JPS6156881B2 - - Google Patents
Info
- Publication number
- JPS6156881B2 JPS6156881B2 JP55006004A JP600480A JPS6156881B2 JP S6156881 B2 JPS6156881 B2 JP S6156881B2 JP 55006004 A JP55006004 A JP 55006004A JP 600480 A JP600480 A JP 600480A JP S6156881 B2 JPS6156881 B2 JP S6156881B2
- Authority
- JP
- Japan
- Prior art keywords
- mic
- waveguide
- carrier
- connection
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 101100130502 Caenorhabditis elegans mics-1 gene Proteins 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/107—Hollow-waveguide/strip-line transitions
Landscapes
- Waveguide Connection Structure (AREA)
- Waveguides (AREA)
Description
【発明の詳細な説明】
本発明は高周波帯のうちとくに超高周波帯MIC
回路を安定に接続することに関する。[Detailed Description of the Invention] The present invention provides an MIC for a super high frequency band in a high frequency band.
Concerning stable connection of circuits.
従来高周波帯回路の集積回路素子(以下MICと
いう)の伝送路の入出力端を接続する場合、第1
図に示すような対向配置されたMIC1,2の伝送
路(ストリツプライン)11,12を金リボン線
3で接続する構造のものが用いられているが、こ
の接続部の等価回路は第2図に示すようにLとC
とで構成接続されることになる。しかしこのよう
な接続構造にあつては、最近のMICがいわゆるミ
リ波で30GHz以上のものが開発され実用化され
るようになつた昨今においては接続部のサセプタ
ンスによつて急激なミスマツチング(整合不良)
が生じる。そこで接続のリボン線の長さを極力短
かくなるようにMICの対向間を接近させて接続す
るが、これら対向間隙を無くした状態にすると熱
膨張により基板にクラツクが生じる恐れがあるた
め相当の隙間は必要である。 Conventionally, when connecting the input and output ends of the transmission line of an integrated circuit element (hereinafter referred to as MIC) of a high frequency band circuit, the first
As shown in the figure, a structure is used in which transmission lines (striplines) 11 and 12 of MICs 1 and 2 that are arranged opposite each other are connected with a gold ribbon wire 3, but the equivalent circuit of this connection is L and C as shown in the figure
It will be configured and connected. However, with this kind of connection structure, in recent years, as so-called millimeter wave MICs of 30 GHz and above have been developed and put into practical use, rapid mismatching (mismatching) occurs due to the susceptance of the connection. )
occurs. Therefore, the length of the ribbon wire for connection is made as short as possible by connecting the opposing MICs close together, but if these opposing gaps are eliminated, there is a risk of cracks occurring on the board due to thermal expansion, so it takes a considerable amount of time. Gaps are necessary.
そのためMICを複数縦続して接続するような場
合には実装するケースが大きくなり、しかも密閉
されたケース内が一種の空胴共振器となりそれに
よる共振周波数が信号帯域内に含まれる結果特性
上の劣化をきたすことがある。そこで要所に遮閉
板を設けたりケースのふたに電波吸収体を貼り付
けたりすることが行なわれる。或いは適当な単位
で第3図に示すような同軸コネクタ4による対向
間の接続する方法も考えられるがミリ波帯では伝
送損失の増加、インピーダンス整合の調整が困難
であるためにこのような接続方法は好ましくな
い。 Therefore, when multiple MICs are connected in series, the mounting case becomes large, and the inside of the sealed case becomes a kind of cavity resonator, and the resulting resonant frequency is included in the signal band, resulting in changes in characteristics. May cause deterioration. Therefore, shielding plates are installed at key points or radio wave absorbers are pasted on the case lid. Alternatively, it is possible to connect the opposite sides using a coaxial connector 4 as shown in Fig. 3 in an appropriate unit, but this connection method is not recommended because transmission loss increases and impedance matching is difficult to adjust in the millimeter wave band. is not desirable.
一方前記金リボン線による接続方法は超高周波
帯におけるミリ波でのMIC基板は高次モードの影
響を避けるためその厚さを波長に比べ充分小さい
寸法とする(例えばアルミナ基板で50GHzの場
合には厚さが0.2〜0.3mm程度である)。そのため
基板上の伝送線路幅は狭くなるのでリボン線の接
続状態は微妙となり、接続状態の変化が接続特性
上に大きく影響する。 On the other hand, in the connection method using the gold ribbon wire, the thickness of the MIC board for millimeter waves in the ultra-high frequency band must be sufficiently small compared to the wavelength to avoid the effects of higher-order modes (for example, in the case of 50 GHz with an alumina board, The thickness is about 0.2~0.3mm). As a result, the width of the transmission line on the board becomes narrower, so the connection state of the ribbon wire becomes delicate, and changes in the connection state greatly affect the connection characteristics.
