Nothing Special   »   [go: up one dir, main page]

JPS6151323A - Preparation of uniaxially stretched polyester film for liquid crystal display - Google Patents

Preparation of uniaxially stretched polyester film for liquid crystal display

Info

Publication number
JPS6151323A
JPS6151323A JP17334784A JP17334784A JPS6151323A JP S6151323 A JPS6151323 A JP S6151323A JP 17334784 A JP17334784 A JP 17334784A JP 17334784 A JP17334784 A JP 17334784A JP S6151323 A JPS6151323 A JP S6151323A
Authority
JP
Japan
Prior art keywords
film
heat
zone
liquid crystal
uniaxially stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17334784A
Other languages
Japanese (ja)
Inventor
Masayoshi Asakura
正芳 朝倉
Ryuichi Nagata
永田 隆一
Susumu Yanaga
弥永 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17334784A priority Critical patent/JPS6151323A/en
Publication of JPS6151323A publication Critical patent/JPS6151323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To enable a clear image to be obtained when a film is incorporated in a liquid crystal display device by a method wherein uniaxially stretched film having a restricted longitudinal orientation conditions and undergoing suitable molecular orientation is heat-set in two zones respectively under specified conditions. CONSTITUTION:The magnification to stretch amorphous film is given by 3.0-3.8 times in a longitudinal direction. Heat setting is carred out in the device having two zones capable of setting temperature and width shrinkage to respectively independent conditions. The heat setting temperature of the 1st zone is given by 180-240 deg.C, the width shrinkage of the film at that time is in the range 0-5%. The heat setting temperature in the 2nd zone is 120 deg.C or higher or within the heat setting temperature in the 1st zone and the shrinkage in the width direction of the film at that time is within 1-10%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示用一軸延伸ポリエステルフィルムの
製造方法に関するものである。さらに詳しく言えば、フ
ィルムの片面または両面に透明導電膜および/または偏
光膜をつけた液晶表示用途において、鮮朝な画像が得ら
れる一軸延伸ポリエステルフイルムの製造方法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a uniaxially stretched polyester film for liquid crystal displays. More specifically, the present invention is a method for producing a uniaxially stretched polyester film that provides clear images in liquid crystal display applications in which a transparent conductive film and/or polarizing film is attached to one or both sides of the film.

〔従来の技術〕[Conventional technology]

従来、縦方向に延伸し、そのフィルムを熱固定した一軸
延伸ポリエチレンテレフタレートの製造方法は公知であ
る(例えば、特公昭49−20385号公報など)。
Conventionally, a method for producing uniaxially stretched polyethylene terephthalate in which the film is stretched in the longitudinal direction and heat-set is known (for example, Japanese Patent Publication No. 49-20385).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、かかる従来の方法では、フィルムの熱収縮率が
大きく、また、フィルムの2長手方向と延伸によって生
じる分子配向の方向とのずれが生じていたシする欠点を
有するため、液晶表示素子に用いるのに好ましくなかっ
た。
However, such conventional methods have drawbacks such as a high thermal shrinkage rate of the film and a misalignment between the two longitudinal directions of the film and the direction of molecular orientation caused by stretching. I didn't like it though.

本発明は、かかる欠点を解消せしめ、液晶表示素子に組
込まれた場合に鮮明な表示画像を得ることのできる液晶
表示用一軸延伸ポリエステルフィルムの製造方法を提供
せんとするものである。
The present invention aims to eliminate such drawbacks and provide a method for producing a uniaxially stretched polyester film for liquid crystal display, which can provide a clear display image when incorporated into a liquid crystal display element.

(問題点を解決するための手段〕 本発明は、上記問題点を解決するため9次の構成をとる
ものである。すなわち、ポリエステルの無定形フィルム
を長手方向に5.0〜68倍に延伸し、該フィルムを第
一ゾーンと第二ゾーンで熱固定するに際し、第一ゾーン
では180〜240 ℃の温度で、フィルムの幅方向の
収縮率をO〜5係として熱固定し9次いで第二ゾーンで
は120℃以上、第一ゾーンにおけるフィルムの熱固定
温度未満の温度でフィルムの幅方向の収縮率を1〜1゜
チとして熱固定する液晶表示用一軸延伸ポリエステルフ
ィルムの製造方法である。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention adopts the following nine configurations.That is, an amorphous polyester film is stretched 5.0 to 68 times in the longitudinal direction. When the film is heat-set in the first zone and the second zone, the film is heat-set at a temperature of 180 to 240°C in the first zone with a contraction rate of 0 to 5 in the width direction, and then in the second zone. In this method, a uniaxially stretched polyester film for a liquid crystal display is heat-set at a temperature of 120° C. or higher in the zone and lower than the heat-setting temperature of the film in the first zone, with a contraction rate of 1 to 1° in the width direction of the film.

