Nothing Special   »   [go: up one dir, main page]

JPS6147231B2 - - Google Patents

Info

Publication number
JPS6147231B2
JPS6147231B2 JP56128666A JP12866681A JPS6147231B2 JP S6147231 B2 JPS6147231 B2 JP S6147231B2 JP 56128666 A JP56128666 A JP 56128666A JP 12866681 A JP12866681 A JP 12866681A JP S6147231 B2 JPS6147231 B2 JP S6147231B2
Authority
JP
Japan
Prior art keywords
electrode
solution
mixed oxide
chloride
valve metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56128666A
Other languages
Japanese (ja)
Other versions
JPS5773193A (en
Inventor
Maruseru Inden Jan
Berunarudo Beeru Henri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERUTETSUCHI SHISUTEMUZU CORP
Original Assignee
ERUTETSUCHI SHISUTEMUZU CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERUTETSUCHI SHISUTEMUZU CORP filed Critical ERUTETSUCHI SHISUTEMUZU CORP
Publication of JPS5773193A publication Critical patent/JPS5773193A/en
Publication of JPS6147231B2 publication Critical patent/JPS6147231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般に、電解に適した外部被膜、導電
性中間混合酸化物層およびバルブ金属のベースよ
り成る、電解用電極ならびにそのような電極の製
造に関する。 普通工業用電解槽に使用する電極は、幾つかの
厳格な要求、即ち導電率、物理化学的安定性、耐
腐食性、製造および電気化学的性能、より具体的
には触媒活性および選択性に関する厳格な要求に
合致しなければならない。 しかし、工業用電極に満足な性能を与えるため
の上記要求のすべてに満足するような材料はいま
だに見知されていない。激しい陽極アタツクに耐
えうる材料がごく限られた種類存在するが、工業
的運転条件下で適度の電気化学的性能をもつ電極
の製造には、それら材料だけの使用は普通あり得
ない。それ故に、適度の工業的性能を与えて色々
の技術上、経済上の要求にできるだけ答えること
ができるようにするため、色々の材料が各種組合
せより成る色々のタイプの複合電極が提案されて
いる。 金属ベース上に触媒被膜をもつ各種電極が提案
されているが、これら電極被膜に関する数多くの
特許中にみることができる。 この分野における傑出した成功として、DSA
なる商品名で知られ例えば米国特許第3632498号
記載の寸法安定性の陽極がある。この陽極は、チ
タンベース上にチタン−ルテニウム酸化物より成
る触媒被膜をもち、過去10年で世界中の塩素業界
を根本的に変革してしまつた。 電極ベースとしてチタンが好まれる。何故な
ら、チタンおよびその他の適当なバルブ金属は、
その膜生成性のため極めて大きな耐腐食性を示
し、従つて陽極運転条件下で保護酸化膜が作られ
るからである。 白金族金属は、各種電極反応に対し素晴らしい
電解触媒の働きをすることが知られている。しか
し高価なため、これら金属はできるだけ少量で使
用しなければならず、具体的には可能な場合はよ
り安価な電極材で代替する必要がある。ルテニウ
ムは、他の白金族金属に比べて価格が安く供給性
も良いので、特に関心がもたれる。 上記説明の寸法安定性の陽極(DSA)は、塩
素製造電解槽に使用した場合、優れた安定性能を
発揮し、寿命も長い。しかし、このDSAの製造
および運転は必らず管理条件下で行ない、電極ベ
ース上にチタン酸化物の絶縁層を生成させてはな
らない。この絶縁層が存在すると、陽極が電気化
学的に不活性となり、その動作電位が過度に上昇
する。 別の陽極が例えば米国特許第3776834号に説明
されているが、この陽極の触媒被膜は、上記
DSAのチタン−ルテニウム酸化物による標準被
膜中に普通存在するルテニウムの約半分量をチタ
ンで置換したものである。ルテニウムの一部をチ
タンで置換したこの陽極は、塩素−アルカリ業界
で現在使用する標準DSAに比べ、陽極発生酸素
の存在下での酸素過電圧が大きく耐酸化性が優れ
ている。 貴金属以外の金属にもとづく安価な電極材が各
種提案されているが、それらの使用は色々の理由
から比較的低度に留まつている。 二酸化鉛も色々な電解法に用いる安定、安価
な、有望陽極材であるが、二酸化鉛の陽極体はそ
の導電性が不充分である。一方、電極ベースの上
に作つた二酸化鉛の被膜は、今迄の工業的使用に
おいて、寿命の長い、満足できる安定性能を普通
発揮しなかつた。二酸化鉛電極、その製造ならび
に使用に関する技術は、米国特許第4040039号、
第4026786号、第4008144号、第3751301号、第
3629007号、および英国特許第1416162号、第
1378884号、第1377681号中で説明されている。 二酸化マンガンも、特に酸溶液からの金属の電
解採取法における酸素発生用の安定、安価な陽極
材として、非常に有望である。しかしその広範な
利用は、製造上のむつかしさのため今迄実現して
いない。完全に二酸化マンガンのみより成る満足
な電極体を作る技術がなかつたし、一方、電極ベ
ース上に作つた二酸化マンガン被膜は普通工業的
に充分な寿命をもつ、安定な、満足の行く性能を
所有していなかつた。 電極ベース上に金属塩を付着させそれを熱分解
させて被膜基体を作ることにより、二酸化鉛およ
び二酸化マンガンの被膜を製造することができ
る。しかし生成する酸化物被膜は普通極めて孔質
なもので、電極ベースに対する付着性に劣る。一
方、電極ベース上に電着させることで、もつと密
で付着性の良い酸化物被膜を作ることができる。
しかしそれでもその被膜は孔質で、一般に依然と
して電極ベース酸化の防止力の点で充分でない。 二酸化鉛または二酸化マンガンの外部被膜でお
おわれた中間保護被膜をもつ金属電極のベースも
提案されている。この中間保護被膜に関する技術
は、米国特許第4028215号、第4125449号、第
4040937号(錫/アンチモン酸化物下部被膜)、日
本特許出願第51−156740号(特公昭53−79771
号)、Electrochimica Acta Vol.23,p.331〜333
(白金族金属酸化物下部被膜)、米国特許第
4072586号(RuO2/TiO2下部被膜)、米国特許第
4180445号(TiO2/SnO2/RuO2下部被膜)、米国
特許4060476号(TiN下部被膜)中で説明されて
いる。 この中間保護被膜は電極ベースの酸化に対し有
効な防止剤として働かなければならず、またその
目的のために、付着性、導電性、価格、不透過
性、抗酸化性、物理化学的安定性に関する諸要求
事項を満足しなければならない。工業的に使用す
る場合は、これらの諸性質をすべて達成すること
は容易でない。 電極製造に色々の重合物を使用する提案も各種
なされた。例えば、米国再発行特許第29419号に
おいては、バルブ金属のベース上に生成させた複
合被膜触媒は、有機性ポリマー中に細かく分散し
た二酸化ルテニウムより成つている。意図する有
機ポリマーの役目は、分散させた電解触媒の機械
的支持、ベースえの付着性、その保護のためのバ
インダーである。二酸化ルテニウムは1ミクロン
より小さい極微粒子の形に作製し、ポリマー中に
6:1〜1:1の重量比で均一に分散させ、電気
性および触媒性をもつ被膜とする。この複合被膜
の導電性は、従つて、ポリマー(結合剤)中の分
散電気触媒の量、粒子径、分布によりほゞ決ま
る。ポリマー性材料を含む電極に関する技術は、
更に、米国特許第3626007号、第3751301号、第
4118294号、第3972732号、第3881957号、第
4090979号、ドイツ特許出願公開第2035918号中に
説明されている。 上記に説明したような被膜電極の寿命は、これ
ら電極を有名な陽極酸素発生下で工業的に使用す
る場合は、普通短い。この場合の特有の問題は、
腐食による電極破壊あるいは電極ベースの電気化
学的不活性化につながる酸素アタツクより電極ベ
ースを適切に保護してやる必要があることであ
る。 上記より分る通り、適切な電極材の選択に加
え、工業的電解法において満足の行く、長時間の
性能を示す電極の製造は、一般に極めて問題がら
みであり、複雑な技術上の諸問題を残している。 本発明の目的は、バルブ金属のベース、電解に
適した安定な外部被膜、中間層(電極ベースが酸
化するのを充分防ぎ、上記ベースにしつかり付着
している層で、この層に上記外部被膜がしつかり
付着し、電極が使用される工業的運転条件下で安
定な中間層)より成る、電解用電極を提供するこ
とにある。 本発明の別の目的は、容易に電極ベース上に作
ることができ、ついで外部被膜の製造を電極ベー
スの劣化を全く起さずに満足な方法で可能にする
ような保護中間層を有する電極を提供することに
ある。 本発明の更に別の目的は、工業的運転条件下で
優れた抗酸化性、長寿命、安定な電気化学的性能
を示す電極を提供することにある。 本発明の更に別の目的は、白金族金属をできる
だけ少なく、有利には電極ベース1m2当り2gよ
り少なく好ましくは1gより少なく含有する中間
層を用いて不活性化を防止するようにした、ベー
スがバルブ金属の電極を提供することにある。 本発明の別の目的は、最少量の貴金属を含有す
る電極を提供することにある。 本発明の更に別の目的は、保護中間層ならびに
二酸化マンガンの外部被膜触媒を有する電極を提
供することにある。 本発明の別の目的は、保護中間層ならびに二酸
化鉛の外部被膜を有する電極を提供することにあ
る。 本発明の更に別の目的は、保護中間層を有する
電極作成のための簡単な製造法を提供することに
ある。 本発明の別の目的は、上記保護中間層と、電解
用特に陽極酸素発生のある電解を実施するための
所望な自由の厚さの、安価、安定な、電気メツキ
による外部被膜とを有するバルブ金属のベースか
ら成る、満足な長期の性能を示す電極の製造を可
能にすることにある。 上記の諸目的は、本質的には特許請求の範囲に
のべた発明で満たされている。 本発明は本質的に、バルブ金属のベースと一番
外側に付着させた外部被膜、具体的には電気メツ
キ被膜との間に非常に薄い保護酸化物層を作つて
ある電極を提供するものである。 上記保護酸化物層を作るには、バルブ金属の電
極ベース表面を混合酸化物に変換してやる。混合
酸化物層は、上記バルブ金属と、イリジウム、ロ
ジウム、ルテニウムより成る群から選ばれた貴金
属との混合酸化物からできている。 上記混合酸化物は、特許請求の範囲にのべる方
法に従い、注意深く管理した条件下でバルブ金属
のベースの表面に特別の酸化処理を施して作る。 本発明に用いるバルブ金属のベースは、本質的
にチタン、ジルコニウム、タンタル、ニオブなど
のバルブ金属あるいはバルブ金属にもとづく合金
から成る適当な電極ベース、または少なくともベ
ースの表面がかゝるバルブ金属ないしその合金で
できており本発明による混合酸化物層を作るため
のバルブ金属基体となる電極ベースなら、何であ
つても良い。 ベースに塗布する溶液は、充分量の塩化水素を
含有していて、それによりベース表面が侵食され
表面のバルブ金属が相当する塩化物にかわり溶液
と共に塗布された貴金属塩化物と共存し、熱分解
して混合酸化物になる塩化物混合物が生成しなけ
ればならない。塩化物にかわるベースのバルブ金
属量は、一方で上記溶液中のHCl濃度に、他方で
この変換が行なわれる時間に明らかに左右され
る。その結果、塗布溶液は温度を大巾に上げるこ
となくゆつくり乾燥し、貴金属塩化物に変換する
のに必要な時間を与えてやらなければならない。
更に、塗布溶液にベース表面を適度に湿潤させ、
バルブ金属の上記変換を確実に行なわねばならな
い。 塗布溶液用溶媒としてイソプロピルアルコール
(IPA)を用い、本発明を成功裡に実施できた。
しかし、エタノール、ブタノールなどの他のアル
コール溶媒を用いても同様に成功した。一方、本
発明を行なう際の溶媒として、水は明らかに不適
当である。その理由は、水を用いた溶液だとバル
ブ金属の湿潤が不充分であり、かつ/または塩酸
の蒸発が迅速すぎるからである。 混合酸化物に変換する貴金属に対するバルブ金
属の一定モル比を与えるのに必要なHCl濃度は、
理論的に算出できる。しかし、普通或る程度過剰
のHClを加え、所要の変換を確実に行なう。更
に、本発明に従いバルブ金属ベースの表面に混合
酸化物を間違いなく生成させるため、塗布溶液中
に存在する貴金属塩化物に対するHClのモル比は
一定範囲の中に入つていなければならない。この
モル比は、何れの場合も、生成する混合酸化物中
の貴金属に対するバルブ金属の所望比率、ならび
に実さいに効果的に塩化物に変換するバルブ金属
の量より具体的にはバルブ金属表面に到達し効果
的に侵食するHClの量により決まる。更にこの関
係で注目すべきは、本発明にもとづき塗布され熱
的に混合酸化物に変換させられる溶液層の数は、
色々の因子特に各場合における塗布溶液中の貴金
属の濃度に左右される。 1当り金属イリジウム約7gに相当する濃度
でIPA中にとかしたIrCl3を使つて、本発明を首尾
よく実施した。また3.5〜35g/のイリジウム
濃度で、本発明にもとづき、混合酸化物を作成し
た。しかし貴金属塩化物濃度は、溶液1当り約
1×10-2モルを起点としてもつと広範囲の濃度か
ら選ぶことができる。たゞし、本発明にもとづき
満足な混合酸化物の生成を確実に行なうには、も
つと狭い範囲即ち溶液1当り2×10-2〜10×
10-2モル特に2.5×10-2〜7.5×10-2モルが好まし
い。 しかし、すでに上記説明の通り、何れの場合も
HClの濃度は塗布溶液中に存在する貴金属塩化物
の濃度により決め、HClと貴金属塩化物のモル比
を一定範囲に入れ、混合酸化物を所定通りに作ら
なければならない。従つてHCl濃度はまた、比較
的広い範囲即ち溶液1当り約14×10-2〜3モル
から選ぶこともできる。しかし、選ぶHCl濃度は
何れの場合も、塗布溶液中に存在する貴金属塩化
物の濃度の選び方に左右される。 前記のHClと貴金属塩化物濃度のモル比の上記
範囲は、本発明を実施する際、1:1〜100:
1、好ましくは3:1〜30:1の範囲にあること
ができる。しかし両者の濃度の増減は同時に行な
わなければならない。 本発明による混合酸化物は、HCl濃度が極端に
高く(例えば200g/)貴金属濃度が極端に低
い(例えば2〜3g/)時には、生成せず、そ
の場合適度の長期性能をもつ電極の提供に関し有
用な結果が得られないと云うことを見出した。 一方、以下に示す諸実施例にみられる如く、本
発明にもとづき上記モル比を上記一定範囲の中か
ら選ぶ時は、酸素発生陽極としての素晴らしい性
能を得ることができる。 本発明により、HClと貴金属塩化物を一定割合
で含有する溶液を塗布し、塗布溶液をゆつくり乾
燥して得られる混合塩化物を混合酸化物に変換す
るには、上記混合塩化物を、酸化性ふんい気中で
400〜600℃より具体的には約450〜520℃の範囲に
ある比較的高温度で、熱処理する。この熱処理に
より、空気流中約480℃、約5〜10分で混合酸化
物えの変換がうまく行なわれた。これより低温で
の熱処理の場合は時間がもつとかゝるし、逆も云
えると思われる。一方、400℃と云う比較的低温
で1時間と云う比較的長時間熱処理した所、満足
な結果が得られなかつた。 上記熱処理の時間と温度は、従つて各場合にお
いて適切に選び、上記混合塩化物の混合酸化物え
の変換を満足に行なわなければならない。その場
合、バルブ金属の下地ベースの酸化は好ましくな
く避けねばならない。 本発明に従い、適切な、成分を管理した溶液の
塗布、ゆつくりした乾燥、混合塩化物を混合酸化
物に変換するための管理的熱処理より成る連続工
程の実施は、サイクルとして数回即ち少なくとも
2回行ない、充分量の貴金属を含有する適度の厚
さの混合酸化物を徐々に生成させなければならな
い。 かくして生成する混合酸化物の最初の層は比較
的多孔質であるので、次に塗布する溶液がこの最
初の多孔質層にしみ込んで行き、下地のバルブ金
属が侵食され相当するバルブ金属塩化物に転換
し、結果として上記混合塩化物が新たに生成す
る。この混合塩化物は混合酸化物に変換される
が、一部は最初の層の孔中に生成する。 従つて、生成する混合酸化物層の孔性は混合酸
化物生成のための上記サイクルの工程を繰返すた
びに次第に減少し、ついにはベースのバルブ金属
の塩化物、混合酸化物えの変換は殆んど行なわれ
なくなる。 上記サイクル工程を繰返しても本発明の混合酸
化物が生成しなくなり、それ以上その工程を行な
