JPS6159270B2 - - Google Patents
Info
- Publication number
- JPS6159270B2 JPS6159270B2 JP53075938A JP7593878A JPS6159270B2 JP S6159270 B2 JPS6159270 B2 JP S6159270B2 JP 53075938 A JP53075938 A JP 53075938A JP 7593878 A JP7593878 A JP 7593878A JP S6159270 B2 JPS6159270 B2 JP S6159270B2
- Authority
- JP
- Japan
- Prior art keywords
- compact
- bonding
- abrasive
- layer
- transition metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 26
- 239000010432 diamond Substances 0.000 claims description 23
- 229910003460 diamond Inorganic materials 0.000 claims description 22
- 229910001369 Brass Inorganic materials 0.000 claims description 19
- 239000010951 brass Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 229910052723 transition metal Inorganic materials 0.000 claims description 19
- 150000003624 transition metals Chemical class 0.000 claims description 19
- 229910052582 BN Inorganic materials 0.000 claims description 14
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
- B22F7/064—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
【発明の詳細な説明】
本発明は研磨材コンパクトの結合方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for bonding abrasive compacts.
研磨材コンパクトは業界で良く知られており、
主として普通コンパクトの少くとも70容量%、好
ましくは80〜90容量%の分量で存在する研磨材粒
子が硬質団塊に結合して成る。コンパクトは多結
晶の集合体で、大きい単結晶と置き換えることが
できる。コンパクトの研磨材粒子は常にダイヤモ
ンドおよび立方晶系窒化ホウ素の如き超硬質研磨
材である。 Abrasive compacts are well known in the industry.
It consists primarily of abrasive particles bound to hard agglomerates, usually present in an amount of at least 70% by volume, preferably 80-90% by volume of the compact. Compacts are polycrystalline aggregates that can replace large single crystals. The compact abrasive particles are always ultra-hard abrasives such as diamond and cubic boron nitride.
研磨材コンパクト、特にダイヤモンドおよび立
方晶系窒化ホウ素は自己接着性の場合があり、即
ちコンパクトの個々の粒子は融解し、金属または
同様の結合マトリツクスなしに一緒に結合させる
ことができる。或いはまた適当な結合マトリツク
スが存在する場合には、一層強く且つ耐久性のコ
ンパクトが得られる。 Abrasive compacts, particularly diamond and cubic boron nitride, can be self-adhesive, ie, the individual particles of the compact can be melted and bonded together without a metal or similar bonding matrix. Alternatively, if a suitable bonding matrix is present, a stronger and more durable compact is obtained.
立方晶系窒化ホウ素コンパクト即ち研磨材粒子
が主として立方晶系窒化ホウ素であるコンパクト
の場合には、結合マトリツクスが与えられる際マ
トリツクスはアルミニウムまたはアルミニウムと
ニツケル、コバルト、鉄、マンガンまたはクロム
との合金のような立方晶系窒化ホウ素の触媒(ま
た溶媒として知られている)を含有するのが好ま
しい。かかる触媒は軟化する傾向があり、コンパ
クトの使用中触媒の汚染を最小にするためマトリ
ツクスはまた硬質材料を製造するため触媒と反応
し得る窒化珪素の如きセラミツクを含むのが好ま
しい。 In the case of cubic boron nitride compacts, ie compacts in which the abrasive particles are primarily cubic boron nitride, when a bonding matrix is provided, the matrix is of aluminum or an alloy of aluminum with nickel, cobalt, iron, manganese or chromium. It is preferred to contain a cubic boron nitride catalyst (also known as a solvent), such as cubic boron nitride. Such catalysts tend to soften, and to minimize contamination of the catalyst during use of the compact, the matrix also preferably contains a ceramic, such as silicon nitride, which can react with the catalyst to produce a hard material.
ダイヤモンドコンパクト、即ち研磨材粒子が主
としてダイヤモンドであるコンパクトの場合に
は、結合マトリツクスを供給する際には、該マト
リツクスはダイヤモンドの生長に対する溶媒を含
むのが好ましい。適当な溶媒は周期律表の第族
の金属、例えばコバルト、ニツケル若しくは鉄ま
たはかかる金属を含む合金である。 In the case of diamond compacts, ie, compacts in which the abrasive particles are primarily diamond, when providing a bonding matrix, the matrix preferably contains a solvent for diamond growth. Suitable solvents are metals from groups of the periodic table, such as cobalt, nickel or iron or alloys containing such metals.
