JPS6159899B2 - - Google Patents
Info
- Publication number
- JPS6159899B2 JPS6159899B2 JP53030525A JP3052578A JPS6159899B2 JP S6159899 B2 JPS6159899 B2 JP S6159899B2 JP 53030525 A JP53030525 A JP 53030525A JP 3052578 A JP3052578 A JP 3052578A JP S6159899 B2 JPS6159899 B2 JP S6159899B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- synthetic resin
- pressure
- gas
- pressure vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 40
- 229920003002 synthetic resin Polymers 0.000 claims description 38
- 239000000057 synthetic resin Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 25
- 238000000465 moulding Methods 0.000 claims description 19
- 238000001746 injection moulding Methods 0.000 claims description 4
- 239000004604 Blowing Agent Substances 0.000 claims 2
- 239000007789 gas Substances 0.000 description 65
- 102100021334 Bcl-2-related protein A1 Human genes 0.000 description 16
- 101000894929 Homo sapiens Bcl-2-related protein A1 Proteins 0.000 description 16
- 101000963440 Bacillus subtilis (strain 168) Biotin carboxylase 1 Proteins 0.000 description 12
- 238000011084 recovery Methods 0.000 description 10
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 101000933173 Homo sapiens Pro-cathepsin H Proteins 0.000 description 5
- 102100025974 Pro-cathepsin H Human genes 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 101000782621 Bacillus subtilis (strain 168) Biotin carboxylase 2 Proteins 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004616 structural foam Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 101100268670 Caenorhabditis elegans acc-3 gene Proteins 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 101100268665 Caenorhabditis elegans acc-1 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/1703—Introducing an auxiliary fluid into the mould
- B29C45/1732—Control circuits therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/36—Feeding the material to be shaped
- B29C44/38—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
- B29C44/42—Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は中空型物、或いは発泡型物の成形方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for molding hollow or foamed products.
詳しくは、ひけのない軽い厚肉型物成形品、或
いは従来の射出成形技術では一体成形が困難であ
つた中空型物成形品或いは更に展開させて発泡性
合成樹脂を用いて、一旦、中空型物成形体を形成
した後、中空部分を発泡させてスキン層とフオー
ムコア層とを有する、いわゆるストラクチユラル
フオームを製造するための方法に関する。 In detail, we will focus on molded products that are lightweight and thick without sink marks, or hollow molded products that are difficult to mold in one piece using conventional injection molding techniques, or that can be further expanded to create hollow molds using foamable synthetic resin. The present invention relates to a method for manufacturing a so-called structural foam having a skin layer and a foam core layer by foaming the hollow portion after forming a molded article.
従来技術
中空型物成形は、従来、超音波或いは溶剤接着
等によつてしか製造できなかつた中空型物成形品
が容易、且つ迅速に製造できる新しい技術であ
り、その応用は多種多様に富んでいる。機械的強
度は左程要求されないが機能性上厚肉デザインが
要求される成形品の製造、例えば外観上重量感の
必要な化粧品容器、断熱性の必要なコーヒーカツ
プ等の製造はこの例であり、樹脂の節約、いわゆ
る省資源及び製造コスト、また更にひけ防止の見
地からも適しており、応用が可能な分野である。Conventional technology Hollow molding is a new technology that can easily and quickly produce hollow molded products, which could only be produced by ultrasonic waves or solvent bonding, and its applications are wide-ranging. There is. Examples of this include manufacturing molded products that do not require as much mechanical strength but require a thick design for functionality, such as cosmetic containers that need a heavy appearance and coffee cups that require insulation. It is suitable from the viewpoint of saving resin, so-called resource saving and manufacturing cost, and also from the viewpoint of preventing sink marks, and is a field where it can be applied.
また最近、型物ストラクチユラルフオームの需
要が高まりつつあるが、現在採用されている公知
のシヨートシヨツト法や型キヤビテイ拡大を併用
するフルシヨツト法はいずれも多くの問題を含ん
でおり、より迅速、且つ容易に美麗な型物ストラ
クチユラルフオームが得られる成形法が望まれて
いる。例えば前者は原理上スキン層が均一でない
上に型再現性が悪く、機械的強度も劣るという欠
点を有し、後者は型構造が複雑になり成形品のデ
ザインに限定を受けるという欠点を有する。 Recently, the demand for molded structural foams has been increasing, but the currently employed short shot method and the full shot method that uses mold cavity expansion both have many problems, and are faster and more effective. There is a need for a molding method that can easily produce beautiful shaped structural foams. For example, the former has the disadvantage that the skin layer is not uniform in principle, the mold reproducibility is poor, and the mechanical strength is poor, while the latter has the disadvantage that the mold structure is complicated and the design of the molded product is limited.