本発明に適用されるポリエステルとは、公知のポリエス
テルであればよく、好ましくは、テレフタル酸、または
そのアルキルエステルとエチレングリコールを重縮合し
て得られるポリエチレンテレ7タレー) (P E T
 )であ乞。もちろん、テレフタル酸以外のジカルボン
酸2例えばイソフタル酸、アシヒン酸、セパチン酸、ナ
フタリンジカルボン酸、スルホン酸の金属塩などを全ジ
カルボン酸成分に対して20モル係以下、好ましくは1
0モル係以下の共重合をし、ても良い。また、エチレン
グリコール以外のジオール成分9例えばジェチンジオー
ル、ポリエチレングリコール、シクロヘキサンジメタツ
ールなどを、全ジオール成分に対して20モルチ以下、
好ましくは10モル係以下の共重合をしても良い。これ
らの共重合体は、すべて本発明で言うPE’[’という
表現の中に含まれる。さらに本発明のポリエステルには
、公知な滑剤2例えば、二酸化チタン、カオリン、酸化
ケイ素、炭酸カルシウムなどの無機粒子9シリコーンの
ポリエチレングリコール変性化合物、カルナウバワック
スなどの有機滑剤など、0.001〜0−05重重量部
加しても良い。
The polyester applied to the present invention may be any known polyester, and is preferably polyethylene tere 7-thale obtained by polycondensing terephthalic acid or its alkyl ester with ethylene glycol.
) de begging. Of course, dicarboxylic acids other than terephthalic acid 2, such as isophthalic acid, acyhinic acid, sepathic acid, naphthalene dicarboxylic acid, metal salts of sulfonic acids, etc., are added at a mole ratio of 20 or less, preferably 1
Copolymerization may be carried out at a molar ratio of 0 or less. In addition, diol components 9 other than ethylene glycol, such as jetin diol, polyethylene glycol, cyclohexane dimetatool, etc., may be added at 20 molar or less based on the total diol components.
Preferably, copolymerization may be carried out at a molar ratio of 10 or less. All of these copolymers are included in the expression PE'[' in the present invention. Furthermore, the polyester of the present invention may contain known lubricants 2, such as inorganic particles such as titanium dioxide, kaolin, silicon oxide, and calcium carbonate, 9 polyethylene glycol-modified compounds of silicone, and organic lubricants such as carnauba wax. -05 parts by weight may be added.

また、無定形フィルムとは、ポリエステルを押出機で溶
融押出し、Tダイに導き、シート状に成形し、冷却され
たドラムに巻きつけ、ガラス転移温度(Tg)以下に冷
却したフィルムであシ、実質的に未配向のフィルムのこ
とである。
In addition, an amorphous film is a film in which polyester is melt-extruded using an extruder, guided through a T-die, formed into a sheet, wrapped around a cooled drum, and cooled to below the glass transition temperature (Tg). A substantially unoriented film.

無定形のフィルムの延伸方法は、公知の方法。The method for stretching the amorphous film is a known method.

例えば、低速の加熱ロールと高速の冷却ロールとからな
るロール群によって、長手方向に延伸する方法、あるい
は長手方向に延伸できるパンタグラフ式クリップを具備
したテンタで、フィルム端部を把持して、長手方向に延
伸する方法のいずれでも良いが、好ましくは、ロール群
によって延伸する方法である。
For example, one method is to stretch the film in the longitudinal direction using a group of rolls consisting of a low-speed heating roll and a high-speed cooling roll, or the other is to grip the edge of the film with a tenter equipped with a pantograph clip that can stretch the film in the longitudinal direction. Although any method of stretching may be used, preferred is a method of stretching using a group of rolls.

無定形フィルムを延伸する倍率は、長手方向に5.0〜
3.8倍、好ましくは、3.2〜5.6倍とするもので
ある。延伸倍率がこの範囲よシ小さい場合は、熱固定後
のフィルムの平面性が損われ、また逆に延伸・倍率がこ
の範囲より大きいと、フィルムの長手方向の熱収縮率が
大きくなるので好ましくない。
The stretching ratio of the amorphous film is 5.0 to 5.0 in the longitudinal direction.
It is 3.8 times, preferably 3.2 to 5.6 times. If the stretching ratio is smaller than this range, the flatness of the film after heat setting will be impaired, and if the stretching ratio is larger than this range, the heat shrinkage rate in the longitudinal direction of the film will increase, which is undesirable. .

延伸する温度は、特に限定されるものでないが好ましく
は80〜110℃の範囲で一軸延伸し。
The stretching temperature is not particularly limited, but uniaxial stretching is preferably carried out within a range of 80 to 110°C.

そのフィルムの複屈折が0.05〜0.12の範囲で。The birefringence of the film is in the range of 0.05 to 0.12.

かつフィルムの厚み方向の屈折率が1.51〜1,57
の範囲とするのが好ましい。
and the refractive index in the thickness direction of the film is 1.51 to 1,57.
It is preferable to set it as the range of.

本発明の熱固定は、熱固定温度と幅方向の収縮率が個々
に別々−の条件に設定できる2つのゾーンをもつ装置で
実施するものである。2つのゾーンの熱固定する方法と
して9例えば、第一ゾーンは。
The heat setting of the present invention is carried out using an apparatus having two zones in which the heat setting temperature and the shrinkage rate in the width direction can be individually set to different conditions. 9. For example, the first zone is a two-zone heat fixing method.