うことは好ましくなくなる。何故なら、貴金属酸
化物だけが生成するようになり、承知のように、
かなりの量のバルブ金属を含有する混合酸化物よ
り安定性がずつと劣るからである。 本発明にもとづき単純な、充分に管理された連
ぞく工程のサイクルを繰返すことにより、極めて
安定な、均質で、比較的密で不透過性の、導電性
混合酸化物を、バルブ金属のベースから徐々に作
ることができる。しかし既述の通り、本発明に従
つて作られる混合酸化物の量は、各場合で限度が
あり、限度を越して溶液を塗布することは避ける
べきである。何故なら、安定性の低い酸化物が生
成し好ましくないからである。本発明の混合酸化
物の生成のため効果的に塗布できる溶液層の数は
主に、各場合に塗布する溶液中の貴金属濃度によ
り決まる。従つて、例えば、溶液1当り7gの
イリジウムに相当するIrCl3を含有する溶液の場
合は、混合酸化物生成のための上記一連の工程を
本発明に従い4回繰返した時、優秀な結果を得
た。しかし、塗布溶液中の貴金属濃度を大巾に低
くし上記相当濃度の下限に近づけた場合において
は、上記一連の工程の繰返す回数は、20回あるい
は恐らくそれ以上に増やすことができる。 一方、比較的高濃度で貴金属を使用する時は、
溶液の塗布回数は例えば2〜4にへらし、混合酸
化物のみが生成するようにして貴金属がバルブ金
属ベース上に大量に、バルブ金属の比率が低下し
た比較的不安定な混合酸化物の形で生成するのを
防止しなければならない。更に注意することとし
て、本発明にもとづき混合酸化物を生成させるた
めの溶液は、例えばブラシまたは噴霧器などの適
当な方法で塗布できる。 各場合に塗布される溶液の量(V)に関し、バ
ルブ金属ベースの表面1m2当り上記溶液を10〜20
ml塗布して、本発明にもとづき好結果を得た。更
に50ml/m2のような量も噴霧で塗布できるだろう
し、5ml/m2と云うような少量も多分用いること
ができる。 バルブ金属のベース表面単位面積当りに、混合
酸化物の形で生成する貴金属の全量(L)は、明
らかなごとく、塗布溶液中の貴金属濃度
(CNM)、塗布回数(N)、および各回塗布される
溶液量(Vml/m2)に比例する。 本発明にもとづき、バルブ金属ベースの単位表
面積当り、混合酸化物の形における貴金属0.5〜
1gに相当する貴金属量(L)を付着させて、好
結果を得た。0.5g/m2よりいくらか少ない貴金
属付着量でも満足な結果を得ることができるが、
このレベルはすでにかなり低いので、貴金属付着
量を更に下げた場合は、大きな経済的利点はそれ
以上得られないと思われる。 一方、妥当な溶液塗布回数(N)を用いた場
合、極端に低い貴金属付着量(約0.2g/m2)で
は満足な結果が得られないことを発見した。 更に、必要なら、場合により貴金属付着量を1
g/m2よりいくらか高い所に例えば1.2g/m2
に、あるいは恐らく約1.5g/m2迄上げることが
できることを発見した。 従つて上記説明から明らかな如く、各指示範囲
に入る上記諸パラメータのために妥当な妥協点を
見出し、各場合夫々の電極要求に従つた最良の結
果を求めるべきである。それ故、例えば、溶液塗
布一毎回次に乾燥および熱処理が行なわれるが一
の回数は、明らかに妥当な範囲の中にとどめられ
るべきである。この塗布回数は一方では増加して
本発明の利点のすべてを利用すべきであるが、過
度に多い塗布回数は面倒すぎて望ましくなく、ま
た本発明のあらゆる利点が充分に利用され得な
い。 本発明によればまた、工業用の大型電極が容易
に製造される。即ち、電極ベース自体より得られ
るバルブ金属と塗布溶液より供給される貴金属と
を用いて、混合酸化物を生成させるための本発明
の特別の技術にもとづき、製造される。 以下にも説明がある通り、かくしてバルブ金属
ベース上にできそのため電極ベース表面と完全に
一体化した導電性中間混合酸化物層は、貴金属付
着量が比較的少ないので、バルブ金属ベースに優
秀な保護性を与え、一方その電気抵抗は実際上無
視できる程度である。従つて極めて単純かつ経済
的方法で、上記導電性中間混合酸化物層は、特に
二酸化マンガンまたは二酸化鉛より成る安定、安
価な外部被膜を次の段階で電着させるための、導
電性の優れた中間基体を提供する。 本発明の特別の技術にもとづき生成させたこの
導電性中間混合酸化物層は、更に、優れた保護力
ならびに小さい電位低下のみならず、優れた電着
性−従つて電気メツキ被膜がバルブ金属ベースに
強く付着する−を与える。この優れた付着性は生
成する電極の品質および性能を向上させることに
なり、そのため電極の長期性能ならびに寿命が大
巾に改善される。 本発明にもとづいく電極の製造法を、以下の表
を用いて以下の諸実施例により説明する。 以下の表に示したのは、電極試料、上記混合酸
化物中の貴金属量、外部被膜中の酸化物量、なら
びに各試料に対する試験データ即ち陽極電流密
度、普通の水素電極に対する陽極電位、および試
験時間である。試験時間は表の最後の欄に示して
あるが、アンダーラインを付したデータは、陽極
が作動しなくなつた時のものであり、星印を付し
たデータは、陽極が依然作動していたものであ
る。 実施例 1 チタンベース上に二酸化マンガン被膜した電極
試料を以下の方法で作製した。 チタン板(10×2cm)を脱脂し、水洗し、乾燥
し、シユウ酸中で30分間エツチングした。 ついで、予備処理ずみのチタン板にIPA10ml、
塩酸0.06ml、IrCl3水溶液0.16g(Ir48重量%)よ
り成る新鮮な溶液S6をブラシで塗り、次に空気
中でゆつくり乾燥して、チタン板表面を処理し
た。ついで、60/hの空気流中で480℃に7分
間熱処理をし、チタン板ベース表面にチタンとイ
リジウムの混合酸化物を生成せしめた。 溶液塗布、乾燥、熱処理の一連の工程を4回
(CH1の場合は5回)繰返したが、それは、ベー
スチタンと一定量のイリジウムより成る導電性中
間混合酸化物層を徐々に生成させて電気メツキを
行なうための混合酸化物中間基体を作るためであ
る。 次に、この混合酸化物基体に二酸化マンガンを
陽極沈着させてトツプコートした。トツプコート
は、2M硝酸マンガン浴で90〜95℃にて普通は電
流密度1.5mA/cm2で1.5時間、SM3の場合は
10mA/cm2で3時間、SM2とD40bの場合は
20mA/cm2で1.5時間行なつた。MuO2トツプコー
トの最後に、60/hの空気流中で400℃20分間
の熱処理を行ない、電極性能を改良した。 生成したMnO2被膜の電極各試料に対し、150
g/のH2SO4を含有する電解槽中で45〜55℃で
500〜7500A/m2の範囲の一定陽極電流密度に
て、酸素発生陽極としての加速試験を行なつた。
各試料の初期陽極電位を普通の水素電極に対し測
定したが抵抗低下の補正はしなかつた。試験終了
時の最終陽極電位も測定したが、陽極電位が突然
急激な上昇を示した(陽極の寿命終了)場合は測
定しなかつた。 参考迄に、表1中のMe1,C49,B03の電極試
料の作製方法は、上記説明と異なつていた。即
ち、Me1のチタン基体はシユウ酸の代りに塩酸で
エツチングしたものであり、B03のMnO2トツプ
コートは400℃でなく330℃で熱処理し、C49の
MnO2トツプコートは400℃であるが定常空気中
で行なつた。 CH1の電極試料は7500A/m2で1000時間の安定
作動の後試験槽から除去し、X線回折を行なつた
所、始めのβMnO2コートの約75〜80%が依然と
して残つており、目立つた構造変化は全然起つて
いなかつた。
The present invention generally relates to electrodes for electrolysis and the manufacture of such electrodes, comprising an outer coating suitable for electrolysis, a conductive intermediate mixed oxide layer, and a base of valve metal. Electrodes used in industrial electrolyzers usually meet several stringent requirements, namely with regard to conductivity, physicochemical stability, corrosion resistance, manufacturing and electrochemical performance, and more specifically catalytic activity and selectivity. Must meet strict requirements. However, no material has yet been found that satisfies all of the above requirements for providing satisfactory performance to industrial electrodes. Although there are only a limited number of materials that can withstand severe anodic attack, their use alone is usually not possible in the production of electrodes with reasonable electrochemical performance under industrial operating conditions. Therefore, various types of composite electrodes have been proposed, consisting of various combinations of different materials, in order to provide reasonable industrial performance and to be able to meet the various technical and economic requirements as far as possible. . Various electrodes with catalyst coatings on metal bases have been proposed and can be found in numerous patents relating to these electrode coatings. As an outstanding success in this field, DSA
For example, there is a dimensionally stable anode known under the trade name U.S. Pat. No. 3,632,498. This anode, which has a catalytic coating of titanium-ruthenium oxide on a titanium base, has fundamentally transformed the world's chlorine industry over the past decade. Titanium is preferred as the electrode base. Because titanium and other suitable valve metals
This is because it exhibits extremely high corrosion resistance due to its film-forming properties and therefore forms a protective oxide film under anodic operating conditions. Platinum group metals are known to act as excellent electrocatalysts for various electrode reactions. However, because they are expensive, these metals must be used in as small a quantity as possible, and specifically, they must be replaced with cheaper electrode materials where possible. Ruthenium is of particular interest because it is cheaper and more readily available than other platinum group metals. The dimensionally stable anode (DSA) described above exhibits excellent stability performance and long service life when used in chlorine production electrolyzers. However, the manufacture and operation of this DSA must be carried out under controlled conditions and must not produce an insulating layer of titanium oxide on the electrode base. The presence of this insulating layer renders the anode electrochemically inactive and increases its operating potential excessively. Another anode is described, for example in U.S. Pat. No. 3,776,834, whose catalytic coating is
Approximately half of the ruthenium normally present in DSA's standard titanium-ruthenium oxide coating is replaced with titanium. This anode, which replaces some of the ruthenium with titanium, has a higher oxygen overpotential in the presence of anode-generated oxygen and better oxidation resistance than the standard DSA currently used in the chlor-alkali industry. Various inexpensive electrode materials based on metals other than noble metals have been proposed, but their use remains relatively low for various reasons. Lead dioxide is also a stable, inexpensive, and promising anode material for use in various electrolysis methods, but lead dioxide anode bodies have insufficient electrical conductivity. On the other hand, lead dioxide coatings formed on electrode bases have not generally exhibited satisfactory stability over long lifetimes in industrial use to date. Lead dioxide electrodes and techniques for their manufacture and use are disclosed in U.S. Pat. No. 4,040,039;
No. 4026786, No. 4008144, No. 3751301, No.
3629007 and British Patent No. 1416162, no.