前記両者の問題点を解決する成形法として、一
旦発泡性合成樹脂で中空型物成形体を形成した
後、中空部分を発泡させてストラクチユラルフオ
ームを製造する中空型物成形を応用した新しい成
形法が注目されている。 As a molding method that solves both of the above-mentioned problems, a new molding method that applies hollow molding in which a hollow molded object is first formed with a foamable synthetic resin and then the hollow part is expanded to produce a structural foam is used. The law is attracting attention.
このように中空型物成形は有望であり、将来需
要が増加すると考えられ、より確実に且つ容易に
中空型物成形品を製造する制御法等の成形技術の
開発が急がれている。 As described above, molding of hollow molded objects is promising, and demand is expected to increase in the future, and there is an urgent need to develop molding techniques such as control methods for manufacturing hollow molded objects more reliably and easily.
発明が解決しようとする問題点
中空型物成形品は、射出成形を採用して型キヤ
ビテイ容積未満量の溶融された合成樹脂を型キヤ
ビテイに射出し、次いで或いは同時に流体を該合
成樹脂内に圧入充満させた後、該合成樹脂外へ放
出することによつて一般に製造されている。しか
しながら、中空形成時の型キヤビテイ内に於ける
合成樹脂の流れの挙動は、例えば流体の注入排出
条件、合成樹脂の射出条件及び型キヤビテイの形
状等によつて敏感に左右され、これらの要因が所
定の限界内になければ出来上つた成形品は欠陥を
有する。Problems to be Solved by the Invention Hollow molded articles are produced by injection molding, in which a molten synthetic resin in an amount less than the volume of the mold cavity is injected into the mold cavity, and then or at the same time, a fluid is injected into the synthetic resin. It is generally produced by filling the synthetic resin and then discharging it out of the synthetic resin. However, the behavior of the flow of synthetic resin in the mold cavity during hollow forming is sensitively influenced by, for example, fluid injection and discharge conditions, synthetic resin injection conditions, and the shape of the mold cavity. If it is not within predetermined limits, the resulting molded article will be defective.
例えば流体の注入速度が遅ければ、型キヤビテ
イ内に射出した合成樹脂の固化が進み過ぎ、型キ
ヤビテイ内に於ける該合成樹脂の円滑な流動が因
難になり成形品の表面に波状の模様が発生したり
する場合がある。また型キヤビテイ内に射出した
合成樹脂に温度や粘度のばらつきがあれば、該合
成樹脂の粘度の低い部分に流体が展開し過ぎ、極
端な場合には流体が樹脂層を突き破り、成形品に
穴が生じることもある。 For example, if the fluid injection speed is slow, the synthetic resin injected into the mold cavity will solidify too much, making it difficult for the synthetic resin to flow smoothly within the mold cavity, resulting in a wavy pattern on the surface of the molded product. It may occur. In addition, if there are variations in temperature or viscosity of the synthetic resin injected into the mold cavity, the fluid may spread too much to the low viscosity parts of the synthetic resin, and in extreme cases, the fluid may break through the resin layer and cause holes in the molded product. may occur.
また、流体の排出速度が変われば、得られる成
形体の性状が変わる。例えば、流体の排出速度が
早いと、スキン層の形成が不十分なため、型の形
状を十分に再現したスキン層を有する中空型物あ
るいは発泡型物が得られない。流体の排出速度が
遅いと、流体の排出により発泡状態が変わり、中
空状の空洞として流体が発泡型物中に残存するこ
とになり、安定したスキン層とフオームコア層か
ら成る発泡型物が繰り返し再現性よく得られな
い。 Furthermore, if the fluid discharge speed changes, the properties of the obtained molded article will change. For example, if the fluid discharge rate is high, the formation of the skin layer is insufficient, making it impossible to obtain a hollow molded article or a foamed molded article having a skin layer that sufficiently reproduces the shape of the mold. If the fluid discharge rate is slow, the foaming state will change due to the fluid discharge, and the fluid will remain in the foam as a hollow cavity, which will repeatedly reproduce the foam consisting of a stable skin layer and foam core layer. I can't get good results.
また更に、流体として特に窒素等の高圧ガス体
を使用する場合には、安全上の問題が付加され
る。 Furthermore, the use of a high pressure gas as the fluid, particularly nitrogen, poses additional safety concerns.
例えば、高圧ガス体の回収が不完全のまま成形
品を型より取り出せば、その破裂が考えられる
し、中空体を形成する段階で高圧ガス体が樹脂層
を突き破つた場合には、ガス体が型キヤビテイ外
へ吹き出し異常事態が発生する可能性が考えられ
る。 For example, if a molded product is taken out of the mold before the high-pressure gas is incompletely recovered, it is likely that the product will rupture, and if the high-pressure gas breaks through the resin layer during the process of forming a hollow body, the gas It is thought that there is a possibility that an abnormal situation may occur where the water is blown out of the mold cavity.
