Nothing Special   »   [go: up one dir, main page]

JPS6146226A - Method and apparatus for concentrating tritium in hydrogen isotope by thermodiffusion - Google Patents

Method and apparatus for concentrating tritium in hydrogen isotope by thermodiffusion

Info

Publication number
JPS6146226A
JPS6146226A JP16774384A JP16774384A JPS6146226A JP S6146226 A JPS6146226 A JP S6146226A JP 16774384 A JP16774384 A JP 16774384A JP 16774384 A JP16774384 A JP 16774384A JP S6146226 A JPS6146226 A JP S6146226A
Authority
JP
Japan
Prior art keywords
tritium
gas
hydrogen
concentrating
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16774384A
Other languages
Japanese (ja)
Other versions
JPS632208B2 (en
Inventor
Tadashi Takayasu
高安 紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA DAIGAKU
Original Assignee
TOYAMA DAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA DAIGAKU filed Critical TOYAMA DAIGAKU
Priority to JP16774384A priority Critical patent/JPS6146226A/en
Publication of JPS6146226A publication Critical patent/JPS6146226A/en
Publication of JPS632208B2 publication Critical patent/JPS632208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain high-purity tritium and simultaneously to reduce the size of a separation tower by adding He to a gaseous mixture of hydrogen isotopes, forming tritium with use of a catalyst, and concentrating the tritium by thermodiffusion. CONSTITUTION:Thermodiffusion separation towers 1, 2, and 3 are connected in series, and the separation towers 1 and 2 and 2 and 3 are connected by pipes furnished with gas circulating pumps 4 and 5. A U-tube 7 having a catalyst bed 7 is connected to a pipe between the separation tower 2 and the circulating pump 5. A gaseous mixture of hydrogenated isotopes added with He is introduced into the separation tower 1, passed through the tower, and brought into contact with the catalyst in the U-tube 7. Consequently, hydrogenated tritium TH and deuterated tritium DH in the gaseous mixture are separated respectively into hydrogen H2 and tritium T2 and into T2 and deuterium D2. Besides, a catalyst bed 8 is also provided between the separation tower 3 and the circulating pump 6. The concd. tritium T2 is taken out from a discharge port 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素同位体混合ガス中に存在するトリチウム
を熱拡散法により濃縮する方法に関するものである口 (従来の技術〉 水素には三種類の同位体、Tなわち軽水素(H)、重水
素CD)およびトリチウム(T)が存在する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for concentrating tritium present in a hydrogen isotope mixed gas by a thermal diffusion method. There are two types of isotopes: light hydrogen (H), deuterium (CD) and tritium (T).

従って水素分子にはこれらの組合せによる6種類の分子
種、H,、D、、T、、TH,TDIHDが存在する。
Therefore, there are six types of molecular species in hydrogen molecules, H, D, T, TH, and TDIHD.

これら水翼同位体の混合ガス中から一トリチウムを濃縮
し分離する方法としては、気体がそのまま取り扱える熱
拡散法が代表的である。
A typical method for concentrating and separating monotritium from a mixed gas of these water wing isotopes is the thermal diffusion method, which allows the gas to be handled as is.

このための装置として円筒型熱拡散分離塔が用いられる
。こnは二重の円筒を鉛直にたてたもので、外側の管を
外側から水冷し、内側の管(ヒーター]を内部から加熱
する。濃縮する混合ガスをこの二本の管の間に導入する
。時間の経過と共に重い気体種はこの分離塔の下部に軽
い気体種は上部に濃縮し、平衡に達する。この熱拡散分
離管の性能は冷却された円11i(温度でよ)とこれの
中心線上に位置するヒーター(温度T、 )との間隔(
d)に大きく左右される。また、この管の設計には高さ
くh)と平衡分離係数((1)も関係する。この平衡分
離係数は平衡時における濃縮割合(分離能)であり各気
体種の上部と下部に5ける濃度の比で表わされ、この数
字が大きいほど濃縮が良い。一般に塔の高さは高いほど
よく、塔の太ざおよびヒーターの温度には最適値がある
。またガスの圧力が高くなると分離塔の最適な形状は小
、さくなる。
A cylindrical thermal diffusion separation column is used as a device for this purpose. This is a double cylinder built vertically.The outer tube is water-cooled from the outside, and the inner tube (heater) is heated from the inside.The mixed gas to be concentrated is passed between these two tubes. As time passes, heavy gas species concentrate at the bottom of this separation column and light gas species condense at the top, reaching equilibrium.The performance of this thermal diffusion separation tube is determined by The distance between the heater (temperature T, ) located on the center line of (
d). In addition, the height h) and the equilibrium separation coefficient ((1) are also related to the design of this tube. This equilibrium separation coefficient is the concentration ratio (separation ability) at equilibrium, and the upper and lower parts of each gas species are It is expressed as a ratio of concentrations, and the higher the number, the better the concentration.Generally, the higher the height of the tower, the better, and there is an optimum value for the width of the tower and the temperature of the heater.Also, the higher the gas pressure, the better the separation. The optimal shape for the tower is small.