Nos. 1378884 and 1377681. Manganese dioxide also shows great promise as a stable, inexpensive anode material for oxygen generation, especially in electrowinning of metals from acid solutions. However, its widespread use has so far not been realized due to manufacturing difficulties. There was no technology available for making a satisfactory electrode body consisting entirely of manganese dioxide, while the manganese dioxide coating formed on the electrode base usually possessed stable and satisfactory performance with a sufficient industrial life. I hadn't done it. Lead dioxide and manganese dioxide coatings can be produced by depositing a metal salt on the electrode base and pyrolyzing it to create a coating substrate. However, the resulting oxide film is usually very porous and has poor adhesion to the electrode base. On the other hand, by electrodepositing it on the electrode base, it is possible to create an oxide film that is dense and has good adhesion.
However, the coatings are still porous and generally still have insufficient protection against electrode base oxidation. Metal electrode bases with an intermediate protective coating covered with an external coating of lead dioxide or manganese dioxide have also been proposed. The technology related to this intermediate protective coating is disclosed in U.S. Patent No. 4028215, U.S. Pat.
No. 4040937 (tin/antimony oxide lower coating), Japanese Patent Application No. 51-156740 (Special Publication No. 53-79771)
Electrochimica Acta Vol.23, p.331-333
(Platinum Group Metal Oxide Bottom Coating), U.S. Patent No.
No. 4072586 (RuO 2 /TiO 2 bottom coating), U.S. Patent No.
No. 4,180,445 (TiO 2 /SnO 2 /RuO 2 bottom coating), US Pat. No. 4,060,476 (TiN bottom coating). This intermediate protective coating must act as an effective inhibitor against oxidation of the electrode base and, for that purpose, must have the following characteristics: adhesion, conductivity, price, impermeability, antioxidant properties, physicochemical stability. The requirements related to the above shall be satisfied. When used industrially, it is not easy to achieve all of these properties. Various proposals have also been made to use various polymers in electrode manufacture. For example, in US Reissue Patent No. 29419, a composite coated catalyst formed on a valve metal base consists of ruthenium dioxide finely dispersed in an organic polymer. The intended role of the organic polymer is as a binder for mechanical support of the dispersed electrocatalyst, adhesion to the base, and protection thereof. Ruthenium dioxide is prepared in the form of ultrafine particles smaller than 1 micron and uniformly dispersed in a polymer at a weight ratio of 6:1 to 1:1 to form a coating with electrical and catalytic properties. The electrical conductivity of this composite coating is therefore largely determined by the amount, particle size, and distribution of the dispersed electrocatalyst in the polymer (binder). Technologies related to electrodes containing polymeric materials include:
Additionally, U.S. Patent Nos. 3,626,007, 3,751,301,
No. 4118294, No. 3972732, No. 3881957, No.
4090979, German Patent Application No. 2035918. The lifetime of coated electrodes as described above is usually short when these electrodes are used industrially under the well-known anodic oxygen evolution. The particular problem in this case is
It is necessary to adequately protect the electrode base from oxygen attack, which can lead to electrode destruction due to corrosion or electrochemical inactivation of the electrode base. As can be seen from the above, in addition to the selection of appropriate electrode materials, the manufacture of electrodes with satisfactory long-term performance in industrial electrolysis processes is generally extremely problematic and involves complex technical issues. I'm leaving it behind. The purpose of the present invention is to provide a valve metal base, a stable outer coating suitable for electrolysis, an intermediate layer (a layer that sufficiently prevents the electrode base from oxidizing and firmly adheres to the base, and the outer coating is applied to this layer). The object of the present invention is to provide an electrode for electrolysis consisting of an intermediate layer (intermediate layer) which adheres firmly and is stable under the industrial operating conditions under which the electrode is used. Another object of the invention is to provide an electrode with a protective intermediate layer which can be easily fabricated on the electrode base and which then allows the production of an outer coating in a satisfactory manner without any deterioration of the electrode base. Our goal is to provide the following. Yet another object of the present invention is to provide an electrode that exhibits excellent antioxidant properties, long life, and stable electrochemical performance under industrial operating conditions. A further object of the invention is to prevent deactivation of the base by means of an intermediate layer containing as little platinum group metal as possible, advantageously less than 2 g and preferably less than 1 g per m 2 of electrode base. is to provide valve metal electrodes. Another object of the invention is to provide an electrode containing a minimum amount of noble metal. Yet another object of the present invention is to provide an electrode having a protective intermediate layer and an outer coating catalyst of manganese dioxide. Another object of the invention is to provide an electrode having a protective intermediate layer as well as an outer coating of lead dioxide. Yet another object of the invention is to provide a simple manufacturing method for making electrodes with a protective interlayer. Another object of the invention is a valve having a protective intermediate layer as described above and an inexpensive, stable, electroplated outer coating of desired free thickness for carrying out electrolysis, in particular electrolysis with anodic oxygen evolution. The object of the present invention is to make it possible to produce electrodes having a satisfactory long-term performance, consisting of a metal base. The above objects are essentially fulfilled by the claimed invention. The present invention essentially provides an electrode in which a very thin protective oxide layer is created between the base of the valve metal and the outermost applied outer coating, specifically the electroplated coating. be. To create the protective oxide layer, the valve metal electrode base surface is converted to a mixed oxide. The mixed oxide layer is made of a mixed oxide of the valve metal and a noble metal selected from the group consisting of iridium, rhodium, and ruthenium. The mixed oxide is prepared by subjecting the surface of the valve metal base to a special oxidation treatment under carefully controlled conditions according to the claimed method. The valve metal base used in the present invention may be a suitable electrode base consisting essentially of a valve metal such as titanium, zirconium, tantalum, niobium or an alloy based on a valve metal, or at least the surface of the base may be a valve metal or its like. Any electrode base may be made of an alloy and serve as a valve metal substrate for making the mixed oxide layer according to the invention. The solution applied to the base contains a sufficient amount of hydrogen chloride, which corrodes the base surface and causes the valve metal on the surface to coexist with the precious metal chloride applied with the solution, replacing the corresponding chloride, causing thermal decomposition. A mixture of chlorides must be formed to form a mixed oxide. The amount of base valve metal replacing chloride clearly depends on the HCl concentration in the solution on the one hand and on the time during which this conversion takes place on the other hand. As a result, the coating solution must be allowed to dry slowly without significantly increasing the temperature, allowing the necessary time for conversion to the precious metal chloride.