問題点を解決するための手段
これらの問題は、制御された圧力容器に流体を
回収する方法によつて解決された。Means to Solve the Problems These problems have been solved by a method of withdrawing fluid into a controlled pressure vessel.
本発明に従えば、中空型物を形成する際に、ガ
ス体の圧縮及び膨張ができる機能を備えた第1の
圧力容器、たとえばピストン型アキユームレータ
内で、成形圧力とその圧力における容積が一定に
なるように流体とくにガス体を圧縮した後、型キ
ヤビテイに射出した合成樹脂内に圧入した流体を
前記のごとき第1の圧力容器に該流体の排出速度
を制御して回収する方法や、圧入した流体を該第
1の圧力容器に該流体の排出速度を制御して回収
しつつ、該流体が所定の圧力に達したときに、該
合成樹脂内に残された流体を低圧に保たれたエア
ーシリンダー型のごとき第2の圧力容器に回収す
る方法などの実施態様がある。 According to the present invention, when forming a hollow molded object, the molding pressure and the volume at that pressure are adjusted in the first pressure vessel, for example, a piston-type accumulator, which has the function of compressing and expanding a gas body. A method of compressing a fluid, particularly a gas body, to a constant level, and then collecting the fluid pressurized into a synthetic resin injected into a mold cavity into a first pressure vessel as described above by controlling the discharge speed of the fluid, While recovering the pressurized fluid into the first pressure vessel by controlling the discharge speed of the fluid, when the fluid reaches a predetermined pressure, the fluid remaining in the synthetic resin is maintained at a low pressure. Embodiments include collection in a second pressure vessel, such as an air cylinder type.
実施例、効果
図面を参照しながら本発明を説明すると、第1
図および第2図は中空形成途上の成形装置を示
す。Embodiments and Effects The present invention will be described with reference to the drawings.
The figure and FIG. 2 show the molding apparatus in the process of forming a hollow.
第1図において、まず、成形にあたつてガス
体、代表的には窒素ガスをボンベACC−3から
減圧弁RV−1とチエツク弁CV−1とを介して代
表的には5乃至8Kg/cm2の圧力でピストン型アキ
ユームレータACC−1に供給する。次いで油圧
源に通ずる電磁駆動弁V−5を開きピストン型ア
キユームレータACC−1内のガス体を代表的に
は140Kg/cm2の成形圧力まで圧縮し電磁駆動弁V
−5を閉じる。次に型3のキヤビテイへの射出シ
リンダ1よりの合成樹脂射出が完了すると同時に
電磁駆動弁V−1を開き、ピストン型アキユーム
レータACC−1よりインナーノズル2を介して
流体注入口4より型キヤビテイ内の合成樹脂5に
ガス体を圧入充満させる。正常な成形の進行が確
認されると電磁駆動弁V−1を開いたまま合成樹
脂5に圧入したガス体を再びピストン型アキユー
ムレータACC−1内に流体の排出速度を制御し
て回収する。 In FIG. 1, first, during molding, a gas, typically nitrogen gas, is supplied from a cylinder ACC-3 through a pressure reducing valve RV-1 and a check valve CV-1, typically at a rate of 5 to 8 kg. It is supplied to the piston type accumulator ACC-1 at a pressure of cm2 . Next, the electromagnetically driven valve V-5 connected to the hydraulic pressure source is opened, and the gas in the piston-type accumulator ACC-1 is compressed to a molding pressure of typically 140 kg/ cm2 .
-Close 5. Next, at the same time as the injection of synthetic resin from the injection cylinder 1 into the cavity of the mold 3 is completed, the electromagnetically driven valve V-1 is opened, and the piston-type accumulator ACC-1 is injected into the mold from the fluid injection port 4 through the inner nozzle 2. The synthetic resin 5 in the cavity is filled with gas under pressure. When normal molding progress is confirmed, the gas body pressurized into the synthetic resin 5 is recovered into the piston-type accumulator ACC-1 by controlling the discharge speed of the fluid with the electromagnetically driven valve V-1 open. .
第3図は第1図の圧力容器内の流体圧力全軌跡
の1例を示す図である。 FIG. 3 is a diagram showing an example of the entire fluid pressure trajectory within the pressure vessel shown in FIG. 1.