フィルムの端部をクリップで把持して、フィルムの上下
から熱風を吹きつけて熱固定するテンタ法を用いて熱固
定し9次いで、第二ゾーンで熱固定する方法としては、
テンター法、あるいは加熱ロール群を介してフィルムを
熱固定する加熱ロール法、あるいはガイドロールを適度
に配した熱風オーブンの中にフィルムを通過させて熱固
定する熱風オープン法のいずれでも用いることができ、
これらの方法の中でも、テンター法が好ましい。
A method of heat-setting using a tenter method, in which the ends of the film are held with clips and hot air is blown from above and below the film, and then heat-setting in the second zone is as follows:
Either the tenter method, the heated roll method in which the film is heat-set via a group of heated rolls, or the hot-air open method in which the film is heat-set by passing it through a hot-air oven with guide rolls appropriately arranged can be used. ,
Among these methods, the tenter method is preferred.

本発明において、2つのゾーンで熱固定するに際して、
まず第一ゾーンの熱固定温度は、180〜240℃、好
ましくは200〜230℃である。
In the present invention, when heat fixing is performed in two zones,
First, the heat setting temperature of the first zone is 180 to 240°C, preferably 200 to 230°C.

熱固定温度がこの範囲よシ低い場合は、フィルムの熱収
縮率を小さくする効果が少なくなり、また逆に熱固定温
度がこの範囲よシ高い場合は、フィルムが延伸方向に割
れやすくなるので好ましくない。また第一ゾーンで熱固
定するときのフィルムの幅方向の収縮率は0〜5qb、
好ましくは0〜3チの範囲である。幅方向の収縮率がこ
の範囲よシ小さい場合(幅方向に延伸することを意味す
る)は、延伸方向とフィルムの光軸方向とがずれる現象
が発生し好ましくない。また逆に幅方向の収縮率がこの
範囲よシ大きい場合は、同様に延伸方向とフィルムの光
軸方向とのずれが大きくなる傾向になシ好ましくない。
If the heat setting temperature is lower than this range, the effect of reducing the heat shrinkage rate of the film will be reduced, and conversely, if the heat setting temperature is higher than this range, the film will tend to crack in the stretching direction, so it is preferable. do not have. In addition, the shrinkage rate of the film in the width direction when heat-setting in the first zone is 0 to 5 qb,
Preferably it is in the range of 0 to 3 inches. If the shrinkage rate in the width direction is smaller than this range (meaning stretching in the width direction), the stretching direction and the optical axis direction of the film may be misaligned, which is not preferable. On the other hand, if the shrinkage rate in the width direction is larger than this range, the deviation between the stretching direction and the optical axis direction of the film tends to become large, which is not preferable.

ここでフィルムの光軸方向とは、偏光軸を直交にした2
枚の偏光板の間にフィルムを入れ、フィルムを回転させ
て、一番暗視野になったとき、フィルムの延伸方向に近
い偏光板の偏光軸方向が。
Here, the optical axis direction of the film refers to the direction of the polarization axis that is perpendicular to the
Place a film between two polarizing plates, rotate the film, and when the darkest field is obtained, the direction of the polarization axis of the polarizing plate is close to the stretching direction of the film.

そのフィルムの光軸方向という。この光軸方向は一般的
に延伸方向と同じ方向になると考えられるが、しかし一
軸延伸フィルムを熱固定する工程で。
This is called the optical axis direction of the film. This optical axis direction is generally considered to be the same direction as the stretching direction, but in the process of heat setting the uniaxially stretched film.

フィルムの全幅あるいは、一部分が延伸方向から回転し
た角度にフィルムの光軸方向がずれることがある。以後
1本発明では、延伸方向とフィルムの光軸方向のずれを
、単に光軸ずれと略称する。
The optical axis direction of the film may be deviated by an angle at which the entire width of the film or a portion thereof is rotated from the stretching direction. Hereinafter, in the present invention, the deviation between the stretching direction and the optical axis direction of the film will be simply referred to as optical axis deviation.

光軸ずれは、延伸方向とフィルムの光軸方向のずれ角度
で表示される。この光軸ずれの大きなフィルムをロール
状に巻いたものを用いて、液晶表示素子に組み込んだ場
合、液晶表示される画像のコントラストが悪くなシ、鮮
明な画像が表示されない。実際には、この光軸ずれが2
°以内であれば実用レベルにあると言える。
The optical axis deviation is expressed as the deviation angle between the stretching direction and the optical axis direction of the film. When a roll of this film with a large optical axis deviation is used and incorporated into a liquid crystal display element, the contrast of the image displayed on the liquid crystal is poor and a clear image is not displayed. In reality, this optical axis deviation is 2
If it is within °, it can be said to be at a practical level.

また、ここでフィルムの幅方向の収縮率を求める方法は
、熱固定する前のフィルムに、10■のます目の刻印を
押し、そのフィルムを熱固定した後のます日の幅方向の
長さを測定し、その収縮量をもとのます目の幅方向の長
さで除算した百分率(%)で求めるものである。
Also, here, the method of determining the shrinkage rate in the width direction of the film is to stamp a 10 square square on the film before heat setting, and then measure the length in the width direction of the square after heat setting the film. The amount of shrinkage is divided by the original length in the width direction of the square, which is calculated as a percentage (%).