Furthermore, the base surface is moderately moistened with the coating solution,
The above conversion of valve metal must be ensured. The present invention was successfully implemented using isopropyl alcohol (IPA) as the solvent for the coating solution.
However, other alcoholic solvents such as ethanol and butanol have been used with similar success. On the other hand, water is clearly unsuitable as a solvent when carrying out the invention. This is because solutions using water do not sufficiently wet the valve metal and/or the hydrochloric acid evaporates too quickly. The HCl concentration required to give a constant molar ratio of valve metal to noble metal to convert into a mixed oxide is:
It can be calculated theoretically. However, some excess of HCl is usually added to ensure the desired conversion. Furthermore, in order to ensure the formation of mixed oxides on the surface of the valve metal base according to the present invention, the molar ratio of HCl to noble metal chloride present in the coating solution must fall within a certain range. In each case, this molar ratio depends on the desired ratio of valve metal to noble metal in the resulting mixed oxide, as well as the amount of valve metal that is effectively converted to chloride, and more specifically on the valve metal surface. Depends on the amount of HCl that reaches and effectively erodes. It is further noted in this connection that the number of solution layers applied and thermally converted into mixed oxide according to the present invention is
It depends on various factors, in particular the concentration of noble metal in the coating solution in each case. The invention was successfully carried out using IrCl 3 dissolved in IPA at a concentration corresponding to about 7 g of metallic iridium per portion. Mixed oxides were also prepared in accordance with the present invention with iridium concentrations ranging from 3.5 to 35 g/g. However, the noble metal chloride concentration can be selected from a wide range of concentrations starting from about 1.times.10.sup. -2 moles per solution. However, in order to ensure satisfactory mixed oxide formation according to the present invention, a narrow range of 2×10 -2 to 10×
10 −2 mol, particularly 2.5×10 −2 to 7.5×10 −2 mol is preferred. However, as explained above, in both cases
The concentration of HCl is determined by the concentration of noble metal chloride present in the coating solution, and the molar ratio of HCl and noble metal chloride must be within a certain range to form a mixed oxide as specified. The HCl concentration can therefore also be selected from a relatively wide range, ie from about 14.times.10.sup. -2 to 3 mol per solution. However, the chosen HCl concentration in each case depends on the choice of the concentration of noble metal chloride present in the coating solution. When carrying out the present invention, the above range of the molar ratio of HCl and noble metal chloride concentration is from 1:1 to 100:
1, preferably in the range of 3:1 to 30:1. However, both concentrations must be increased or decreased at the same time. The mixed oxide according to the invention does not form when the HCl concentration is extremely high (e.g. 200 g/) and the precious metal concentration is extremely low (e.g. 2-3 g/), in which case it is important to provide an electrode with reasonable long-term performance. It was found that no useful results could be obtained. On the other hand, as shown in the Examples shown below, when the molar ratio is selected from the above fixed range based on the present invention, excellent performance as an oxygen generating anode can be obtained. According to the present invention, in order to convert the mixed chloride obtained by coating a solution containing HCl and noble metal chloride in a certain ratio, and slowly drying the coating solution into a mixed oxide, the mixed chloride is oxidized. in a sexual mood
The heat treatment is performed at a relatively high temperature in the range of 400-600°C, more specifically about 450-520°C. This heat treatment successfully converted the mixed oxide in about 5-10 minutes at about 480 DEG C. in a stream of air. In the case of heat treatment at a lower temperature than this, it seems that it takes more time, and vice versa. On the other hand, when heat treatment was performed at a relatively low temperature of 400°C for a relatively long time of one hour, satisfactory results were not obtained. The time and temperature of the heat treatment must therefore be chosen appropriately in each case to effect a satisfactory conversion of the mixed chloride to the mixed oxide. In that case, oxidation of the underlying base of the valve metal is undesirable and must be avoided. According to the invention, the successive process consisting of application of a suitable component-controlled solution, slow drying and controlled heat treatment to convert the mixed chlorides into mixed oxides is carried out several times in cycles, i.e. at least twice. The process must be repeated to gradually produce a mixed oxide of appropriate thickness containing a sufficient amount of precious metal. The first layer of mixed oxide thus formed is relatively porous, so that the subsequently applied solution soaks into this first porous layer, eroding the underlying valve metal and converting it to the corresponding valve metal chloride. conversion, resulting in the new formation of the above-mentioned mixed chlorides. This mixed chloride is converted to a mixed oxide, some of which forms in the pores of the first layer. Therefore, the porosity of the resulting mixed oxide layer gradually decreases with each repetition of the steps in the above cycle for mixed oxide formation, until the conversion of the base valve metal from chloride to mixed oxide is almost complete. It is no longer practiced. Even if the above cycle process is repeated, the mixed oxide of the present invention is no longer produced, and it is no longer desirable to carry out the process any further. This is because only precious metal oxides are produced, and as we know,
This is because they are less stable than mixed oxides containing significant amounts of valve metal. By repeating a series of simple, well-controlled process cycles in accordance with the present invention, an extremely stable, homogeneous, relatively dense, impermeable, conductive mixed oxide can be produced as a base for valve metals. It can be made gradually. However, as stated above, the amount of mixed oxide produced in accordance with the present invention is limited in each case and application of the solution in excess of this limit should be avoided. This is because oxides with low stability are produced, which is not preferable. The number of solution layers that can be effectively applied for the production of the mixed oxides of the invention depends primarily on the noble metal concentration in the solution applied in each case. Thus, for example, in the case of a solution containing IrCl 3 corresponding to 7 g of iridium per solution, excellent results were obtained when the above series of steps for mixed oxide formation was repeated four times according to the invention. Ta. However, if the noble metal concentration in the coating solution is significantly lowered to approach the lower limit of the above-mentioned equivalent concentration, the number of repetitions of the above series of steps can be increased to 20 times or perhaps more. On the other hand, when using precious metals at relatively high concentrations,