第3図を参照して第1図における工程を更に詳
しく説明する。実線12のa、b間は第1の圧力
容器、ピストン型アキユームレータACC−1内
でガス体を成形圧力まで圧縮するときの該アキユ
ームレータ内のガス体の圧力軌跡の1例を、c、
d間は型キヤビテイに射出した合成樹脂5内に該
アキユームレータよりガス体を圧入するときの該
アキユームレータ内のガス体の標準圧力軌跡の1
例を、d、e間は合成樹脂5内に圧入したガス体
を再び該アキユームレータにガス体の排出速度を
制御して回収するときの該アキユームレータ内の
ガス体の圧力軌跡の1例を示しており、d、e間
の圧力軌跡における最終圧力値が、標準圧力値に
達するかどうかを圧力スイツチPS−5によつて
検出し、ガス体の回収が正常になされたかどうか
確認し、成形工程を制御し、工程の繰り返し再現
性を高めることができる。上記標準圧力値とは理
論的に回収できるガス体の量によつて決定する。
△Pはノズルを型キヤビテイーとの接触を断つた
場合のガス漏出に基づく圧力損失である。 The steps in FIG. 1 will be explained in more detail with reference to FIG. 3. Between a and b of the solid line 12 is an example of the pressure trajectory of the gas body in the first pressure vessel, piston-type accumulator ACC-1, when the gas body is compressed to the molding pressure. c,
d is the standard pressure trajectory of the gas in the accumulator when the gas is pressurized from the accumulator into the synthetic resin 5 injected into the mold cavity.
For example, between d and e, the pressure trajectory of the gas in the accumulator when the gas press-injected into the synthetic resin 5 is recovered by controlling the discharge speed of the gas in the accumulator. An example is shown in which the pressure switch PS-5 detects whether the final pressure value in the pressure trajectory between d and e reaches the standard pressure value, and confirms whether the gas body has been recovered normally. , it is possible to control the molding process and improve the repeatability of the process. The above standard pressure value is determined by the amount of gas that can be theoretically recovered.
ΔP is the pressure loss due to gas leakage when the nozzle is disconnected from the mold cavity.
第2図においては、電磁駆動弁V−1を開き、
ガス体を再びピストン型アキユームレータACC
−1内にガス体の排出速度を制御して回収しつ
つ、ガス体の圧力が圧力スイツチPS−4の設定
値に達すると電磁駆動弁V−1を閉じて、電磁駆
動弁V−2を開き低圧に保持されたエアシリンダ
ーACC−2のロツドイン側内へ回収経路を切り
換えて第2の圧力容器であるエアシリンダー
ACC−2のロツドイン側内のガス体の圧力上昇
量を圧力スイツチPS−3によつて確認する。圧
力スイツチPS−3が作動しない場合はガス体の
回収が不完全な状態を示しており、このときは警
報を発生させる。ガスの回収工程が完了すると次
に圧縮空気源に通ずる電磁駆動弁V−4を開くと
同時に電磁駆動弁V−2を閉じてエアーシリンダ
ーACC−2内のガス体を電磁駆動弁V−3を介
してピストン型アキユームレータACC−1内に
圧送してプロセスを終了する。 In Fig. 2, the electromagnetically driven valve V-1 is opened,
Gas body again piston type accumulator ACC
-1, while controlling the discharge speed of the gas, and when the pressure of the gas reaches the set value of the pressure switch PS-4, the electromagnetically driven valve V-1 is closed and the electromagnetically driven valve V-2 is turned on. The recovery path is switched to the rod-in side of the air cylinder ACC-2, which is opened and maintained at a low pressure, and the air cylinder, which is the second pressure vessel, is opened.
Check the amount of pressure rise in the gas inside the rod-in side of ACC-2 using pressure switch PS-3. If the pressure switch PS-3 does not operate, it indicates that the recovery of the gas is incomplete, and in this case an alarm is generated. When the gas recovery process is completed, the electromagnetically driven valve V-4 connected to the compressed air source is opened, and at the same time, the electromagnetically driven valve V-2 is closed, and the gas inside the air cylinder ACC-2 is transferred to the electromagnetically driven valve V-3. The process is completed by force-feeding the liquid through the piston-type accumulator ACC-1.