次に第一ゾーンで熱固定したフィルムを9次いで、第二
ゾーンでさらに熱固定するに際し、第二ゾーンの熱固定
温度は、120℃以上、第一ゾーンにおけるフィルムの
熱固定温度未満、好ましくは、150℃以上、第一ゾー
ンにおけるフィルムの熱固定温度未満の範囲である。第
二ゾーンの熱横方向の熱収縮率を、はぼ同等にし、かつ
、低収縮率にする効果が十分でなくなるので好ましくな
い。また、逆に熱固定温度がこの範囲よシ低い場合は、
熱収縮率を小さくする効果が不十分となシ好ましくない
Next, when the film heat-set in the first zone is further heat-set in the second zone, the heat-setting temperature in the second zone is preferably 120°C or higher and lower than the heat-setting temperature of the film in the first zone. , 150° C. or higher, but lower than the heat setting temperature of the film in the first zone. This is not preferable because the effect of making the thermal contraction rate in the thermal transverse direction of the second zone almost the same and lowering the contraction rate is not sufficient. Conversely, if the heat fixation temperature is lower than this range,
It is not preferable that the effect of reducing the thermal shrinkage rate is insufficient.

また、第二ゾーンのフィルムの幅方向の収縮率は、1〜
10%、好ましくは、2〜7%の範囲である。第二ゾー
ンでの幅方向の収縮率が、この範囲より小さいとフィル
ムの熱収縮率を小さくする効果が十分でないため好まし
くない。なお、逆にこの範囲よシ大きい場合は、フィル
ムが波板状になりやすくなるので好ましくない。
In addition, the shrinkage rate of the film in the second zone in the width direction is 1 to 1.
10%, preferably in the range of 2-7%. If the shrinkage rate in the width direction in the second zone is smaller than this range, the effect of reducing the heat shrinkage rate of the film will not be sufficient, which is not preferable. On the other hand, if it is larger than this range, the film tends to become corrugated, which is not preferable.

本発明の熱固定は、第一ゾーンと第二ゾーンの間でフィ
ルムを室温まで冷却することなく、連続して熱固定する
方法、または第一ゾーンと第二ゾ一ンの間でフィルムを
室温〜冷却したのち、第二ゾーンの熱固定する方法のい
ずれでも良いが、連続して熱固定する方法が好ましい。
The heat fixing of the present invention involves a method of continuously heat fixing the film between the first zone and the second zone without cooling it to room temperature, or a method of continuously heat fixing the film between the first zone and the second zone without cooling the film to room temperature. - After cooling, any method of heat setting in the second zone may be used, but a method of continuous heat setting is preferred.

各々の熱固定ゾーンでの熱固定する時間は、1〜100
秒間、さらに好ましくは3〜30秒間が良い。
The heat fixing time in each heat fixing zone ranges from 1 to 100
The time is preferably 3 to 30 seconds, more preferably 3 to 30 seconds.

また9本発明の方法による一軸延伸ボリエステルフイル
ムの熱収縮率は、100”Cの処理温度において、0.
3%以下とするのが好ましい。
Furthermore, the heat shrinkage rate of the uniaxially stretched polyester film produced by the method of the present invention is 0.9 at a treatment temperature of 100''C.
The content is preferably 3% or less.

本発明の方法で作られる液晶表示用一軸延伸ポリエステ
ルフィルムを液晶表示素子に用いる例をあげれば9例え
ば、一軸延伸フィルムの片面または両面に、ポリビニー
ルアルコールにヨウ素系染料を吸着させた偏光膜および
/または酸化スズや酸化インジウムなどの透明電極膜を
貼合せ、または付着させた状態で液晶表示素子に用いら
れる。
An example of using a uniaxially stretched polyester film for liquid crystal display produced by the method of the present invention in a liquid crystal display element is9. It is used in liquid crystal display elements in a state where a transparent electrode film such as tin oxide or indium oxide is pasted or attached.

本発明でのフィルムの厚みは、特に限定されないが、3
0〜200μmが好ましい。
The thickness of the film in the present invention is not particularly limited, but is 3.
0 to 200 μm is preferable.

〔作用〕[Effect]

本発明は、縦延伸条件を限定し、適度な分子配向を施し
た一軸延伸フイルムを、2つのゾーンで熱固定するもの
であシ、第一ゾーンでは、一軸配向の分子の動きを固定
しながら、熱結晶化を促進させ2次いで第二ゾーンで、
フ、イルムの内部にある残留歪を緩和することで9本発
明の目的を達成しているものと推定される。また、一軸
延伸フィルムの配向方向より直角方向の方が残留歪が太
きくなるかについては不明である。
In the present invention, a uniaxially stretched film with appropriate molecular orientation is heat-set in two zones by limiting longitudinal stretching conditions, and in the first zone, the movement of uniaxially oriented molecules is fixed while , which promotes thermal crystallization, then in the second zone,
It is presumed that the object of the present invention is achieved by alleviating the residual strain inside the film. Furthermore, it is unclear whether the residual strain is greater in the orthogonal direction than in the orientation direction of the uniaxially stretched film.

〔発明の効果〕〔Effect of the invention〕

本発明は、無定形のフィルムを延伸し、その延伸された
フィルムを2つのゾーンで熱固定する一軸延伸ポリエス
テルフイルムの製造方法としたことで9次のような優れ
た効果を得ることができたものである。
The present invention is a method for producing a uniaxially stretched polyester film in which an amorphous film is stretched and the stretched film is heat-set in two zones, thereby achieving the following excellent effects. It is something.