The number of applications of the solution is reduced, for example, from 2 to 4 times, so that only the mixed oxide is formed, so that a large amount of precious metal is deposited on the valve metal base in the form of a relatively unstable mixed oxide with a reduced proportion of the valve metal. must be prevented from generating. It is further noted that the solution for producing mixed oxides according to the invention can be applied by any suitable method, such as by brush or sprayer. Regarding the amount of solution applied in each case (V), apply 10 to 20 of the above solution per 1 m 2 of surface of the valve metal base.
Good results were obtained based on the present invention. Furthermore, amounts such as 50 ml/m 2 could be applied by spraying, and smaller amounts such as 5 ml/m 2 could probably also be used. The total amount of precious metal (L) produced in the form of mixed oxide per unit area of the base surface of the valve metal obviously depends on the concentration of precious metal in the coating solution (CNM), the number of coats (N), and the number of coats applied each time. It is proportional to the amount of solution (Vml/m 2 ). According to the invention, from 0.5 to 0.5 of the precious metal in the form of mixed oxides per unit surface area of the valve metal base
Good results were obtained by depositing an amount (L) of noble metal equivalent to 1 g. Satisfactory results can be obtained with precious metal coatings somewhat less than 0.5 g/ m2 ;
Since this level is already quite low, further reductions in noble metal loading are unlikely to yield significant economic benefits any further. On the other hand, we have discovered that when using a reasonable number of solution applications (N), extremely low noble metal coverage (approximately 0.2 g/m 2 ) does not give satisfactory results. Furthermore, if necessary, the amount of precious metal deposited may be reduced by 1
For example, 1.2 g/m 2 at a location somewhat higher than g/m 2
We have found that it is possible to increase the amount to 1.5 g/m 2 , or perhaps up to about 1.5 g/m 2 . It is therefore clear from the above description that reasonable compromises should be found for the above parameters falling within each indicated range, and in each case the best result according to the respective electrode requirements should be sought. Therefore, for example, the number of times each solution application is followed by drying and heat treatment should clearly remain within a reasonable range. On the one hand, this number of applications should be increased to take advantage of all the advantages of the invention, but too many applications are too cumbersome and undesirable, and all the advantages of the invention cannot be fully exploited. According to the present invention, large industrial electrodes can also be easily manufactured. That is, it is manufactured according to the special technique of the present invention for producing mixed oxides using the valve metal obtained from the electrode base itself and the noble metal supplied from the coating solution. As explained below, the conductive intermediate mixed oxide layer thus formed on the valve metal base and thus fully integrated with the electrode base surface provides excellent protection to the valve metal base due to its relatively low noble metal loading. while its electrical resistance is practically negligible. In a very simple and economical manner, the conductive intermediate mixed oxide layer thus forms a highly conductive layer for the subsequent electrodeposition of a stable and inexpensive outer coating, in particular of manganese dioxide or lead dioxide. Provide an intermediate substrate. This electrically conductive intermediate mixed oxide layer produced according to the special technology of the invention has, in addition, not only a good protective power and a low potential drop, but also a good electrodeposition property - so that the electroplated coating can be applied to the valve metal base. Gives a strong adhesion to -. This superior adhesion improves the quality and performance of the resulting electrode, thereby greatly improving its long-term performance and lifespan. The method of manufacturing the electrode according to the invention is illustrated by the following examples using the table below. Listed in the table below are the electrode samples, the amount of noble metal in the mixed oxide, the amount of oxide in the outer coating, and the test data for each sample: anodic current density, anodic potential relative to a normal hydrogen electrode, and test time. It is. Test times are shown in the last column of the table, with underlined data being when the anode had stopped working, and asterisked data being when the anode was still working. It is something. Example 1 An electrode sample in which a manganese dioxide film was coated on a titanium base was prepared by the following method. Titanium plates (10 x 2 cm) were degreased, washed with water, dried and etched in oxalic acid for 30 minutes. Next, add 10ml of IPA to the pre-treated titanium plate.
A fresh solution S6 consisting of 0.06 ml of hydrochloric acid and 0.16 g of an aqueous IrCl 3 solution (48% by weight of Ir) was applied with a brush and then allowed to dry slowly in air to treat the surface of the titanium plate. Then, heat treatment was performed at 480° C. for 7 minutes in an air flow of 60/h to form a mixed oxide of titanium and iridium on the surface of the titanium plate base. The series of steps of solution application, drying, and heat treatment was repeated four times (five times in the case of CH1), which gradually formed a conductive intermediate mixed oxide layer consisting of base titanium and a certain amount of iridium, and produced electricity. This is to prepare a mixed oxide intermediate substrate for plating. The mixed oxide substrate was then top coated by anodically depositing manganese dioxide. Topcoat is done in a 2M manganese nitrate bath at 90-95°C, usually for 1.5 hours at a current density of 1.5 mA/ cm2 , or for SM3.
3 hours at 10mA/ cm2 , for SM2 and D40b
It was carried out for 1.5 hours at 20 mA/cm 2 . At the end of the MuO 2 top coat, a heat treatment at 400° C. for 20 minutes in an air flow of 60/h was performed to improve electrode performance. For each electrode sample of the generated MnO 2 coating, 150
at 45-55 °C in an electrolytic cell containing g/g H 2 SO 4
Accelerated tests as an oxygen generating anode were performed at constant anode current densities ranging from 500 to 7500 A/ m2 .
The initial anodic potential of each sample was measured against a regular hydrogen electrode without correction for resistance drop. The final anode potential at the end of the test was also measured, but was not measured if the anode potential showed a sudden and rapid increase (end of life of the anode). For reference, the manufacturing methods of the electrode samples Me1, C49, and B03 in Table 1 were different from those described above. That is, the titanium substrate of Me1 was etched with hydrochloric acid instead of oxalic acid, and the MnO 2 top coat of B03 was heat treated at 330°C instead of 400°C, and the MnO 2 top coat of B03 was etched at 330°C instead of 400°C.
MnO 2 topcoating was done at 400°C but in steady air. The CH1 electrode sample was removed from the test chamber after 1000 hours of stable operation at 7500 A/ m2 , and X-ray diffraction was performed. Approximately 75-80% of the initial βMnO2 coating still remained, which was noticeable. No structural changes occurred at all.