第4図を参照して第2図における工程を更に詳
しく説明すると、実線13は第3図と同様に各段
階に於ける第1の圧力容器、ピストン型アキユー
ムレータ内のガス体の圧力軌跡の1例を示してお
り、合成樹脂内に圧入したガス体を再び第1の圧
力容器にガスの排出速度を制御して回収するため
に、電磁駆動弁V−1を開いたまま第1の圧力容
器内のガス体を膨張させる段階、d、f間に於い
て、ガス体の回収経路に設けた圧力スイツチPS
−4の設定値にガス体の圧力が達したときに、電
磁駆動弁V−1を閉じて、第1の圧力容器へのガ
ス体の回収経路を断ち、電磁駆動弁V−2を開い
て合成樹脂内の未回収のガス体を第2の圧力容
器、エアシリンダーのロツドイン側に回収する。
破線14は、合成樹脂内に圧入したガス体を第1
の圧力容器に回収しないで直ちに第2の圧力容器
に回収したときの第2の圧力容器内のガス体の圧
力軌跡の1例を示し、破線15は合成樹脂内に圧
入したガス体を、所定の圧力50Kg/cm2に設定した
圧力スイツチPS−4が作動するまで第1の圧力
容器に回収した後、第2の圧力容器に回収経路を
切り換えたときの第2の圧力容器内のガス体の圧
力軌跡の1例を示す図である。 To explain the process in FIG. 2 in more detail with reference to FIG. 4, the solid line 13 indicates the pressure locus of the gas in the first pressure vessel and piston-type accumulator at each stage, as in FIG. 3. In this example, in order to recover the gas that has been pressurized into the synthetic resin into the first pressure vessel by controlling the gas discharge speed, the first pressure vessel is opened while the electromagnetically driven valve V-1 is open. During the step of expanding the gas body in the pressure vessel, between d and f, a pressure switch PS installed in the gas recovery path
-4 When the pressure of the gas body reaches the set value, the electromagnetically driven valve V-1 is closed to cut off the gas recovery path to the first pressure vessel, and the electromagnetically driven valve V-2 is opened. The unrecovered gas inside the synthetic resin is collected into the second pressure vessel, the rod-in side of the air cylinder.
A broken line 14 indicates that the gas body pressurized into the synthetic resin is
An example of the pressure locus of the gas in the second pressure vessel is shown when the gas is immediately collected into the second pressure vessel without being recovered into the second pressure vessel. The gas in the second pressure vessel is recovered when the recovery route is switched to the second pressure vessel after the gas is recovered in the first pressure vessel until the pressure switch PS-4, which is set at a pressure of 50Kg/ cm2 , is activated. FIG. 3 is a diagram showing an example of a pressure trajectory of FIG.
第1の圧力容器にガス体を排出速度を制御して
回収した時のガス体の圧力の軌跡実線13のd、
fから明らかな如く、ガス体の回収が進むにつれ
て、合成樹脂5に圧入したガス体と回収によつて
最終的に到達する第1の圧力容器のガス体との圧
力の差が小となり、結果としてガス体の回収が遅
くなる。しかし、第4図の破線15の軌跡の如
く、第1の圧力容器に所定の圧力までガス体をガ
ス体の排出速度を制御して回収し、次に第2の圧
力容器に回収すると、より短時間に、且つより低
い圧力まで回収でき、ガス体の回収を容易且つ確
実にするばかりでなく、ガス体の回収効率を高め
ることができる。 Locus of the pressure of the gas body when the gas body is collected into the first pressure vessel by controlling the discharge speed, solid line 13 d,
As is clear from f, as the recovery of the gas body progresses, the difference in pressure between the gas body pressurized into the synthetic resin 5 and the gas body finally reached in the first pressure vessel by recovery becomes smaller, and as a result, This slows down the recovery of the gas. However, as shown by the trajectory of the broken line 15 in FIG. 4, if the gas is collected in the first pressure vessel by controlling the discharge speed of the gas to a predetermined pressure, and then collected in the second pressure vessel, the The gas can be recovered to a lower pressure in a short time, and the gas can be recovered easily and reliably, and the gas can be recovered more efficiently.
また、第2の低圧の圧力容器を回収に併用する
ことにより、高価な高圧の第1の圧力容器を安価
な小型の圧力容器とすることができる。圧力スイ
ツチPS−4の設定値は合成樹脂に圧入するガス
体の圧力と量及び、第2の圧力容器の容量によつ
て決定する。第2の圧力容器として通常のエアシ
リンダーを用いるので、合成樹脂に圧入したガス
体を第2の圧力容器に回収するときの第2の圧力
容器のガス体の最終圧力値は10Kg/cm2以下になる
ように第2の圧力容器の容量を決定する。代表的
には5乃至8Kg/cm2になるように圧力スイツチ
PS−4を設定する。 Furthermore, by using the second low-pressure pressure vessel for recovery, the expensive high-pressure first pressure vessel can be replaced with an inexpensive, small-sized pressure vessel. The set value of the pressure switch PS-4 is determined by the pressure and amount of the gas to be pressurized into the synthetic resin and the capacity of the second pressure vessel. Since a normal air cylinder is used as the second pressure vessel, the final pressure value of the gas in the second pressure vessel is 10Kg/cm 2 or less when the gas pressurized into the synthetic resin is recovered into the second pressure vessel. Determine the capacity of the second pressure vessel so that Pressure switch is typically set to 5 to 8 kg/ cm2.
Set up PS-4.