ダイヤモンドと立方晶系窒化ホウ素のコンパク
トの場合、コンパクトに使用する特定の研磨材に
対する溶媒または触媒の存在は好ましい。この理
由はかかるコンパクトの製造に必要である条件下
で粒子間の相互生長がおこるからである。業界で
知られている如く、ダイヤモンドと立方晶系窒化
ホウ素のコンパクトは、普通研磨材粒子が結晶学
的に安定である温度と圧力の条件下で製造され
る。 In the case of diamond and cubic boron nitride compacts, the presence of a solvent or catalyst for the particular abrasive used in the compact is preferred. The reason for this is that under the conditions necessary for the production of such compacts intergrowth between particles occurs. As is known in the industry, diamond and cubic boron nitride compacts are typically produced under conditions of temperature and pressure at which the abrasive particles are crystallographically stable.
ダイヤモンドと立方晶系窒化ホウ素のコンパク
トは金属および天然の岩石の機械加工に使用され
る。使用する際コンパクトを適当な支持体例えば
柄に結合して道具を形成する。コンパクトを結合
炭化物裏材料の如き裏材料に結合し、次いでこの
裏材料を支持体に結合して道具を形成する。結合
炭化タングステン裏材料に結合した、ダイヤモン
ドと立方晶系窒化ホウ素のコンパクトは英国特許
第1349385号、第1407393号および第1489130号の
明細書に記載され、例示されている。 Diamond and cubic boron nitride compacts are used for machining metals and natural rocks. In use, the compact is joined to a suitable support, such as a handle, to form a tool. The compact is bonded to a backing material, such as a bonded carbide backing material, and the backing material is then bonded to a support to form the tool. Compacts of diamond and cubic boron nitride bonded to a bonded tungsten carbide backing are described and illustrated in British Patent Nos. 1349385, 1407393 and 1489130.
本発明はダイヤモンドまたは立方晶系窒化ホウ
素を他のかかるコンパクトまたは結合炭化物裏材
料に、英国特許第1489130号明細書に記載されて
いるものに類似した形の合金結合層により結合す
る方法に関するものである。 The present invention relates to a method of bonding diamond or cubic boron nitride to other such compact or bonded carbide backings by means of an alloy bonding layer of a form similar to that described in GB 1489130. be.
本発明は遷移金属の層を第1コンパクト上に堆
積し、この遷移金属上に黄銅合金層を堆積し、こ
の黄銅合金は650〜750℃の範囲の融点を有し、遷
移金属と合金化し得るもので、次いでこの黄銅合
金層上に第2コンパクトまたは炭化物支持体をお
き、全体を650〜750℃の温度で加熱して第1コン
パクトと第2コンパクトまたは炭化物支持体との
間の結合を行う工程を含む、ダイヤモンドまたは
立方晶系窒化ホウ素研磨材コンパクトを第2のか
かるコンパクトまたは結合炭化物支持体に結合す
る方法を提供する。この方法はダイヤモンドまた
は立方晶系窒化ホウ素コンパクトを他のコンパク
トまたは更に特に結合炭化物支持体に結合するこ
とができる極めて有効な方法を提供する。結合
は、比較的低い温度で行われしかも比較的高い融
点を有する合金結合層を生ずるので、有効であ
る。黄銅層と合金化する遷移金属は黄銅の融点を
上げる傾向がある。このことは、黒鉛化が750℃
以上の温度で容易におこるダイヤモンドコンパク
トの場合特に重要である。 The present invention deposits a layer of transition metal on a first compact and deposits a layer of brass alloy on the transition metal, the brass alloy having a melting point in the range of 650-750°C and capable of being alloyed with the transition metal. A second compact or carbide support is then placed on this brass alloy layer and the whole is heated at a temperature of 650-750°C to effect a bond between the first compact and the second compact or carbide support. A method of bonding a diamond or cubic boron nitride abrasive compact to a second such compact or bonded carbide support is provided. This method provides a highly effective method by which diamond or cubic boron nitride compacts can be bonded to other compacts or more particularly to bonded carbide supports. Bonding is advantageous because it occurs at relatively low temperatures and yields an alloy bonded layer with a relatively high melting point. Transition metals that alloy with the brass layer tend to raise the melting point of the brass. This means that graphitization occurs at 750℃.