(イ) フィルムの熱収縮率が小さくなるばかシでなく
、縦方向と横方向の熱収縮率の差が小さい。
(b) The heat shrinkage rate of the film is not necessarily small, and the difference between the heat shrinkage rates in the vertical and horizontal directions is small.

(ロ) フィルムの幅方向で、延伸方向とフィルムの光
軸方向のずれが小さくできる。
(b) In the width direction of the film, the deviation between the stretching direction and the optical axis direction of the film can be reduced.

(ハ) フィルムのフィブリル化を抑制したので。(c) Because fibrillation of the film was suppressed.

フィルムの製造工程などで、フィルムが割れるなどのト
ラブルがなくなる。
This eliminates problems such as film cracking during the film manufacturing process.

に) フィルムの平面性が良い。) The film has good flatness.

〔物性の測定方法および評価基準〕[Measurement method and evaluation criteria for physical properties]

(1)熱収縮率 フィルムの幅方向と長手方向にそれぞれ′7.5Mnの
距離の標線をつけ、正確に標線間の長さくlゎ)を測定
した後、温度が100±0,5℃の熱風オーブンで2時
間処理し、室温まで冷却した後に、再度標線間の長さく
2)を測定し9次式から熱収縮率を算出した。
(1) Heat shrinkage rate: Attach marked lines with a distance of 7.5 Mn in the width direction and longitudinal direction of the film, and accurately measure the length between the marked lines (lゎ). After processing in a hot air oven at ℃ for 2 hours and cooling to room temperature, the length between the marked lines 2) was measured again and the thermal shrinkage rate was calculated from the 9th equation.

l。l.

この熱収縮率の値で、正の値はフィルムが収縮したこと
を意味し、負の値はフィルムが伸長していたことを意味
するものである。
A positive value of the heat shrinkage rate means that the film has shrunk, and a negative value means that the film has expanded.

また、標線間の長さ−の測定は、25℃、65%RHの
室で、10μmの目盛付きのガラススケールを用いて、
拡大倍率40倍の顕微鏡で読みとった。
In addition, the length between the marked lines was measured in a room at 25°C and 65% RH using a glass scale with a 10 μm graduation.
It was read using a microscope with a magnification of 40 times.

(2)屈折率および複屈折 ASTM−D542−50に準じて、アツベ屈折計で、
接触液にヨウ化メチレン(屈折率は1.7425)を用
い、光源にナトリウムランプ(波長589nm )を用
いて測定した。測定は25℃。
(2) Refractive index and birefringence According to ASTM-D542-50, with an Atsube refractometer,
The measurement was performed using methylene iodide (refractive index: 1.7425) as a contact liquid and a sodium lamp (wavelength: 589 nm) as a light source. Measurements were taken at 25°C.

651RHで行った。なお、複屈折は、延伸方向の屈折
率から延伸方向と直角な方向の屈折率を差し引いた値を
用いた。
It was conducted at 651RH. Note that the birefringence was determined by subtracting the refractive index in the direction perpendicular to the stretching direction from the refractive index in the stretching direction.

(3)  フィルムのフィブリル・(フィルムの割れ)
フィルムの延伸方向が折シ目の方向となるように1手で
フィルムを密着するまで折!llまげて1次のように判
定した。
(3) Film fibrils (film cracks)
Fold the film with one hand so that the stretching direction of the film is in the direction of the crease until it fits tightly! It was determined as follows.

フィルムが割れない・・・・・・・・・・・・・・・・
・・ ○フィルムが割れる ・・・・・・・・・・・・
・・・・・・×(4)  フィルムの平面性 縦30cII、横30cInの大きさのフィルムを平坦
なガラス板上に載せ、水平方向から観察し、フィルムが
全体的に、はぼガラス板に密着した場合はフィルムの平
面性が良好であるとした。
The film will not break...
・・ ○Film breaks ・・・・・・・・・・・
・・・・・・×(4) Flatness of the film A film measuring 30 cII in length and 30 cIn in width was placed on a flat glass plate and observed from the horizontal direction. When the film was in close contact with the film, it was considered that the film had good flatness.

(5)光軸ずれ 2枚の偏光板の偏光軸が水平方向と直角方向に向くよう
に直交させた偏光板の間に、延伸方向が垂直方向になる
ようにフィルムを挿入し、一方からハロゲンランプを光
源とした平行光線(光束径は10 mm )をあて、2
つの偏光板を通過して洩れだした光量を、光電管で測定
する。また、あらかじめ光軸方向が判明している同じ厚
みの一軸延伸ポリエステルフイルムを、光軸方向が垂直
となるように挿入し、フィルムを回転し、その回転角度
(フィルムの光軸ずれ角度となる)と偏光板を通過して
洩れだす光量との関係を求めておく。この検量線から、
測定しようとするフィルムの延伸方向と光軸方向のずれ
角度を求める。光軸ずれは。
(5) Optical axis misalignment A film is inserted between two polarizing plates that are orthogonally crossed so that their polarizing axes are oriented perpendicular to the horizontal direction, and a halogen lamp is inserted from one side. Apply a parallel beam of light (luminous flux diameter is 10 mm) as a light source, and
The amount of light leaking through the two polarizing plates is measured using a phototube. In addition, a uniaxially stretched polyester film of the same thickness whose optical axis direction is known in advance is inserted so that the optical axis direction is perpendicular, and the film is rotated to determine the rotation angle (which is the optical axis deviation angle of the film). Find the relationship between the amount of light passing through the polarizing plate and the amount of light leaking out. From this calibration curve,
Find the angle of deviation between the stretching direction and the optical axis direction of the film to be measured. Optical axis misalignment.