【表】【table】

【表】 実施例 2 実施例1で説明した方法で比較試料B65,
F12,SM5に混合酸化物基体を付与した。しか
し、MnO2のトツプコートは、電着させずに、比
較のため、硝酸マンガン溶液を混合酸化物表面層
上で熱分解して生成させた。 これらの試料に対する表2のデータは、表1と
同じ方法で得たものである。 表1と表2の結果を比較してみると、実施例1
のMnO2を電着コートした場合は、同じような条
件下で電極寿命が長くなることを示している。
[Table] Example 2 Comparative sample B65,
A mixed oxide substrate was applied to F12 and SM5. However, the MnO 2 topcoat was not electrodeposited, but instead was produced by pyrolyzing a manganese nitrate solution onto the mixed oxide surface layer for comparison. The data in Table 2 for these samples was obtained in the same manner as in Table 1. Comparing the results of Tables 1 and 2, Example 1
Electrodeposited coating of MnO 2 shows a longer electrode life under similar conditions.

【表】 実施例 3 チタンメツシユのベース上に二酸化鉛をコート
した電極試料を以下の方法で作製した。 チタンメツシユ片(50×25×2mm)を予備処理
するため、グリツトブラストし、25%塩酸中で96
℃にて30分間エツチングした。 IrCl3水溶液1g(Ir56%)をn−ブタノール
60ml、36%塩酸3mlに溶かして、溶液を作製し
た。予備処理ずみのチタンメツシユ表面にブラシ
を使つてこの溶液を均一に塗り、空気中で10分間
乾燥し、空気流中で480℃で7分間加熱処理し
た。 チタン表面を0.5g/m2のIrを含有する混合酸
化物基体に徐々に変化させるため、上記の表面処
理を4回繰返した。 次に、Pb(NO32400g/、Cu(NO3214
g/、HNO310g/、界面活性剤(商品名
Triton−X)12g/より成る水溶液の入つたメ
ツキ浴中で、上記で生成した混合酸化物基体上に
二酸化鉛を電気メツキした。このメツキ浴で50〜
75℃で二酸化鉛を陽極電着させたが、連続した2
段階即ち40mA/cm2で5分、20mA/cm2で55分で
行なつた。100℃で5分間乾燥の後、約1000g
PbO2/m2に相当する二酸化鉛のコートを得た。
電気メツキの電池電圧は約1.5Vで、PbO2に対す
る電流効率は50%であつた。 導電性中間混合酸化物層の表面に二酸化鉛をト
ツプコートしたチタンメツシユ試料51に対し、
H2SO4150g/中で50℃、8000A/m2にて酸素
発生陽極としての加速試験を行なつた。標準水素
電極に対し単極初期電位は2.26V(抵抗低下の補
正せず)であつた。電池電圧が約5V(初期約
4.5V)に上昇し加速試験条件下での陽極寿命が
約680時間である時には、試験を中断した。
[Table] Example 3 An electrode sample in which lead dioxide was coated on a titanium mesh base was prepared in the following manner. To pre-treat the titanium mesh pieces (50 x 25 x 2 mm), grit blast and 96°C in 25% hydrochloric acid.
Etching was performed at ℃ for 30 minutes. 1 g of IrCl 3 aqueous solution (Ir56%) was added to n-butanol.
A solution was prepared by dissolving the mixture in 60 ml and 3 ml of 36% hydrochloric acid. This solution was evenly applied to the surface of the pretreated titanium mesh using a brush, dried in air for 10 minutes, and heat treated at 480° C. for 7 minutes in a stream of air. The above surface treatment was repeated four times in order to gradually transform the titanium surface into a mixed oxide substrate containing 0.5 g/m 2 of Ir. Next, Pb(NO 3 ) 2 400g/, Cu(NO 3 ) 2 14
g/, HNO 3 10g/, surfactant (product name
Lead dioxide was electroplated onto the mixed oxide substrate produced above in a plating bath containing an aqueous solution of 12 g/triton-X). 50~ in this metsuki bath
Lead dioxide was anodically electrodeposited at 75°C, but two successive
It was carried out in steps: 40 mA/cm 2 for 5 minutes and 20 mA/cm 2 for 55 minutes. Approximately 1000g after drying at 100℃ for 5 minutes
A coat of lead dioxide corresponding to PbO 2 /m 2 was obtained.
The battery voltage of the electric plating was about 1.5V, and the current efficiency with respect to PbO 2 was 50%. For titanium mesh sample 51 with lead dioxide top coated on the surface of the conductive intermediate mixed oxide layer,
An accelerated test as an oxygen generating anode was conducted at 50° C. and 8000 A/m 2 in 150 g of H 2 SO 4 . The unipolar initial potential was 2.26 V (not corrected for resistance drop) relative to the standard hydrogen electrode. Battery voltage is approximately 5V (initial approx.
4.5V) and the anode life under accelerated test conditions was approximately 680 hours, the test was discontinued.