This is particularly important in the case of diamond compaction, which easily occurs at temperatures above 100.
普通遷移金属層は不連続であるが、このことは
必要条件でない。不連続遷移金属層は粉末遷移金
属により形成することができる。粉末遷移金属層
を被着する場合には、普通層の厚さは10〜100μ
程度である。遷移金属層はまた遷移金属箔により
形成することができ、この場合は層は連続してい
る。層は不連続であるのが好ましい。金属箔を被
着する場合には、箔は普通10〜100μ程度の厚さ
を有する。 Usually the transition metal layer is discontinuous, but this is not a requirement. The discontinuous transition metal layer can be formed from a powdered transition metal. When applying a powdered transition metal layer, the layer thickness is usually 10 to 100μ.
That's about it. The transition metal layer can also be formed by a transition metal foil, in which case the layer is continuous. Preferably, the layers are discontinuous. When applying metal foil, the foil usually has a thickness of the order of 10 to 100 microns.
遷移金属はチタンが好ましい。黄銅合金は、遷
移金属と合金化するに必要な融点および所要性能
を有する業界で既知の任意の黄銅合金とすること
ができる。広範囲の既知の黄銅合金がこれ等の必
要条件を満足する。適当な合金が記載されている
標準の文献は、ジ・アメリカン・ソサイエテイ・
ホア・メタルスにより出版された「ザ・メタル
ス・ハンドブツク」第8版、第6巻「ウエルデイ
ング・アンド・ブレージング」1974である。特に
好ましい合金は、金、銀および銅の内の1種また
は2種以上を主成分として成るものである。また
合金は少量のカドミウムおよび亜鉛の如き金属、
特に亜鉛を含有するのが好ましい。 The transition metal is preferably titanium. The brass alloy can be any brass alloy known in the art that has the necessary melting point and required performance to alloy with transition metals. A wide variety of known brass alloys meet these requirements. A standard literature listing suitable alloys is The American Society.
"The Metals Handbook" 8th Edition, Volume 6 "Welding and Blazing" published by Hore Metals 1974. Particularly preferred alloys are those consisting mainly of one or more of gold, silver and copper. The alloy also contains small amounts of metals such as cadmium and zinc.
In particular, it is preferable to contain zinc.
普通黄銅合金層は遷移金属層より若干厚い。代
表的には、黄銅合金層は0.05〜0.5mmの範囲の厚
さを有する。黄銅合金層の特に好ましい厚さは
0.1〜0.2mmである。 Usually the brass alloy layer is slightly thicker than the transition metal layer. Typically, the brass alloy layer has a thickness in the range of 0.05 to 0.5 mm. A particularly preferred thickness of the brass alloy layer is
It is 0.1~0.2mm.
結合は未結合アセンブリーを650〜750℃の範囲
の温度に曝すことにより行う。普通温度を所要温
度に急速にあげ、この高温度に結合を行うのに十
分な時間維持する。温度を所要の高温度にあげる
割合は20〜500℃/分の範囲である。一度高温度
に達すると、通常この温度を約2〜180分間維持
する。 Bonding is accomplished by exposing the unbonded assembly to a temperature in the range of 650-750°C. The normal temperature is rapidly raised to the required temperature and maintained at this elevated temperature for a sufficient time to effect the bonding. The rate at which the temperature is raised to the required high temperature ranges from 20 to 500°C/min. Once the high temperature is reached, this temperature is typically maintained for about 2 to 180 minutes.
加熱、特にダイヤモンドコンパクトに関する加
熱は、非酸化性雰囲気中で行つてコンパクトの研
磨材粒子の劣化を最小にすることが必要である。
上述の如く、ダイヤモンドは黒鉛化されやすく、
これが実際に非酸化性雰囲気を使用する理由であ
る。非酸化性雰囲気はネオンまたはアルゴンの如
き不活性ガスによるかまたは10-4mmHg(トル)
以上の真空により与えることができる。 Heating, particularly for diamond compacts, should be done in a non-oxidizing atmosphere to minimize degradation of the abrasive particles of the compact.