本発明は上記問題点に鑑み、接続部分における
不具合点を解消した接続構造の提供を目的とする
ものであつて、このため本発明はキヤリア上に対
向して配設されたMICの要部伝送路をその対向せ
る端部で高周波接続する接続構造において、それ
ぞれのMICを搭載せるキヤリア要部に貫通孔を設
け、該貫通孔を導波管とするとともに該導波管の
両面に所定波長に対し短絡する導波管短絡器を構
成し、前記MICの接続すべき伝送路を前記導波管
を介して接続するようにしたことを特徴としてい
る。このような接続態様としたことによつて伝送
部での整合状態が理想的となり損失も少なく接続
することができる。以下本発明の実施例につき図
面を参照しながら説明する。 In view of the above problems, it is an object of the present invention to provide a connection structure that eliminates the problems in the connection part, and for this purpose, the present invention provides a connection structure for transmitting the main parts of MICs disposed facing each other on a carrier. In a connection structure in which two channels are connected at high frequency at their opposing ends, a through hole is provided in the main part of the carrier in which each MIC is mounted, and the through hole is used as a waveguide, and both sides of the waveguide are connected at a predetermined wavelength. The present invention is characterized in that a waveguide short circuiter is configured to short-circuit the MIC, and the transmission line to which the MIC is to be connected is connected via the waveguide. By adopting such a connection mode, the matching state in the transmission section becomes ideal, and connection can be achieved with less loss. Embodiments of the present invention will be described below with reference to the drawings.
第4図は本発明になるMICの接続構造の一実施
例要部斜視図であり、MIC基板5,5′は金属板
でなるキヤリア6の両面にその突形端部51,5
1′を、上記キヤリア6の貫通孔61上に突出さ
せ互いに対向した状態に配設されている。上記突
形端部51,51′にはそれぞれMIC5,5′の接
続すべきストリツプ線路としての回路パターン5
2,52′が形成されており貫通孔61を介して
伝送するアンテナ部として機能する。また貫通孔
61はMICに使用される周波数に対して定まる周
知の導波管の寸法・形状であり図の場合方形であ
るがその他の円形或いは楕円形等であつてもよ
い。一対の7は上記キヤリア6の貫通孔61に対
応する導波管寸法・形状の凹部71を有してキヤ
リア6の両面を覆う導波管短絡器である。そうし
て凹部71の深さは実質的にMICの突形端部5
1,51′部分を使用周波数に対して短絡する寸
法である。欠部72はMICの突形端部51,5
2′を避けるために設けられている。4隅の孔7
3はキヤリア6の孔62と対応して図示しないね
じを挿通し結合固定するための孔である。 FIG. 4 is a perspective view of a main part of an embodiment of the MIC connection structure according to the present invention.
1' are arranged to protrude above the through hole 61 of the carrier 6 and face each other. The protruding ends 51, 51' have circuit patterns 5 as strip lines to which the MICs 5, 5' are connected, respectively.
2 and 52' are formed and function as an antenna section for transmitting data through the through hole 61. Further, the through hole 61 has a well-known size and shape of a waveguide determined for the frequency used in the MIC, and is rectangular in the figure, but may be other circular or elliptical shapes. A pair of waveguide shunts 7 have a recess 71 having a waveguide size and shape corresponding to the through hole 61 of the carrier 6, and cover both sides of the carrier 6. The depth of the recess 71 is then substantially the same as that of the protruding end 5 of the MIC.
The dimensions are such that the 1,51' portion is short-circuited to the operating frequency. The cutout 72 is the protruding end 51, 5 of the MIC.
2'. 4 corner holes 7
Reference numeral 3 denotes a hole corresponding to the hole 62 of the carrier 6, through which a screw (not shown) is inserted and fixed.
以上の構成でキヤリア6の両面に一対の導波管
短絡器7,7を取着固定した状態として、例えば
一方のMIC5からの所定の高周波信号が突形端部
51に伝送されてくると、高周波信号はこの部分
でストリツプ線路伝送モードから導波管モードに
変換して短絡器7とキヤリア6の貫通孔61に放
射する。この変換は極めて能率よく行なわれ、短
絡器7により端絡整合されているので導波管モー
ドとなつて高周波信号はキヤリア6の貫通孔61
内を他方の面に向つて伝搬する。対向している一
方のMIC5′の突形端部51′に到達した上記高周
波信号は、ここで上記MIC5と短絡器7とによる
放射とは全く逆の関係で、MIC5′のストリツプ
線路に対して導波管モードからストリツプ線路伝
送モードに変換されてMIC5に伝送する、この場
合も突形端部51′を短絡しているもう一方の端
絡器7によつて能率よく変換が行なわれる。 With the above configuration in which a pair of waveguide short circuits 7, 7 are attached and fixed on both sides of the carrier 6, when a predetermined high frequency signal from one MIC 5 is transmitted to the protruding end portion 51, for example, The high frequency signal is converted from the strip line transmission mode to the waveguide mode in this part and is radiated to the short circuit 7 and the through hole 61 of the carrier 6. This conversion is performed extremely efficiently, and since the terminals are matched by the short circuit 7, the high frequency signal becomes a waveguide mode and is transmitted through the through hole 6 of the carrier 6.