フィルムの不用な端部を除き、製品となるフィルムの全
幅にわたって、連続的に測定し、一番大きなずれ角度を
、そのフィルムの光軸ずれ角度として示した。
Excluding unnecessary edges of the film, measurements were taken continuously over the entire width of the film as a product, and the largest deviation angle was indicated as the optical axis deviation angle of the film.

〔実施例〕〔Example〕

次に実施例にもとづいて2本発明の実施態様を説明する
Next, two embodiments of the present invention will be described based on Examples.

実施例1〜5.比較例1〜2 極限粘度(I、V)  0.62のPET (平均粒径
0゜82μmの含水シリカ微粒子を0.01%含有)を
押出機で溶融押出し9幅650mmのTダイに導き。
Examples 1-5. Comparative Examples 1 and 2 PET having an intrinsic viscosity (I, V) of 0.62 (containing 0.01% of hydrated silica fine particles with an average particle diameter of 0°82 μm) was melt-extruded using an extruder and introduced into a T-die with a width of 650 mm.

溶融シートとし、それをろ0℃の温度に冷却されたドラ
ムに巻きつけて急冷し、PETの無定形フィルムを得た
。これを加熱ロール群で、縦方向に第1表に示すそれぞ
れの延伸倍率に延伸した。フイルムの延伸温度を96℃
とした。次いで、延伸フィルムをテンタに導き、熱固定
した。このときの第一ゾーンの熱固定は、220°C2
15秒間。
This was made into a molten sheet, which was then wound around a drum cooled to 0° C. and rapidly cooled to obtain an amorphous PET film. This was stretched in the longitudinal direction using a group of heated rolls to the respective stretching ratios shown in Table 1. Film stretching temperature is 96℃
And so. Next, the stretched film was introduced into a tenter and heat-set. The heat fixation in the first zone at this time is 220°C2
15 seconds.

フィルムの幅方向の収縮率を0%圧した。次いでフィル
ムを冷却するととなく連続して、第2ゾーンの熱固定を
した。熱固定は、20D’o、15秒間、フィルムの幅
方向の収縮率を4係にした。なお、一軸延伸フィルムの
厚みは85μmになるように調節した。この方法で得ら
れたフィルムの特性は第1表のとおシであった。
The shrinkage rate of the film in the width direction was set to 0%. The film was then cooled and immediately followed by a second zone of heat setting. Heat setting was performed at 20 D'o for 15 seconds, and the shrinkage rate in the width direction of the film was set to 4 factors. The thickness of the uniaxially stretched film was adjusted to 85 μm. The properties of the film obtained by this method were as shown in Table 1.

フィルムの光軸ずれは、フィルムの端部を切シ除き、フ
ィルム幅400−の部分で測定した。
The optical axis shift of the film was measured at a portion with a film width of 400 mm after cutting off the edge of the film.

本発明の方法によって得られたフィルムは、縦方向と横
方向の熱収縮率がともに小さくすることができた(実施
例1〜3)。しかし本発明の範囲をはずれた延伸倍率に
よって得られたフィルムは。
The films obtained by the method of the present invention were able to have low heat shrinkage rates in both the longitudinal and transverse directions (Examples 1 to 3). However, films obtained with stretching ratios outside the range of the present invention.

フィルムの平面性が損われたシ、延伸方向の熱収縮率が
大きかったシして2本発明の目的とするフィルムになら
なかった(比較例1〜2)。
Because the flatness of the film was impaired and the heat shrinkage rate in the stretching direction was large, the film could not be the object of the present invention (Comparative Examples 1 and 2).

また実施例1〜3のフィルムの光軸ずれも2°以内比較
例6〜5 実施例2と同様にして一軸延伸PETフィルムの未熱固
定フィルムを得た。次いでそのフィルムをテンタに導き
熱固定した。そのときの第一ゾーンは実質的に熱固定の
効果の起らない条件、すなわち、熱固定温度を100 
′aとし、フィルムの幅は幅固定で、フィルムを通過さ
せ、第二ゾーンのみで熱固定した。第二ゾーンの熱固定
は、220°Cの温度で15秒間行った。そのとき、フ
ィルムの幅方向の収縮率を第2表のようにした。この方
法で得られたフィルムの特性は第2表のとおシであった
Moreover, the optical axis deviation of the films of Examples 1 to 3 was within 2 degrees. Comparative Examples 6 to 5 An unheated fixed film of a uniaxially stretched PET film was obtained in the same manner as in Example 2. The film was then introduced into a tenter and heat-set. At that time, the first zone is set under conditions where the heat fixation effect does not substantially occur, that is, the heat fixation temperature is set at 100.
'a, the width of the film was fixed, the film was passed through, and heat set only in the second zone. Heat fixation in the second zone was carried out at a temperature of 220°C for 15 seconds. At that time, the shrinkage percentage of the film in the width direction was determined as shown in Table 2. The properties of the film obtained by this method were as shown in Table 2.