上記工程等によつて中空型物成形体を形成する
ときの合成樹脂内のガス体を、制御された工程で
繰り返し再現性よく確実に回収し、均一な成形体
が得られる。しかも、注入した流体を次の成形工
程に、より高い効率で再使用することができ、よ
り安価に、より確実に且つ安全に中空型物或いは
発泡型物を製造することができる。 When a hollow molded body is formed by the above-mentioned process, the gas inside the synthetic resin can be repeatedly and reliably recovered in a controlled process, and a uniform molded body can be obtained. Furthermore, the injected fluid can be reused in the next molding process with higher efficiency, and hollow molded products or foamed molded products can be manufactured more reliably and safely at a lower cost.
第5図に別の例を示す。 Another example is shown in FIG.
第5図において、V−1およびV−6の電磁駆
動弁を開いて、ピストン型アキユームレーター
ACC−1の圧縮ガスを型キヤビテイ内の合成樹
脂5内に圧入した後、V−1を閉じ、V−6およ
びV−7を開いてガス体を排出速度を制御して容
器ACC−4に回収し、次いで、V−7を閉じ、
V−6、V−1を開いて型キヤビテイ内に残つて
いるガス体を容積の拡大されたACC−1に回収
し、次いでV−6を閉じ、V−7およびV−1を
開いてACC−4のガス体をACC−1に回収す
る。各操作を、あらかじめ適度な圧力に設定され
た圧力スイツチPS−1,PS−2,PS−6,PS−
7により確認しつつ行うことにより良好に成形で
きる。 In Figure 5, open the V-1 and V-6 electromagnetically driven valves and open the piston type accumulator.
After the compressed gas from ACC-1 is injected into the synthetic resin 5 in the mold cavity, V-1 is closed, V-6 and V-7 are opened, and the gas is discharged into the container ACC-4 by controlling the discharge speed. Collect, then close V-7,
Open V-6 and V-1 to collect the gas remaining in the mold cavity into the expanded volume ACC-1, then close V-6 and open V-7 and V-1 to collect the gas remaining in the mold cavity. -4 gas body is collected in ACC-1. Each operation is performed using pressure switches PS-1, PS-2, PS-6, PS-, which are set to appropriate pressures in advance.
Good molding can be achieved by checking step 7.
第5図に示す装置は、更に別の電磁駆動弁の操
作を行うこともできる。すなわちACC−1の圧
縮ガスを型キヤビテイ内の合成樹脂5に圧入した
後、V−1を閉じV−6,V−7を開けてガス体
を排出速度を制御して容器ACC−4に回収し、
次いでV−6を閉じ、V−1,V−7を開けてガ
ス体をACC−4より容積の拡大されたACC−1
に移し、次いでV−1を閉じ、V−6,V−7を
開けて型キヤビテイ内に残つているガス体を容器
ACC−4に回収する。 The apparatus shown in FIG. 5 can also operate other electromagnetically driven valves. That is, after compressed gas from ACC-1 is injected into the synthetic resin 5 in the mold cavity, V-1 is closed and V-6 and V-7 are opened to control the discharge speed and collect the gas into container ACC-4. death,
Next, close V-6, open V-1 and V-7, and transfer the gas to ACC-1, which has a larger volume than ACC-4.
Then, close V-1 and open V-6 and V-7 to drain the gas remaining in the mold cavity.
Collect into ACC-4.
本発明に述べる流体にはガス体が特に好まし
く、窒素ガス等は良好に使用できる。しかし低沸
点の液体、あるいは該液体の蒸気を含んだガス体
等も使用できる。 A gaseous body is particularly preferable for the fluid described in the present invention, and nitrogen gas and the like can be used satisfactorily. However, a liquid with a low boiling point or a gas containing vapor of the liquid can also be used.
第1図、第2図および第5図はいずれも本発明
方法を実施するために好適な監査回路例の構成
図、第3図および第4図はいずれも圧力容器内の
流体圧力軌跡例を示すグラフ図である。
図において、1……射出シリンダー、2……イ
ンナーノズル、3……型、4……流体注入口、5
……合成樹脂、12,13,14,15……圧力
軌跡、ACC−1,ACC−2,ACC−3……エア
ーシリンダー、ACC−4……容器、V−1〜7
……電磁駆動弁、PS−1〜7……圧力スイツ
チ、G−1〜3……圧力ゲージ、RV−1……減
圧弁、CV−1……チエツク弁。
1, 2, and 5 are all configuration diagrams of an example of an audit circuit suitable for carrying out the method of the present invention, and FIGS. 3 and 4 each show an example of a fluid pressure trajectory in a pressure vessel. FIG. In the figure, 1... Injection cylinder, 2... Inner nozzle, 3... Mold, 4... Fluid inlet, 5
...Synthetic resin, 12,13,14,15...Pressure locus, ACC-1, ACC-2, ACC-3...Air cylinder, ACC-4...Container, V-1 to 7
...Electromagnetically driven valve, PS-1 to 7...Pressure switch, G-1 to 3...Pressure gauge, RV-1...Pressure reducing valve, CV-1...Check valve.