propagates inside toward the other surface. The high frequency signal that has reached the protruding end 51' of the opposing MIC 5' is directed to the strip line of the MIC 5' in a completely opposite relationship to the radiation caused by the MIC 5 and the short circuit 7. The waveguide mode is converted to the strip line transmission mode and transmitted to the MIC 5. In this case as well, the conversion is efficiently performed by the other terminal 7 which short-circuits the protruding end 51'.
上記短絡器7の凹部71の深さは固定形でなく
底部面の位置を可変可能な周知のシヨートプラン
ジヤー形とすれば徴細に最適の端絡整合を計るこ
とができ、周波数の変化にも容易に対処すること
ができる。 If the depth of the recess 71 of the short circuit 7 is not a fixed type but a well-known short plunger type in which the position of the bottom surface can be varied, it is possible to measure the optimum end-circuit matching in detail and change the frequency. can also be easily dealt with.
第5図に本発明の他の実施例側断面図として要
部のみ示している。本実施例が第4図と異なる点
は、第4図がMIC5の延長方向キヤリア6の他の
面に一方のMIC5′を対向配設した形であるが、
第5図においては一方のMIC5′をMIC5とキヤ
リア6を介して対向配設した形にした点にある。
このようにしても高周波信号の伝送は前述と全く
同様に行なわれる。 FIG. 5 is a side sectional view of another embodiment of the present invention, showing only the main parts. The difference between this embodiment and FIG. 4 is that in FIG. 4, one MIC 5' is disposed opposite to the other surface of the carrier 6 in the extending direction of the MIC 5.
In FIG. 5, one MIC 5' is disposed opposite to the MIC 5 with a carrier 6 interposed therebetween.
Even in this case, high frequency signal transmission is performed in exactly the same manner as described above.
上述の実施例は何れの場合も高周波信号の伝送
は逆方向に対しても同様に行なわれる可逆性を具
えている。 In either case, the above-described embodiments have reversibility in that the high-frequency signal is transmitted in the same way in the opposite direction.
以上説明したように本発明はMICの高周波信号
の接続を導波管を介して行なうため、接続部での
変換接続が能率よく行なわれるので、従来のよう
な間隙とか熱膨張等による障害の無い接続構造で
ある。そのほか接続を微細に最適とすることも容
易に達成可能で、MICの実装されないキヤリア面
に電波吸収体を配置すればケースに密閉するよう
な場合に共振現象を防ぐことができる。もちろん
実施例のようにした接続構造を多数縦続し、各方
向に対して接続部を構成するようなことは当然実
施できるものである。 As explained above, in the present invention, since the high frequency signal of the MIC is connected via the waveguide, the conversion connection at the connection part is performed efficiently, so there is no problem with the conventional problems caused by gaps, thermal expansion, etc. It is a connection structure. In addition, finely optimized connections can be easily achieved, and by placing a radio wave absorber on the carrier surface where the MIC is not mounted, resonance phenomena can be prevented when the device is sealed in a case. Of course, it is possible to cascade a large number of connection structures as in the embodiment and configure connection portions in each direction.
第1図は従来の接続構造の要部斜視図、第2図
はその等価回路、第3図はコネクタ接続の場合の
要部斜視図、第4図は本発明接続構造の一実施例
要部斜視図、第5図は本発明の他の実施例側断面
図を示す。
図において5,5′はMIC、51,51′は突形
端部、52,52′はパターン、6にキヤリア、
61は貫通孔、62は孔、7は端絡器、71は凹
部、72は欠部、73は孔である。
Fig. 1 is a perspective view of the main part of a conventional connection structure, Fig. 2 is its equivalent circuit, Fig. 3 is a perspective view of the main part in the case of connector connection, and Fig. 4 is a main part of an embodiment of the connection structure of the present invention. The perspective view, FIG. 5, shows a side sectional view of another embodiment of the invention. In the figure, 5 and 5' are MIC, 51 and 51' are protruding ends, 52 and 52' are patterns, and 6 is a carrier.
61 is a through hole, 62 is a hole, 7 is a terminal, 71 is a recess, 72 is a notch, and 73 is a hole.
