
引用文献
特開昭47−15361号公報Figures 1 and 2 are electron micrographs of fine tungsten powder produced by the method of the present invention, and Figures 3 and 4 are
The figure shows the X-ray diffraction pattern of the reduction product produced by the method of the present invention. Cited document: Japanese Patent Application Laid-Open No. 47-15361
Claims (1)
囲気中で加熱して分解・還元し、得られたタングステン
複合粉末を酸処理してタングステンを遊離することを特
徴とするタングステン微粉末の製造法。 2、タングステンと複合酸化物を形成する元素が銅であ
る特許請求の範囲第一項記載のタングステン微粉末の製
造法。 3、タングステンと複合酸化物を形成する元素がアルミ
ニウムである特許請求の範囲第一項記載のタングステン
微粉末の製造法。[Claims] 1. A composite oxide powder of tungsten and other elements is heated in a hydrogen atmosphere to decompose and reduce it, and the resulting tungsten composite powder is treated with an acid to liberate tungsten. A method for producing fine tungsten powder. 2. The method for producing fine tungsten powder according to claim 1, wherein the element forming a composite oxide with tungsten is copper. 3. The method for producing fine tungsten powder according to claim 1, wherein the element forming the composite oxide with tungsten is aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19326884A JPS6169907A (en) | 1984-09-14 | 1984-09-14 | Production of pulverous tungsten powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19326884A JPS6169907A (en) | 1984-09-14 | 1984-09-14 | Production of pulverous tungsten powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6169907A true JPS6169907A (en) | 1986-04-10 |
JPH0239562B2 JPH0239562B2 (en) | 1990-09-06 |
Family
ID=16305111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19326884A Granted JPS6169907A (en) | 1984-09-14 | 1984-09-14 | Production of pulverous tungsten powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6169907A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6914032B2 (en) * | 2001-12-27 | 2005-07-05 | Korea Institute Of Machinery And Materials | Method of producing tungsten-copper based composite powder and sintered alloys for heat-sink using said composite powder |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5245517A (en) * | 1975-10-09 | 1977-04-11 | Toshiba Corp | Production process of tungsten |
JPS5245516A (en) * | 1975-10-09 | 1977-04-11 | Toshiba Corp | Prduction process of tungsten |
JPS5245515A (en) * | 1975-10-09 | 1977-04-11 | Toshiba Corp | Production process of tungsten |
JPS57171603A (en) * | 1981-04-14 | 1982-10-22 | Nippon Tungsten Co Ltd | Production of tungsten powder of good fluidity |
-
1984
- 1984-09-14 JP JP19326884A patent/JPS6169907A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5245517A (en) * | 1975-10-09 | 1977-04-11 | Toshiba Corp | Production process of tungsten |
JPS5245516A (en) * | 1975-10-09 | 1977-04-11 | Toshiba Corp | Prduction process of tungsten |
JPS5245515A (en) * | 1975-10-09 | 1977-04-11 | Toshiba Corp | Production process of tungsten |
JPS57171603A (en) * | 1981-04-14 | 1982-10-22 | Nippon Tungsten Co Ltd | Production of tungsten powder of good fluidity |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6914032B2 (en) * | 2001-12-27 | 2005-07-05 | Korea Institute Of Machinery And Materials | Method of producing tungsten-copper based composite powder and sintered alloys for heat-sink using said composite powder |
Also Published As
Publication number | Publication date |
---|---|
JPH0239562B2 (en) | 1990-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1927580B1 (en) | Process for making iron powder or microalloyed steel powder from iron oxide powder by oxidation and reduction | |
DE2626597A1 (en) | NITROGEN OXIDE REDUCTION CATALYST AND PROCESS FOR ITS MANUFACTURING | |
DE3130920A1 (en) | "ELIGIBLE COPPER ALLOYS" | |
JPS63200838A (en) | Manufacture of catalyst consisting of titanium oxide | |
KR100374704B1 (en) | A Process for Manufacturing Nano Copper- Alumina Complex Powder | |
JPH09132413A (en) | Method for regeneration of tungsten carbide and tungsten material | |
JPS6169907A (en) | Production of pulverous tungsten powder | |
JP3820018B2 (en) | Method for producing granular silver powder | |
US5514202A (en) | Method for producing fine silver-palladium alloy powder | |
JPS61124508A (en) | Production of high-purity ultra-fine tungsten powder | |
US3236634A (en) | Process for production of high surface area tungsten and tungsten trioxide powders | |
JP2550586B2 (en) | Method for producing fine silver alloy powder | |
JP2834199B2 (en) | Method for producing ultrafine tungsten particles | |
US4409019A (en) | Method for producing cobalt metal powder | |
JPS6169904A (en) | Production of pulverous tungsten oxide powder | |
JPH01234507A (en) | Production of molybdenum powder | |
JPH08120310A (en) | Production of copper-tungsten mixed powder | |
DE2553373A1 (en) | METHOD FOR MANUFACTURING TUNGSTEN CARBIDE | |
JPH0543761B2 (en) | ||
JPS63243210A (en) | Production of fine metal powder | |
JPH0829923B2 (en) | Silicon nitride powder | |
JPH04231407A (en) | Preparation of metal powder | |
DE2032862A1 (en) | Process for the preparation of mutual dispersions of carbides and metals or alloys and new products thus obtained | |
JPS58141308A (en) | Production of metallic tungsten powder containing gallium | |
JPH04176806A (en) | Production of fine copper particles |