As mentioned above, diamonds are easily graphitized.
This is the reason for actually using a non-oxidizing atmosphere. The non-oxidizing atmosphere is an inert gas such as neon or argon or 10 -4 mmHg (Torr).
This can be provided by the above vacuum.
結合を良好にするため、加熱を行う場合未結合
アセンブリーの成分同士を緊密に接触させるべき
である。未結合アセンブリーの種々の成分の重量
は、アセンブリーの種々の成分間の緊密な接触を
維持するに十分な圧力を与えることができる。然
し、緊密な接触は、第1コンパクトと第2コンパ
クトを加熱前0.5〜10MPaの圧力下で一緒に締め
つけることにより確保することができる。 For good bonding, heating should bring the components of the unbonded assembly into intimate contact with each other. The weight of the various components of the unbonded assembly can provide sufficient pressure to maintain intimate contact between the various components of the assembly. However, intimate contact can be ensured by clamping the first and second compacts together under a pressure of 0.5 to 10 MPa before heating.
結合炭化物体は業界で既知な任意のものとする
ことができる。結合炭化物は一般に、結合炭化タ
ングステン、結合炭化チタン、結合炭化タンタル
またはこれ等の混合物である。炭化物の結合金属
は業界で知られた任意適当なものでよく、代表的
には、ニツケル、コバルト若しくは鉄またはこれ
等の混合物がある。結合金属は炭化物の3〜35重
量%の範囲で供給する。好ましい炭化物は結合炭
化タングステンで好ましい結合金属は、特に結合
炭化タングステンの場合、コバルトが好ましい。 The bonded carbonized body can be any known in the art. The bonded carbide is generally bonded tungsten carbide, bonded titanium carbide, bonded tantalum carbide, or mixtures thereof. The carbide bonding metal may be any suitable known in the art, typically nickel, cobalt or iron or mixtures thereof. The bonding metal is provided in the range of 3 to 35% by weight of the carbide. The preferred carbide is bonded tungsten carbide and the preferred bonding metal is cobalt, especially in the case of bonded tungsten carbide.
本発明を次の実施例につき説明する。 The invention will be illustrated with reference to the following examples.
実施例 1
ダイヤモンドコンパクトを結合炭化物裏材料に
結合した。ダイヤモンドコンパクトはコバルト結
合マトリツクスを用い硬い団塊に結合したダイヤ
モンド粒子から成つた。ダイヤモンド粒子はコン
パクトの80容量%を構成し、残部はコバルトであ
つた。結合炭化物は結合炭化タングステンであつ
た。Example 1 A diamond compact was bonded to a bonded carbide backing. The diamond compact consisted of diamond particles bonded into a hard nodule using a cobalt bonding matrix. The diamond particles comprised 80% by volume of the compact, with the balance being cobalt. The bonded carbide was bonded tungsten carbide.
ダイヤモンドコンパクトは円の弓形であつた。
チタン微粉末をコンパクトの主平面の1つに散布
して約70μの厚さのチタンの不連続層を得た。市
場で入手し得る44%の銀と30%の銅と26%のZn
(すべてのパーセントは合金の重量に対するもの
である)とから成る箔状の黄銅をチタン上におき
0.1mmの厚さを有する黄銅層を与えた。次いで結
合炭化物支持体を黄銅層上におき、アセンブリー
を一緒に締めつけ、10-5mmHgの真空中におい
た。温度を約200℃/分の割合で合金の融点675℃
まであげた。この高温に達した後温度を5分間維
持した。 The diamond compact was in the shape of a circular arc.
Fine titanium powder was sprinkled onto one of the main planes of the compact to obtain a discontinuous layer of titanium approximately 70μ thick. 44% silver, 30% copper and 26% Zn available in the market
(all percentages are based on the weight of the alloy) on the titanium.