【表】 実施例 4 チタン板ベース上に二酸化鉛をコートした電極
試料A〜Fを以下の方法で作製した。 チタン板片(100×20×1mm)の予備処理は、
グリツトブラストにつぎ15%塩酸中で100℃、60
分間エツチングさせて行なつた。 IrCl3水溶液(48%Ir)0.1gをIPA6ml、36%塩
酸0.4mlに溶かして、溶液を作製した。予備処理
ずみの上記チタン試料表面にこの溶液をブラシで
均一に塗り、60℃で空気中にて5分間乾燥し、つ
いで空気流中で480℃、7.5分間熟成させた。チタ
ン表面を0.8g/m2のIrを含有する酸化物基体に
徐々に変化させるため、上記の表面処理を4回繰
返した。 次に、実施例1の場合と同じ浴中で、生成した
酸化物基体上に二酸化鉛を電気メツキした。たゞ
し、20mA/cm2で2時間、1段階で行なつた。つ
いで、120℃、120分間乾燥を行ない、基体表面1
m2当り1430〜1700gのPbO2に相当する二酸化鉛
のコートを得た。試料Aは更に400℃、20分間処
理した。かくして得た4つの電極試料(A〜D)
に対し、、H2SO4150g/中45℃で酸素発生陽極
としての加速試験を行なつた。表3に、陽極試料
A〜Dに対する二酸化鉛被膜量、陽極試験電流密
度および試験時間を示した。 上記説明通りに作製した電極試料Eに対し、試
料Aと同じ条件下で加速試験を行なつた。たゞ
し、硫酸電解質に弗化ナトリウムを10ppm添加
した。この試験条件下で弗化物イオンによる決定
的な影響は見当らなかつた。 試料Fも同じ方法で作製したが、混合酸化物基
体表面の総貴金属被膜量がIr0.2g/m2、Ru0.6
g/m2になるように、該溶液においてIrCl3の一
部をRuCl3に置換えた。 つぎに二酸化鉛をトツプコートし、陽極試験を
行なつた。7500A/m2での加速試験条件下での陽
極寿命は780時間であつた。 産業えの応用性 本発明にもとづき作製される電極は、バルブ金
属をベースとした安価、安定、抗酸化性の電極を
必要とする各種電解法に有利に利用することがで
きる。 本発明による電極は、酸素が陽極発生する条件
下で、より具体的には酸電解質中での使用陽極と
して有利に利用することができる。 二酸化マンガン被膜を有する本発明電極は、軽
量、小容量の、電解質の汚染なく低起電力で作動
する、安価な酸素発生陽極として有利に利用する
ことができ、従つて、現在使用中の従来法鉛また
は鉛合金陽極に代つて、酸電解質からの金属
(Cu,Zn,Co,Ni,Crなど)電解採取法におい
て、有利に利用することができる。 二酸化鉛被膜を有する本発明電極は、有機物
質、弗化物、塩化物、臭化物、塩素酸塩、硫酸
塩、硝酸塩、シアン化物、炭酸塩、C2H3O2、ク
ロム酸塩、二クロム酸塩の水溶液中での電解用不
溶性陽極として、有利に使用することができる。
これらの電極は、金属(Cu,Zn,Co,Ni,Crな
ど)の回収、精製、電解採取法において用いられ
る。これらの電極は、クロム酸製造、クロムメツ
キ、過ほうさん塩、過硫酸塩、過塩素酸塩の製
造、沃素酸の酸化の諸プロセスにも有用に用いる
ことができる。同様に、これらの電極は、電気浮
選用陽極、または比較的高い酸素過電圧を必要と
する有機酸化反応用陽極として有用に利用でき
る。
[Table] Example 4 Electrode samples A to F, each having a titanium plate base coated with lead dioxide, were prepared in the following manner. The preliminary treatment of titanium plate pieces (100 x 20 x 1 mm) is as follows:
After grit blasting, in 15% hydrochloric acid at 100℃, 60
I etched it for a minute. A solution was prepared by dissolving 0.1 g of IrCl 3 aqueous solution (48% Ir) in 6 ml of IPA and 0.4 ml of 36% hydrochloric acid. This solution was applied evenly with a brush to the surface of the pretreated titanium sample, dried in air at 60°C for 5 minutes, and then aged in a stream of air at 480°C for 7.5 minutes. The above surface treatment was repeated four times in order to gradually transform the titanium surface into an oxide substrate containing 0.8 g/m 2 of Ir. Lead dioxide was then electroplated onto the resulting oxide substrate in the same bath as in Example 1. However, it was carried out in one step for 2 hours at 20 mA/cm 2 . Next, drying was performed at 120°C for 120 minutes, and the substrate surface 1
A coat of lead dioxide corresponding to 1430-1700 g PbO 2 per m 2 was obtained. Sample A was further treated at 400°C for 20 minutes. Four electrode samples (A to D) thus obtained
On the other hand, an accelerated test was conducted as an oxygen generating anode at 45° C. in 150 g of H 2 SO 4 . Table 3 shows the amount of lead dioxide coating, anode test current density, and test time for anode samples A to D. Electrode sample E prepared as described above was subjected to an accelerated test under the same conditions as sample A. However, 10 ppm of sodium fluoride was added to the sulfuric acid electrolyte. No decisive influence by fluoride ions was found under these test conditions. Sample F was also prepared using the same method, but the total amount of noble metal coating on the surface of the mixed oxide substrate was Ir0.2g/m 2 and Ru0.6.
A portion of the IrCl 3 was replaced by RuCl 3 in the solution so that the amount of IrCl 3 was 100 g/m 2 . Next, lead dioxide was top coated and an anodic test was performed. The anode life under accelerated test conditions at 7500 A/m 2 was 780 hours. Industrial Applicability Electrodes produced according to the present invention can be advantageously used in various electrolytic methods that require inexpensive, stable, and anti-oxidizing electrodes based on valve metals. The electrode according to the invention can be advantageously utilized as an anode for use under conditions where oxygen is anodically generated, more particularly in acid electrolytes. The electrode of the present invention having a manganese dioxide coating can be advantageously used as a lightweight, small-capacity, inexpensive oxygen-generating anode that operates with low electromotive force without contaminating the electrolyte, and therefore can be used advantageously as an oxygen-generating anode that is lightweight, has a small capacity, operates with low electromotive force, and is therefore superior to conventional methods currently in use. Instead of lead or lead alloy anodes, they can be advantageously used in metal (Cu, Zn, Co, Ni, Cr, etc.) electrowinning processes from acid electrolytes. The electrode of the present invention having a lead dioxide coating can contain organic substances, fluorides, chlorides, bromides, chlorates, sulfates, nitrates, cyanides, carbonates, C 2 H 3 O 2 , chromates, dichromates. It can be advantageously used as an insoluble anode for electrolysis in aqueous solutions of salts.
These electrodes are used in the recovery, purification, and electrowinning of metals (Cu, Zn, Co, Ni, Cr, etc.). These electrodes can also be usefully used in processes such as chromic acid production, chrome plating, perosalt, persulfate, and perchlorate production, and iodic acid oxidation. Similarly, these electrodes can be usefully utilized as anodes for electroflotation or for organic oxidation reactions requiring relatively high oxygen overpotentials.

Claims (1)