本発明の熱固定の方法と比較すると、熱固定を1つのゾ
ーンで実施した結果、フィルムの横方向の熱収縮率が大
きかった(比較例6)。そこで。
When compared with the heat setting method of the present invention, heat setting was performed in one zone, resulting in a large lateral heat shrinkage rate of the film (Comparative Example 6). Therefore.

フィルムの熱収縮率を低くするため、フィルムの幅方向
に収縮率を加えながら熱固定すると、フィルムの光軸ず
れが大さくなった(比較例4〜5)。
When the film was heat-set while increasing the shrinkage rate in the width direction in order to lower the heat shrinkage rate of the film, the deviation of the optical axis of the film increased (Comparative Examples 4 and 5).

本発明は、縦方向に3.0〜5.8倍の範囲で一軸延伸
シたフィルムを、2つのゾーンで熱固定する方法にした
ことにより、フィルムの光軸ずれが小さく、かつ、フィ
ルムの熱収縮率を大幅に低下することができた。
The present invention uses a method in which a film that has been uniaxially stretched in the range of 3.0 to 5.8 times in the longitudinal direction is heat-set in two zones, thereby reducing optical axis deviation of the film and The heat shrinkage rate could be significantly reduced.

実施例4 実施例2と同様にして一軸延伸PETフィルムの未熱固
定フィルムを得た。次いで該フィルムをテンタに導き熱
固定した。そのとき第一ゾーンの熱固定は、220’O
,フィルム幅方向の収縮率を6係にした。次いで第二ゾ
ーンの熱固定は、180°C,フィルム幅方向の収縮率
を5俤にした。
Example 4 An unheated fixed film of a uniaxially stretched PET film was obtained in the same manner as in Example 2. Next, the film was introduced into a tenter and heat-set. At that time, the heat fixation in the first zone is 220'O
, the shrinkage rate in the film width direction was set to 6 factors. Next, heat setting in the second zone was performed at 180° C. and the shrinkage rate in the width direction of the film was 5 yen.

次いで、該フィルムをテンタ出口で、30℃の空気を吹
きつけて冷却した。得られたフィルムの100°C処理
での熱収縮率は、縦方向が0.10%。
Next, the film was cooled by blowing air at 30°C at the exit of the tenter. The heat shrinkage rate of the obtained film when processed at 100°C was 0.10% in the machine direction.

横方向が008%であった。さらに、フィルムの光軸ず
れ(フィルム幅: 400 nnn )は、0.7度で
あった。得られたフィルムの間に偏光膜を挾みとみ接着
剤で貼り合せ、偏光板を作った。この積層ト 体から100画平方のシー驚2枚を切シ取シ、との2枚
のシートの各々の片面に、スパッタリング法によって、
インジウム・錫酸化物を蒸着せしめ。
The horizontal direction was 0.008%. Furthermore, the optical axis shift of the film (film width: 400 nnn) was 0.7 degrees. A polarizing film was sandwiched between the obtained films and bonded together with an adhesive to make a polarizing plate. Two sheets of 100 square meters were cut out from this laminated body, and on one side of each of the two sheets, by sputtering method,
Vapor-deposited indium and tin oxide.

透明導電膜を作った。この透明導電膜の上に、ポリアミ
ド系のポリマをコーチングし、その表面を綿布でラッピ
ングして、配向膜とした。かくして叫られた2枚のシー
トを配向膜同士を向かい合せた状態で重ね9間にスペー
サーを入れて、2枚の間隙を約10μmとなるようにし
、この間隔にTN型液晶を封入した後、四囲をエポキシ
系接着剤で封止して2表示面積10mm×−60mmの
液晶セルを20個作った。各々に電圧を印加して液晶表
示面に6個の数字を表示させた。この結果、20個とも
9表示される数字がぼけたり、コントラスト不良などが
見られず、鮮明な画像を得ることができた。
A transparent conductive film was created. This transparent conductive film was coated with a polyamide-based polymer, and its surface was wrapped with cotton cloth to form an alignment film. Layer the two sheets with the alignment films facing each other and insert a spacer between them to make the gap between the two sheets approximately 10 μm.After filling this gap with TN type liquid crystal, The four sides were sealed with an epoxy adhesive to make 20 liquid crystal cells each having two display areas of 10 mm x -60 mm. A voltage was applied to each to display six numbers on the liquid crystal display screen. As a result, clear images could be obtained with no blurring of the displayed number 9 or poor contrast for all 20 images.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリエステルの無定形フィルムを長手方向に5.
0〜3.8倍に延伸し、該フィルムを第一ゾーンと第二
ゾーンで熱固定するに際し、第一ゾーンでは180〜2
40℃の温度でフィルムの幅方向の収縮率を0〜5%と
して熱固定し、次いで第二ゾーンでは120℃以上、第
一ゾーンにおけるフィルムの熱固定温度未満の温度でフ
ィルムの幅方向の収縮率を1〜10%として熱固定する
液晶表示用一軸延伸ポリエステルフィルムの製造方法。
(1) 5. Cut the polyester amorphous film in the longitudinal direction.
When stretching the film by 0 to 3.8 times and heat setting the film in the first zone and the second zone, the film is stretched to 180 to 2 times in the first zone.
The film is heat-set at a temperature of 40°C with a contraction rate of 0 to 5% in the width direction, and then the film is shrunk in the width direction at a temperature of 120°C or higher in the second zone and lower than the heat-setting temperature of the film in the first zone. A method for producing a uniaxially stretched polyester film for liquid crystal displays, which is heat-set at a ratio of 1 to 10%.
JP17334784A 1984-08-22 1984-08-22 Preparation of uniaxially stretched polyester film for liquid crystal display Pending JPS6151323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17334784A JPS6151323A (en) 1984-08-22 1984-08-22 Preparation of uniaxially stretched polyester film for liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17334784A JPS6151323A (en) 1984-08-22 1984-08-22 Preparation of uniaxially stretched polyester film for liquid crystal display