A brass layer with a thickness of 0.1 mm was provided. The bonded carbide support was then placed on the brass layer and the assembly was clamped together and placed under a vacuum of 10 -5 mmHg. The melting point of the alloy is 675℃ at a rate of about 200℃/min.
I gave it up to After reaching this high temperature, the temperature was maintained for 5 minutes.
この方法によりコンパクトと結合炭化物との間
に極めて堅固な結合が得られ、コンパクトの検知
し得る黒鉛化は起らなかつた。 This method resulted in a very strong bond between the compact and the bonded carbide, and no appreciable graphitization of the compact occurred.
実施例 2
実施例1と同様の方法でダイヤモンドコンパク
トを結合炭化タングステン支持体に結合した。本
例において黄銅合金は49重量%の銀、16重量%の
銅、26重量%の亜鉛、4.5重量%のニツケルおよ
び7.5%重量のマンガンより成つた。温度を約200
℃/分の割合で700℃にあげた。非酸化性雰囲気
は再び10-5mmHgの真空であつた。上記高温に達
した後この温度を2時間維持した。再びコンパク
トと結合炭化物支持体の極めて堅固な結合が得ら
れた。次いでこれを試験することにより、黄銅層
の融解範囲が700℃より若干高いことが観察され
た。Example 2 A diamond compact was bonded to a bonded tungsten carbide support in a manner similar to Example 1. In this example the brass alloy consisted of 49% by weight silver, 16% by weight copper, 26% by weight zinc, 4.5% by weight nickel and 7.5% by weight manganese. temperature about 200
The temperature was increased to 700℃ at a rate of ℃/min. The non-oxidizing atmosphere was again a vacuum of 10 -5 mmHg. After reaching the high temperature, this temperature was maintained for 2 hours. Again a very strong bond of the compact and the bonded carbide support was obtained. By subsequently testing it, it was observed that the melting range of the brass layer was slightly above 700°C.
Claims (1)
材コンパクトを第2のかかるコンパクトまたは結
合炭化物支持体に結合するに当り、遷移金属の層
を第1コンパクト上に堆積し、この遷移金属層上
に遷移金属と合金化することがでせき且つ650℃
〜750℃の範囲の融点を有する黄銅合金層を堆積
し、第2コンパクトまたは炭化物支持体を黄銅層
上におき、全体のアセンブリーを650℃〜750℃の
間の温度で加熱して第1コンパクトと第2コンパ
クトまたは炭化物支持体との間の結合を行うこと
を特徴とする研磨材コンパクトの結合方法。 2 遷移金属を粉末状で被着する特許請求の範囲
第1項記載の研磨材コンパクトの結合方法。 3 遷移金属層が10〜100μの厚さを有する特許
請求の範囲第2項記載の研磨材コンパクトの結合
方法。 4 遷移金属がチタンである特許請求の範囲第
1,2または3項記載の研磨材コンパクトの結合
方法。 5 黄銅合金属層が0.05〜0.5mmの厚さを有する
特許請求の範囲第1,2,3または4項記載の研
磨材コンパクトの結合方法。 6 黄銅合金層が0.1〜0.2mmの厚さを有する特許
請求の範囲第1〜5項のいずれか一つの項に記載
の研磨材コンパクトの結合方法。 7 合金が金、銅および銀の内の1種または2種
以上を主成分として成る特許請求の範囲第1〜6
項のいずれか一つの項に記載の研磨材コンパクト
の結合方法。 8 合金が少量の亜鉛またはカドミウムを含有す
る特許請求の範囲第1〜7項のいずれか一つの項
に記載の研磨材コンパクトの結合方法。 9 第1コンパクトがダイヤモンドコンパクトで
ある特許請求の範囲第1〜8項のいずれか一つの
項に記載の研磨材コンパクトの結合方法。 10 温度を、結合を行うのに必要な値まで20〜
500℃/分の割合であげる特許請求の範囲第1〜
9項のいずれか一つの項に記載の研磨材コンパク
トの結合方法。 11 結合に必要な高温を2〜180分維持する特
許請求の範囲第1〜10項のいずれか一つの項に
記載の研磨材コンパクトの結合方法。 12 加熱を非酸化性雰囲気で行う特許請求の範
囲第1〜11項のいずれか一つの項に記載の研磨
材コンパクトの結合方法。 13 非酸化性雰囲気を不活性ガスまたは10-4mm
Hg以上の真空により与える特許請求の範囲第1
2項記載の研磨材コンパクトの結合方法。 14 第1コンパクトと第2コンパクトを加熱す
る前に0.5〜10MPaの圧力で一緒に締めつける特
許請求の範囲第1〜13項のいずれか一つの項に
記載の研磨材コンパクトの結合方法。Claims: 1. In bonding a diamond or cubic boron nitride abrasive compact to a second such compact or bonded carbide support, a layer of a transition metal is deposited on the first compact, the transition metal Cannot be alloyed with transition metals on the layer and 650℃