Claims (1)
伝送路をその対向せる端部で高周波接続する接続
構造において、それぞれのMICを搭載せるキヤリ
ア要部に貫通孔を設け、該貫通孔を導波管とする
とともに該導波管の両面に所定波長に対し短絡す
る導波管短絡器を構成し、前記MICの接続すべき
伝送路を前記導波管を介して接続するようにした
ことを特徴とするMICの接続構造。1 In a connection structure that connects the transmission lines of the main parts of MICs arranged oppositely on a carrier to high frequency at their opposing ends, a through hole is provided in the main part of the carrier on which each MIC is mounted, and the through hole is A waveguide is used, and a waveguide short circuiter is configured to short-circuit a predetermined wavelength on both sides of the waveguide, and a transmission line to which the MIC is to be connected is connected via the waveguide. MIC connection structure featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP600480A JPS56103501A (en) | 1980-01-22 | 1980-01-22 | Mic connecting structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP600480A JPS56103501A (en) | 1980-01-22 | 1980-01-22 | Mic connecting structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56103501A JPS56103501A (en) | 1981-08-18 |
JPS6156881B2 true JPS6156881B2 (en) | 1986-12-04 |
Family
ID=11626589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP600480A Granted JPS56103501A (en) | 1980-01-22 | 1980-01-22 | Mic connecting structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56103501A (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6043901A (en) * | 1983-08-22 | 1985-03-08 | Fujitsu Ltd | Connecting device of microwave and millimeter wave circuit |
US4611186A (en) * | 1983-09-08 | 1986-09-09 | Motorola, Inc. | Noncontacting MIC ground plane coupling using a broadband virtual short circuit gap |
JPS60230701A (en) * | 1984-04-28 | 1985-11-16 | Fujitsu Ltd | Radio equipment |
JPS6248804A (en) * | 1985-08-19 | 1987-03-03 | Fujitsu Ltd | Microwave amplifier |
JP2551224Y2 (en) * | 1992-03-19 | 1997-10-22 | 正 伊東 | Tap tool |
JP3299152B2 (en) * | 1997-11-11 | 2002-07-08 | 日本電気株式会社 | Method and apparatus for forming high power dummy load for microwave test |
JP4821391B2 (en) * | 2006-03-22 | 2011-11-24 | 三菱電機株式会社 | Circuit board connection structure |
DE112008001621T5 (en) | 2007-06-14 | 2010-04-22 | Kyocera Corp. | DC blocking circuit, hybrid circuit device, transmitter, receiver, transceiver and radar device |
JP5279424B2 (en) * | 2008-09-12 | 2013-09-04 | 新日本無線株式会社 | High frequency transmission equipment |
JP5526659B2 (en) * | 2008-09-25 | 2014-06-18 | ソニー株式会社 | Millimeter-wave dielectric transmission device |
US9728833B2 (en) | 2013-04-18 | 2017-08-08 | Sony Semiconductor Solutions Corporation | Connector apparatus and radio transmission system |
JP6285757B2 (en) * | 2014-03-07 | 2018-02-28 | 古河電気工業株式会社 | High frequency module |
-
1980
- 1980-01-22 JP JP600480A patent/JPS56103501A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56103501A (en) | 1981-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7132905B2 (en) | Input/output coupling structure for dielectric waveguide having conductive coupling patterns separated by a spacer | |
US7746191B2 (en) | Waveguide to microstrip line transition having a conductive footprint for providing a contact free element | |
US6002305A (en) | Transition between circuit transmission line and microwave waveguide | |
JPS6156881B2 (en) | ||
JP3220967B2 (en) | Integrated circuit | |
US20050200424A1 (en) | Microstripline waveguide converter | |
EP1148574B1 (en) | Dielectric resonator, filter, duplexer, and communication device | |
KR100337166B1 (en) | Dielectric Filter, Transmitting/Receiving Sharing Device and Communication Device | |
JP3632576B2 (en) | Filter, multiplexer and communication device | |
KR100276012B1 (en) | Dielectric filter, transmitting/receiving duplexer, and communication apparatus | |
JP3923891B2 (en) | Connection structure of cavity waveguide and dielectric waveguide | |
US7403085B2 (en) | RF module | |
JPH10242717A (en) | Plane dielectric integrated circuit | |
US7355496B2 (en) | Finline type microwave band-pass filter | |
US7439829B2 (en) | RF module | |
CN210167487U (en) | Band-pass filter and high-frequency device provided with same | |
US20230067193A1 (en) | CWG Filter, and RU, AU or BS having the Same | |
US10651524B2 (en) | Planar orthomode transducer | |
JP3988498B2 (en) | Waveguide filter | |
JPH1022415A (en) | Semiconductor device for high frequency wave | |
JPH06140815A (en) | Waveguide/trip line converter | |
JP2001007606A (en) | Dielectric line attenuator, terminating apparatus and radio unit | |
KR100291765B1 (en) | Dielectric resonator, dielectric filter, dielectric duplexer and communication device | |
JPH0787281B2 (en) | Interdigital filter | |
JP2005539460A (en) | Waveguide filter |