【特許請求の範囲】 1 バルブ金属の電極基材、導電性中間混合酸化
物層および該層上の二酸化マンガンまたは二酸化
鉛の外側被覆から構成された電解用電極におい
て、前記導電性中間混合酸化物層が前記電極基材
の表面におけるバルブ金属と少なくとも1種類の
白金族金属とから形成された混合酸化物よりなる
ことを特徴とする電解用電極。 2 該導電性中間混合酸化物層が白金族:イリジ
ウム、ルテニウムおよびロジウムの少なくとも1
種類を含むことを特徴とする特許請求の範囲第1
項記載の電極。 3 該電極基材がチタンから成ることを特徴とす
る特許請求の範囲第1項または2項記載の電極。 4 バルブ金属の電極基材、導電性中間混合酸化
物層および二酸化マンガンまたは二酸化鉛の外側
被膜から成る電解用電極の製造法において、 (a) バルブ金属電極基材の表面上に、バルブ金属
と少なくとも1種の白金族金属との導電性中間
混合酸化物層を形成し、それは下記の方法で構
成する; (イ) バルブ金属基材表面に、イリジウム、ロジ
ウムおよびルテニウムより成る群から選んだ
少なくとも1種類の白金族金属の塩化物およ
び塩酸より成る溶液を施し、該溶液中の塩化
水素対白金族金属塩化物のモル比は1:1〜
100:1の範囲にあるように選択する; (ロ) 塩酸をバルブ金属基材表面と充分な時間接
触させ、該表面上のバルブ金属を充分な量の
塩化物に転化し、上記モル比に相当する所定
割合のバルブ金属塩化物と白金族金属塩化物
との塩化物混合物を作るために、前記の処理
溶液をゆつくりと乾燥し; (ハ) 生成した塩化物混合物をバルブ金属基材表
面に一体化した混合酸化物に転化させるた
め、上記塩化物混合物を酸化雰囲気中で400
〜600℃の温度範囲にて熱処理し; (ニ) 溶液施工、乾燥、熱処理の一連の工程を繰
返し、所望の厚さを有する上記混合酸化物の
層を徐々に生成させる;および (b) 上記の一連の工程により生成した混合酸化物
層上に前記外側被膜を形成する; 以上(a),(b)の工程より成ることを特徴とする電
解用電極の製造法。 5 該バルブ金属基材表面の1平方メートル当り
少なくとも100g相当量の上記二酸化マンガンま
たは二酸化鉛を電着させることを特徴とする特許
請求の範囲第4項記載の製造法。 6 該塩化物混合物を450〜520℃の温度範囲で熱
処理することを特徴とする特許請求の範囲第4項
記載の製造法。 7 該モル比を3:1〜30:1の間で選ぶことを
特徴とする特許請求の範囲第4項記載の製造法。 8 該溶液中に存在する白金族金属塩化物のモル
濃度を溶液1当り1×10-2〜25×10-2モルの範
囲より選ぶことを特徴とする特許請求の範囲第4
項記載の製造法。 9 白金族金属塩化物の該モル濃度が溶液1当
り2×10-2〜10×10-2モルの範囲で選ぶことを特
徴とする特許請求の範囲第8項記載の製造法。 10 白金族金属塩化物の上記モル濃度が溶液1
当り2.5×10-2〜7.5×10-2モルの範囲で選ぶこ
とを特徴とする特許請求の範囲第9項記載の製造
法。 11 該溶液中のHClのモル濃度を溶液1当り
14×10-2〜3.0モルの間に選ぶことを特徴とする
特許請求の範囲第4項記載の製造法。 12 該バルブ金属電極基材表面に施す上記溶液
が非水性溶媒を含み、その溶媒は乾燥工程中ゆつ
くりと蒸発させる特許請求の範囲第4項記載の製
造法。 13 該溶媒がアルコールであることを特徴とす
る特許請求の範囲第12項記載の製造法。 14 該溶媒がイソプロピルアルコールであるこ
とを特徴とする特許請求の範囲第13項記載の製
造法。
[Scope of Claims] 1. An electrolytic electrode comprising an electrode base material of a valve metal, a conductive intermediate mixed oxide layer, and an outer coating of manganese dioxide or lead dioxide on the layer, wherein the conductive intermediate mixed oxide An electrode for electrolysis, characterized in that the layer is made of a mixed oxide formed from a valve metal on the surface of the electrode base material and at least one platinum group metal. 2. The conductive intermediate mixed oxide layer contains at least one of platinum group metals: iridium, ruthenium, and rhodium.
Claim 1 characterized in that it includes a type.
Electrode as described in Section. 3. The electrode according to claim 1 or 2, wherein the electrode base material is made of titanium. 4. In a method for producing an electrolytic electrode comprising a valve metal electrode base material, a conductive intermediate mixed oxide layer, and an outer coating of manganese dioxide or lead dioxide, (a) on the surface of the valve metal electrode base material, the valve metal and Forming a conductive intermediate mixed oxide layer with at least one platinum group metal, which is constituted by the following method; A solution consisting of a chloride of a platinum group metal and hydrochloric acid is applied, and the molar ratio of hydrogen chloride to platinum group metal chloride in the solution is from 1:1 to
(b) Bringing hydrochloric acid into contact with the surface of the valve metal substrate for a sufficient period of time to convert the valve metal on the surface into a sufficient amount of chloride to achieve the above molar ratio. Slowly dry the treatment solution to produce a chloride mixture of valve metal chloride and platinum group metal chloride in corresponding predetermined proportions; (c) apply the resulting chloride mixture to the surface of the valve metal substrate; The above chloride mixture was heated for 400 min in an oxidizing atmosphere in order to convert it into a mixed oxide integrated with
heat treatment at a temperature range of ~600°C; (d) repeating a series of steps of solution application, drying, and heat treatment to gradually form a layer of the mixed oxide having the desired thickness; and (b) the above. forming the outer coating on the mixed oxide layer produced by the series of steps; A method for producing an electrode for electrolysis, characterized by comprising the steps (a) and (b) above. 5. The manufacturing method according to claim 4, characterized in that the manganese dioxide or lead dioxide is electrodeposited in an amount equivalent to at least 100 g per square meter of the surface of the valve metal substrate. 6. The manufacturing method according to claim 4, characterized in that the chloride mixture is heat-treated at a temperature range of 450 to 520°C. 7. Process according to claim 4, characterized in that the molar ratio is selected between 3:1 and 30:1. 8. Claim 4, characterized in that the molar concentration of the platinum group metal chloride present in the solution is selected from the range of 1 x 10 -2 to 25 x 10 -2 mol per solution.
Manufacturing method described in section. 9. The production method according to claim 8, wherein the molar concentration of the platinum group metal chloride is selected within the range of 2×10 −2 to 10×10 −2 mol per solution. 10 If the above molar concentration of platinum group metal chloride is solution 1
10. The production method according to claim 9, wherein the amount is selected in the range of 2.5×10 -2 to 7.5×10 -2 mol per mol. 11 The molar concentration of HCl in the solution per solution
The manufacturing method according to claim 4, characterized in that the amount is selected between 14×10 −2 and 3.0 mol. 12. The manufacturing method according to claim 4, wherein the solution applied to the surface of the valve metal electrode substrate contains a non-aqueous solvent, and the solvent is slowly evaporated during the drying step. 13. The production method according to claim 12, wherein the solvent is alcohol. 14. The manufacturing method according to claim 13, wherein the solvent is isopropyl alcohol.
JP56128666A 1980-08-18 1981-08-17 Coated electrode with dimension stability for electrolysis having oxide protecting film on base of valve metal and production thereof Granted JPS5773193A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8026831A GB2083837B (en) 1980-08-18 1980-08-18 Manufacture of electrode with manganese dioxide coating valve metal base intermediate semiconducting layer

Publications (2)

Publication Number Publication Date
JPS5773193A JPS5773193A (en) 1982-05-07
JPS6147231B2 true JPS6147231B2 (en) 1986-10-17

Family

ID=10515514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56128666A Granted JPS5773193A (en) 1980-08-18 1981-08-17 Coated electrode with dimension stability for electrolysis having oxide protecting film on base of valve metal and production thereof

Country Status (3)

Country Link
JP (1) JPS5773193A (en)
GB (1) GB2083837B (en)
ZM (1) ZM6281A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583781A1 (en) * 1985-06-24 1986-12-26 Atochem CATHODE FOR ELECTROLYSIS AND METHOD FOR MANUFACTURING THE SAME CATHODE
FR2596776B1 (en) * 1986-04-03 1988-06-03 Atochem CATHODE FOR ELECTROLYSIS AND A METHOD FOR MANUFACTURING SAID CATHODE
KR100196094B1 (en) * 1992-03-11 1999-06-15 사토 히로시 Oxygen generating electrode
JP4858666B2 (en) * 2001-09-27 2012-01-18 Tdk株式会社 Electrode device
CN101942673A (en) * 2003-10-08 2011-01-12 阿克佐诺贝尔公司 Electrode
JP2006077319A (en) * 2004-09-13 2006-03-23 Koji Hashimoto Oxygen generation type electrode and its production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286979A (en) * 1975-12-10 1977-07-20 Electronor Corp Manganese dioxide electrode
JPS5379771A (en) * 1976-12-24 1978-07-14 Osaka Soda Co Ltd Insoluble anode and its manufacture
JPS5565378A (en) * 1978-11-03 1980-05-16 Diamond Shamrock Corp Production of electrode having manganese dioxide coat and electrode
JPS5589491A (en) * 1978-12-27 1980-07-07 Japan Carlit Co Ltd:The Insoluble anode for electrolysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286979A (en) * 1975-12-10 1977-07-20 Electronor Corp Manganese dioxide electrode
JPS5379771A (en) * 1976-12-24 1978-07-14 Osaka Soda Co Ltd Insoluble anode and its manufacture
JPS5565378A (en) * 1978-11-03 1980-05-16 Diamond Shamrock Corp Production of electrode having manganese dioxide coat and electrode
JPS5589491A (en) * 1978-12-27 1980-07-07 Japan Carlit Co Ltd:The Insoluble anode for electrolysis

Also Published As

Publication number Publication date
GB2083837B (en) 1984-06-27
JPS5773193A (en) 1982-05-07
GB2083837A (en) 1982-03-31
ZM6281A1 (en) 1981-12-21

Similar Documents

Publication Publication Date Title
CA2519522C (en) Electrocatalytic coating with platinum group metals and electrode made therefrom
US4331528A (en) Coated metal electrode with improved barrier layer
US4585540A (en) Composite catalytic material particularly for electrolysis electrodes and method of manufacture
US20170067172A1 (en) Catalyst coating and process for production thereof
JP4341838B2 (en) Electrode cathode
WO2001000905A1 (en) Method of producing copper foil
JP2003507580A (en) Cathode usable for electrolysis of aqueous solution
KR870001769B1 (en) Electrodes and method for its manufacture
US4444642A (en) Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture
US6368489B1 (en) Copper electrowinning
JP2641584B2 (en) Anode with dimensional stability
EP0027051B1 (en) Coated metal electrode with improved barrier layer and methods of manufacture and use thereof
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
EP0046448B1 (en) Electrode with outer coating for effecting an electrolytic process and protective intermediate coating on a conductive base, and method of making same
CN112195482B (en) Composite titanium anode plate and preparation method thereof
JP2019119930A (en) Chlorine generating electrode
JPS6147231B2 (en)
US4265728A (en) Method and electrode with manganese dioxide coating
JPH0114316B2 (en)
US4849085A (en) Anodes for electrolyses
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH0257159B2 (en)
JPH0499294A (en) Oxygen generating anode and its production
JP2018016872A (en) Method for producing electrode for generating hydrogen, and electrolysis method using the electrode for generating hydrogen
JPH0417689A (en) Electrode for electrolyzing water and production thereof