A brass alloy layer having a melting point in the range of ~750°C is deposited, a second compact or carbide support is placed on the brass layer, and the entire assembly is heated at a temperature between 650°C and 750°C to form the first compact. and a second compact or carbide support. 2. A method for bonding abrasive compacts according to claim 1, wherein a transition metal is applied in powder form. 3. A method of bonding an abrasive compact according to claim 2, wherein the transition metal layer has a thickness of 10 to 100 microns. 4. The method for bonding abrasive compacts according to claim 1, 2 or 3, wherein the transition metal is titanium. 5. A method of bonding an abrasive compact according to claim 1, 2, 3 or 4, wherein the brass alloy layer has a thickness of 0.05 to 0.5 mm. 6. A method for joining an abrasive compact according to any one of claims 1 to 5, wherein the brass alloy layer has a thickness of 0.1 to 0.2 mm. 7 Claims 1 to 6 in which the alloy consists of one or more of gold, copper, and silver as a main component
A method for joining an abrasive compact according to any one of the paragraphs. 8. A method for bonding abrasive compacts according to any one of claims 1 to 7, wherein the alloy contains small amounts of zinc or cadmium. 9. A method for joining abrasive compacts according to any one of claims 1 to 8, wherein the first compact is a diamond compact. 10 Increase the temperature to the value required to perform the bonding.
Claims 1 to 1 at a rate of 500°C/min
9. A method for joining an abrasive compact according to any one of paragraphs 9 to 9. 11. A method for bonding abrasive compacts according to any one of claims 1 to 10, wherein the high temperature required for bonding is maintained for 2 to 180 minutes. 12. A method for bonding abrasive compacts according to any one of claims 1 to 11, wherein heating is performed in a non-oxidizing atmosphere. 13 Non-oxidizing atmosphere with inert gas or 10 -4 mm
Claim 1 provided by a vacuum of Hg or more
2. A method for joining abrasive compacts as described in Section 2. 14. A method of joining abrasive compacts according to any one of claims 1 to 13, wherein the first compact and the second compact are clamped together under a pressure of 0.5 to 10 MPa before heating.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA00773813A ZA773813B (en) | 1977-06-24 | 1977-06-24 | Abrasive compacts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5411588A JPS5411588A (en) | 1979-01-27 |
JPS6159270B2 true JPS6159270B2 (en) | 1986-12-15 |
Family
ID=25571727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7593878A Granted JPS5411588A (en) | 1977-06-24 | 1978-06-22 | Method of combining abraisive compacts |
Country Status (10)
Country | Link |
---|---|
US (1) | US4228942A (en) |
JP (1) | JPS5411588A (en) |
BE (1) | BE868421A (en) |
CH (1) | CH630834A5 (en) |
DE (1) | DE2827425A1 (en) |
FR (1) | FR2395237A1 (en) |
GB (1) | GB1588483A (en) |
IT (1) | IT1098312B (en) |
SE (1) | SE439610B (en) |
ZA (1) | ZA773813B (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4442180A (en) * | 1978-05-14 | 1984-04-10 | Sumitomo Electric Industries, Ltd. | Sintered body for use in a cutting tool and the method for producing the same |
IL60042A (en) * | 1979-05-16 | 1983-05-15 | De Beers Ind Diamond | Abrasive bodies |
US4496372A (en) * | 1982-03-31 | 1985-01-29 | Almond Eric A | Abrasive bodies |
DE3365680D1 (en) * | 1982-09-16 | 1986-10-02 | De Beers Ind Diamond | Abrasive bodies comprising boron nitride |
CA1233347A (en) * | 1983-07-21 | 1988-03-01 | John A. Bunting | Printed circuit board drill and method of manufacture |