Publications (1)

Publication Number Publication Date
JPS6151323A true JPS6151323A (en) 1986-03-13

Family

ID=15958728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17334784A Pending JPS6151323A (en) 1984-08-22 1984-08-22 Preparation of uniaxially stretched polyester film for liquid crystal display

Country Status (1)

Country Link
JP (1) JPS6151323A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285303A (en) * 1990-05-25 1994-02-08 Sumitomo Chemical Co., Ltd. Phase retarder and process for producing the same
WO2000073044A1 (en) * 1999-06-01 2000-12-07 Dupont Canada Inc. High tensile strength polyethylene terephthalate film and process
US7101627B2 (en) 2001-09-11 2006-09-05 Dupont Teijin Films U.S. Limited Partnership Heat-stabilised poly(ethylene naphthalate) film for flexible electronic and opto-electronics devices
US7718104B2 (en) * 2001-12-12 2010-05-18 Dupont Teijin Films Us Ltd. Process for the production of brittle polymeric film
JP2021517991A (en) * 2018-04-26 2021-07-29 エルジー・ケム・リミテッド Optical devices and their uses

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285303A (en) * 1990-05-25 1994-02-08 Sumitomo Chemical Co., Ltd. Phase retarder and process for producing the same
WO2000073044A1 (en) * 1999-06-01 2000-12-07 Dupont Canada Inc. High tensile strength polyethylene terephthalate film and process
US6589463B1 (en) 1999-06-01 2003-07-08 Dupont Canada Inc. High tensile strength polethylene terephthalate film and process
US7101627B2 (en) 2001-09-11 2006-09-05 Dupont Teijin Films U.S. Limited Partnership Heat-stabilised poly(ethylene naphthalate) film for flexible electronic and opto-electronics devices
US7300703B2 (en) 2001-09-11 2007-11-27 Dupont Teijin Films U.S. Limited Partnership Heat-stabilised poly(ethylene naphthalate) film for flexible electronic and opto-electronic devices
US7718104B2 (en) * 2001-12-12 2010-05-18 Dupont Teijin Films Us Ltd. Process for the production of brittle polymeric film
US8530045B2 (en) 2001-12-12 2013-09-10 DuPont Teijin Films U.S. Ltd. Brittle polymeric film and tamper evident labels made therefrom
JP2021517991A (en) * 2018-04-26 2021-07-29 エルジー・ケム・リミテッド Optical devices and their uses

Similar Documents

Publication Publication Date Title
JP5077143B2 (en) Biaxially oriented laminated polyester film
JP7288878B2 (en) Polarizer protective film, polarizing plate and liquid crystal display device
JP4644916B2 (en) Polyester film for polarizing film lamination
JP2007100102A (en) Biaxially oriented polyester film
JP5346495B2 (en) Method for producing optical film having optical anisotropy
JPS62135338A (en) Monoaxially high-orientated film of polyethylene-naphthalate for liquid crystal panel substrate
JP4639435B2 (en) Biaxially oriented polyester film for release film
JPH08294988A (en) Release film
JP4691842B2 (en) Polyester film for polarizing film lamination
JP2000162419A (en) Phase difference film
JPS6151323A (en) Preparation of uniaxially stretched polyester film for liquid crystal display
JP7024934B1 (en) Polyester film for protector protector, polarizing plate and liquid crystal display device
JP4635335B2 (en) Polyester film for polarizing film lamination
JPH0466002B2 (en)
JP2007253619A (en) Biaxially stretched resin film
JP6210244B2 (en) Biaxially stretched polyethylene terephthalate film
JPH01193803A (en) Production of polarizing film
JP2611425B2 (en) Method for producing low shrinkage polyester film
JP4710125B2 (en) Biaxially oriented polyester film and method for producing the same
KR20160116702A (en) Polyester and manufacturing method thereof
JPS60162222A (en) Uniaxially oriented polyester film for liquid crystal display plate
JP2002361737A (en) Polyester film and method for producing the same
JPS59189117A (en) Film for use in liquid crystal display device
JPH01165423A (en) Preparation of biaxially oriented polyester film
JPS58132523A (en) Uniaxial polyester film coated