Claims (1)
を含まないか或いは含む合成樹脂を型キヤビテイ
に射出し、次いで、或いは同時に、流体の圧縮及
び膨張の出来る圧力容器から流体を該合成樹脂内
に圧入させた後、該合成樹脂外へ放出することに
よつて中空型物或いは発泡型物を製造する射出成
形方法において、合成樹脂内に圧入した流体の該
合成樹脂外への放出を流体の排出速度を制御して
上記の圧力容器に回収して行うことを特徴とする
中空型物或いは発泡型物の成形方法。 2 型キヤビテイ容積未満量の溶融された発泡剤
を含まないか或いは含む合成樹脂を型キヤビテイ
に射出し、次いで、或いは同時に、流体の圧縮及
び膨張の出来る圧力容器から流体を該合成樹脂内
に圧入させた後、該合成樹脂外へ放出することに
よつて中空型物或いは発泡型物を製造する射出成
形方法において、合成樹脂内に圧入した流体の該
合成樹脂外への放出を、流体の排出速度を制御し
て該流体を上記の圧力容器に回収しつつ、該流体
が所定の圧力に達したときに、該合成樹脂内に残
された流体を上記とは別の低圧に保たれた圧力容
器に回収して行うことを特徴とする中空型物或い
は発泡型物の成形方法。[Scope of Claims] 1. Injecting a synthetic resin without or containing a molten blowing agent into the mold cavity in an amount less than the volume of the mold cavity, and then or simultaneously injecting the fluid from a pressure vessel capable of compressing and expanding the fluid. In an injection molding method in which a hollow or foamed product is manufactured by press-fitting the fluid into the synthetic resin and then expelling the fluid out of the synthetic resin, A method for molding a hollow molded product or a foamed molded product, characterized in that the fluid is discharged by controlling the discharge rate and collecting the fluid into the pressure vessel described above. 2. Injecting a synthetic resin without or containing a molten blowing agent in an amount less than the volume of the mold cavity into the mold cavity, and then, or at the same time, injecting a fluid into the synthetic resin from a pressure vessel capable of compressing and expanding the fluid. In an injection molding method in which a hollow or foamed product is manufactured by releasing the fluid out of the synthetic resin, the release of the fluid press-fitted into the synthetic resin to the outside of the synthetic resin is referred to as fluid discharge. While controlling the speed and recovering the fluid into the pressure vessel, when the fluid reaches a predetermined pressure, the fluid remaining in the synthetic resin is maintained at a lower pressure different from the above. 1. A method for molding a hollow or foamed product, the method comprising collecting the product in a container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3052578A JPS54123173A (en) | 1978-03-18 | 1978-03-18 | Method of monitoring molding process for hollow or foamed shapes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3052578A JPS54123173A (en) | 1978-03-18 | 1978-03-18 | Method of monitoring molding process for hollow or foamed shapes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54123173A JPS54123173A (en) | 1979-09-25 |
JPS6159899B2 true JPS6159899B2 (en) | 1986-12-18 |
Family
ID=12306216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3052578A Granted JPS54123173A (en) | 1978-03-18 | 1978-03-18 | Method of monitoring molding process for hollow or foamed shapes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54123173A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990007415A1 (en) * | 1988-12-26 | 1990-07-12 | Asahi Kasei Kogyo Kabushiki Kaisha | Method and apparatus for injection molding of hollow article |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3020122C2 (en) * | 1980-05-27 | 1984-04-26 | Battenfeld Maschinenfabriken Gmbh, 5882 Meinerzhagen | Circuit arrangement for metering gaseous or liquid substances, in particular physical blowing agents, into a flowable melt made of thermoplastic material |
GB2139548B (en) * | 1983-05-11 | 1986-11-19 | James Watson Hendry | Injection moulding |
JPS615623U (en) * | 1984-06-18 | 1986-01-14 | 株式会社日本製鋼所 | Mold cavity pressure control device |
JPS61182912A (en) * | 1985-02-08 | 1986-08-15 | Nissei Plastics Ind Co | Control method of casting pressure of gaseous foaming agent in foam molding |
JPS62132620A (en) * | 1985-12-04 | 1987-06-15 | Daiwa Giken Kogyo Kk | Molded member made of plastic and its manufacture |
US4935191A (en) * | 1986-10-16 | 1990-06-19 | Thomas W. Johnson | Process of insection molding with pressurized gas assist |
AU7247087A (en) * | 1986-05-19 | 1987-11-26 | Hendry, J.W. | Injection with screw feed and subsequently gas pressure |
JPS6378714A (en) * | 1986-05-19 | 1988-04-08 | 旭化成株式会社 | Method and device for manufacturing injection molding of plastic material |