US4670025A (en) * | 1984-08-13 | 1987-06-02 | Pipkin Noel J | Thermally stable diamond compacts |
GB2163144B (en) * | 1984-08-13 | 1988-12-07 | De Beers Ind Diamond | Thermally stable diamond compacts |
US4880154A (en) * | 1986-04-03 | 1989-11-14 | Klaus Tank | Brazing |
US4764434A (en) * | 1987-06-26 | 1988-08-16 | Sandvik Aktiebolag | Diamond tools for rock drilling and machining |
US4766040A (en) * | 1987-06-26 | 1988-08-23 | Sandvik Aktiebolag | Temperature resistant abrasive polycrystalline diamond bodies |
DE3868451D1 (en) * | 1987-07-29 | 1992-03-26 | Sumitomo Electric Industries | METHOD FOR CONNECTING A SINTER BODY OF CUBIC BORNITRIDE. |
US4899922A (en) * | 1988-02-22 | 1990-02-13 | General Electric Company | Brazed thermally-stable polycrystalline diamond compact workpieces and their fabrication |
CH675386A5 (en) * | 1988-07-27 | 1990-09-28 | Alexander Beck | |
EP0413543B1 (en) * | 1989-08-14 | 1993-10-13 | De Beers Industrial Diamond Division (Proprietary) Limited | Abrasive body |
IE902878A1 (en) * | 1989-09-14 | 1991-03-27 | De Beers Ind Diamond | Composite abrasive compacts |
US5251802A (en) * | 1991-04-25 | 1993-10-12 | Minnesota Mining And Manufacturing Company | Abrasive article and processes for producing it |
JPH04371390A (en) * | 1991-06-18 | 1992-12-24 | Kurimoto Ltd | Welding method for wear resistant cladding layer and wear resistant material |
US5632435A (en) * | 1992-05-27 | 1997-05-27 | Sulzer-Escher Wyss Ag | Process for the production of a soldered joint |
GB9224627D0 (en) * | 1992-11-24 | 1993-01-13 | De Beers Ind Diamond | Drill bit |
US5626909A (en) * | 1994-12-07 | 1997-05-06 | General Electric Company | Fabrication of brazable in air tool inserts |
US20100206941A1 (en) * | 2007-05-22 | 2010-08-19 | David Patrick Egan | Coated diamond |
JP5420533B2 (en) * | 2007-05-22 | 2014-02-19 | エレメント シックス リミテッド | Coated CBN |
CA2859341A1 (en) * | 2011-07-20 | 2013-01-24 | Diamond Innovations, Inc. | Brazed coated diamond-containing materials |
US9194189B2 (en) | 2011-09-19 | 2015-11-24 | Baker Hughes Incorporated | Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element |
EP4019165B1 (en) * | 2020-12-22 | 2024-08-07 | AB Sandvik Coromant | A cutting tool |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5165056A (en) * | 1974-12-03 | 1976-06-05 | Inst Problem Materialovedenia | Kenmazaino metaraizeeshon oyobi korotsuke yogokin |
JPS5212126A (en) * | 1975-07-16 | 1977-01-29 | Hitachi Chem Co Ltd | Process for preparation of methacrylic acid |
JPS5219137A (en) * | 1975-08-02 | 1977-02-14 | Inst Problem Materialovedenia | Method of brazing metal to super hard artificial material and brazing material |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA650637A (en) * | 1962-10-16 | C. Van Der Linden Petrus | Method of brazing on diamonds | |
US2137201A (en) * | 1937-06-28 | 1938-11-15 | Carborundum Co | Abrasive article and its manufacture |
NL77405C (en) * | 1951-10-06 | |||
US2778651A (en) * | 1954-03-26 | 1957-01-22 | Erickson Tool Co | Chuck stops for drills |
GB932729A (en) * | 1958-11-13 | 1963-07-31 | Philips Electrical Ind Ltd | Improvements in methods of mounting diamonds |
FR1240395A (en) * | 1958-11-14 | 1960-09-02 | Philips Nv | Welding process on diamond |
US3356473A (en) * | 1964-05-28 | 1967-12-05 | Gen Electric | Metal-bonded diamond abrasive body |
US3471921A (en) * | 1965-12-23 | 1969-10-14 | Shell Oil Co | Method of connecting a steel blank to a tungsten bit body |
US3879901A (en) * | 1970-06-24 | 1975-04-29 | De Beers Ind Diamond | Metal-coated diamonds in a metal alloy matrix |
US4063909A (en) * | 1974-09-18 | 1977-12-20 | Robert Dennis Mitchell | Abrasive compact brazed to a backing |
-
1977
- 1977-06-24 ZA ZA00773813A patent/ZA773813B/en unknown
-
1978
- 1978-05-24 GB GB21787/78A patent/GB1588483A/en not_active Expired
- 1978-05-31 US US05/911,107 patent/US4228942A/en not_active Expired - Lifetime
- 1978-06-09 IT IT24384/78A patent/IT1098312B/en active
- 1978-06-12 FR FR7817548A patent/FR2395237A1/en active Granted
- 1978-06-21 SE SE7807099A patent/SE439610B/en not_active IP Right Cessation
- 1978-06-21 CH CH676778A patent/CH630834A5/en not_active IP Right Cessation
- 1978-06-22 JP JP7593878A patent/JPS5411588A/en active Granted
- 1978-06-22 DE DE19782827425 patent/DE2827425A1/en not_active Ceased
- 1978-06-23 BE BE188820A patent/BE868421A/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5165056A (en) * | 1974-12-03 | 1976-06-05 | Inst Problem Materialovedenia | Kenmazaino metaraizeeshon oyobi korotsuke yogokin |
JPS5212126A (en) * | 1975-07-16 | 1977-01-29 | Hitachi Chem Co Ltd | Process for preparation of methacrylic acid |
JPS5219137A (en) * | 1975-08-02 | 1977-02-14 | Inst Problem Materialovedenia | Method of brazing metal to super hard artificial material and brazing material |
Also Published As
Publication number | Publication date |
---|---|
FR2395237B1 (en) | 1983-10-28 |
GB1588483A (en) | 1981-04-23 |
SE7807099L (en) | 1978-12-25 |
US4228942A (en) | 1980-10-21 |
ZA773813B (en) | 1979-01-31 |
CH630834A5 (en) | 1982-07-15 |
JPS5411588A (en) | 1979-01-27 |
IT1098312B (en) | 1985-09-07 |
DE2827425A1 (en) | 1979-01-11 |
IT7824384A0 (en) | 1978-06-09 |
FR2395237A1 (en) | 1979-01-19 |
BE868421A (en) | 1978-12-27 |
SE439610B (en) | 1985-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6159270B2 (en) | ||
US4063909A (en) | Abrasive compact brazed to a backing | |
US4108614A (en) | Zirconium layer for bonding diamond compact to cemented carbide backing | |
US4670025A (en) | Thermally stable diamond compacts | |
US4229186A (en) | Abrasive bodies | |
US4940180A (en) | Thermally stable diamond abrasive compact body | |
AU611210B2 (en) | Brazed thermally-stable polycrystalline diamond compact workpieces and their fabrication | |
US4931363A (en) | Brazed thermally-stable polycrystalline diamond compact workpieces | |
US4789385A (en) | Thermally stable diamond abrasive compact body | |
EP0104063B1 (en) | Abrasive bodies comprising boron nitride | |
US3356473A (en) | Metal-bonded diamond abrasive body | |
EP0374424B1 (en) | Silicon infiltrated porous polycrystalline diamond compacts and their fabrications | |
US4496372A (en) | Abrasive bodies | |
EP0090657A2 (en) | A method of making abrasive bodies | |
JPH01301070A (en) | Manufacture of diamond cutting grinding tool | |
US4875907A (en) | Thermally stable diamond abrasive compact body | |
IE57439B1 (en) | Wire drawing die | |
GB2163144A (en) | Thermally stable diamond compacts | |
EP0001184B1 (en) | Wire drawing die composites | |
JPS61270074A (en) | Body for polishing | |
JPS644840Y2 (en) |