JPH0788025B2 (en) * | 1987-04-28 | 1995-09-27 | 三菱瓦斯化学株式会社 | Manufacturing method of synthetic resin molded product having uneven wall reinforcement structure |
JPS6463122A (en) * | 1987-09-04 | 1989-03-09 | Mitsubishi Gas Chemical Co | Injection molding |
GB8722620D0 (en) * | 1987-09-25 | 1987-11-04 | Cinpres Ltd | Injection moulding |
DE3734164C3 (en) * | 1987-10-09 | 1999-09-09 | Battenfeld Gmbh | Process for injection molding molded parts from thermoplastic materials and device for carrying out the process |
JPS63172625A (en) * | 1987-12-11 | 1988-07-16 | Seikosha Co Ltd | Manufacture of case for clock mechanical body |
US5015166A (en) * | 1988-11-02 | 1991-05-14 | Encore Molding Systems, Inc. | Injection molding apparatus for making a hollow object |
AT399470B (en) * | 1988-12-15 | 1995-05-26 | Head Sport Ag | METHOD FOR PRODUCING A BALL RACKET FRAME |
SE500303C2 (en) * | 1989-02-09 | 1994-05-30 | Electrolux Ab | Device for making hollow plastic articles by injection molding |
DE3913109C5 (en) * | 1989-04-21 | 2010-03-18 | Ferromatik Milacron Maschinenbau Gmbh | Method for injection molding of fluid-filled plastic body and device for carrying out the method |
FR2749211B1 (en) * | 1996-05-30 | 1998-07-10 | Air Liquide | DEVICE FOR DRIVING MEANS FOR CONTROLLING THE PROFILE OF A CURVE OF A FLUID INJECTED IN A FLUID ASSISTED INJECTION MOLD |
-
1978
- 1978-03-18 JP JP3052578A patent/JPS54123173A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990007415A1 (en) * | 1988-12-26 | 1990-07-12 | Asahi Kasei Kogyo Kabushiki Kaisha | Method and apparatus for injection molding of hollow article |
GB2232632A (en) * | 1988-12-26 | 1990-12-19 | Asahi Chemical Ind | Method and apparatus for injection molding of hollow article |
US5173241A (en) * | 1988-12-26 | 1992-12-22 | Asahi Kasei Kogoyo Kabushiki Kaisha | Method and apparatus for injection molding hollow shaped article |
GB2232632B (en) * | 1988-12-26 | 1993-04-28 | Asahi Chemical Ind | Method and apparatus for injection molding of hollow article |
Also Published As
Publication number | Publication date |
---|---|
JPS54123173A (en) | 1979-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6159899B2 (en) | ||
US4783292A (en) | Method of injection molding a foamed plastic article using a relatively light gas as a blowing agent | |
US4120924A (en) | Method for making foamed blown ware | |
US2954589A (en) | Method of molding expanded resins | |
US4806293A (en) | Method of producing a foamed, molded article | |
US5948446A (en) | Molding apparatus for producing molded resin products | |
JPS6169421A (en) | Molding method of foamed molding | |
WO2001015882A8 (en) | Production method for thermoplastic resin foam, molding mold therefor and thermoplastic resin foam | |
US4668567A (en) | Method for producing a hollow molded article with a filling of foamed plastic thermal insulation, and the article produced thereby | |
WO2005105404A1 (en) | Molding method and apparatus for expandable polymer resin | |
JPH0735058B2 (en) | Hollow molding method | |
JP2004167777A (en) | Thermoplastic resin foam and method/device for manufacturing the foam | |
JPH06198668A (en) | Method for injection molding of high expantion molded material | |
US5308560A (en) | Process for producing mouldings from an expanded styrene polymer | |
US3642965A (en) | Method of removing essentially seamless foamed parts from a mold by fluid pressure | |
JPS6127175B2 (en) | ||
JPH10156856A (en) | Method for molding of synthetic resin molding | |
JP3574174B2 (en) | Molding method of multilayer molded body | |
CN217257817U (en) | Thermoplastic high polymer material one-step physical foaming forming device | |
JPH03268913A (en) | Injection molding method and its device for hollow material | |
JPS59120429A (en) | Molding method of molded foam article | |
JPH0818340B2 (en) | Method for producing porous structure | |
GB1577793A (en) | Method and apparatus for pre-expanding and moulding polymer particles | |
JPH06320591A (en) | Foam injection molding method of thick-walled molded product | |
JPH0416330A (en) | In-mold molding of thermoplastic resin foamable particle |