(発明が解決しようとする問題点) このように分離塔の最適な形状が濃縮されるガスの社に
無関係に一義的に決まってしまうために、濃縮されるガ
スが微量しか存在しない場合には、この塔は事実上使用
できないという欠点を有している。たとえば平衡分離係
数の大きい分離塔をつくり、水素中に存在するトリチウ
ム(T2)を濃縮する場合、トリチウムのすべてが分離
塔の下部に濃縮したとしても、トリチウムは体積が小さ
いので、これを取り出そうとすると必ず軽水素(H2)
も混入して出てくる。たとえば100.i程度のトリチ
ウムが存在したとすると体積は4−程度であ  1す、
このときの分離塔の容積は100〇−以上であり、下部
にはこの他に大量の水素が共存しているので、純度の高
いトリチウムを得ることはできないO 純度の高いトリチウムを得るために、水素同位体混合ガ
スにヘリウム(He )を添加し、濃縮されたトリチウ
ムを他の水翼同位体からひき離す方策がとらnた。即ち
、水素同位体混合ガスにヘリウムを添加すると、分離塔
内に3いてヘリウム(分子量M−4)より軽い水素H,
()(−1)、水素化重水素Dll(M−6)はヘリウ
ムの上に濃縮する◎また、ヘリウムより重いテD(’M
−6)’Eよび’l’(K−fiンはヘリウムの下にm
at、、分トリチウムが得られるというものである。
(Problem to be solved by the invention) In this way, since the optimal shape of the separation column is uniquely determined regardless of the company of the gas to be concentrated, when there is only a trace amount of the gas to be concentrated, , this tower has the disadvantage of being virtually unusable. For example, when creating a separation column with a large equilibrium separation coefficient and concentrating tritium (T2) present in hydrogen, even if all of the tritium is concentrated at the bottom of the separation column, since tritium has a small volume, it is difficult to extract it. Then, light hydrogen (H2)
It also comes out mixed in. For example 100. If about i amount of tritium existed, the volume would be about 4-1,
At this time, the volume of the separation column is more than 1000, and a large amount of hydrogen also coexists in the lower part, so it is impossible to obtain tritium with high purity. A strategy was taken to add helium (He) to the hydrogen isotope mixture to separate the enriched tritium from other water wing isotopes. That is, when helium is added to a hydrogen isotope mixed gas, hydrogen H, which is lighter than helium (molecular weight M-4), is produced in the separation column.
()(-1), deuterium hydride Dll(M-6) is concentrated on helium ◎Also, TeD('M
-6) 'E and 'l' (K-fin is m under helium)
It is said that tritium can be obtained by at.

しかし、この方法では、トリチウムを濃縮し分離しても
、この系にTDとTHが混入していると1原子の組替え
を行わない限り純粋なトリチウムを取り出すことはでき
ない。この水素原子の組替えは通常触媒を用いて行わn
る。また、・この方法では、THに分子量がヘリウムと
同じであるからヘリウムからの分離が極めて悪い。また
、分離管を長くして分離したとしてもTHであるのでト
リチウ“ムの純度は50%である。
However, in this method, even if tritium is concentrated and separated, if TD and TH are mixed in the system, pure tritium cannot be extracted unless one atom is rearranged. This rearrangement of hydrogen atoms is usually carried out using a catalyst.
Ru. In addition, in this method, since TH has the same molecular weight as helium, separation from helium is extremely poor. Further, even if the separation tube is made longer, the purity of tritium is 50% since it is TH.

そこで考えらnるのが、触媒を用いてTDおよびTuT
tT、と4およびT、とり、に組替え、T、−HeとH
,−H13およびり、 −Heの系として熱拡散分゛離
塔でトリチウムを濃縮する方法である。
Therefore, the idea is to use a catalyst to produce TD and TuT.
tT, and 4 and T, Tori, recombination, T, -He and H
, -H13 and -He is a method of concentrating tritium in a thermal diffusion separation tower.

(問題点を解決するための手段) 本発明は熱拡散法により水翼同位体混合ガス中に存在す
るトリチウムを濃縮するに当り、あらかじめ水素同位体
混合ガスにヘリウムを添加し、触媒を用いて前記ガス中
の水素化トリチウムT)IF5よび重水票化トリチウム
TDをT、とH3およびT。
(Means for Solving the Problems) The present invention involves adding helium to the hydrogen isotope mixture gas in advance and using a catalyst when concentrating tritium present in the water wing isotope mixture gas by the thermal diffusion method. Tritium hydride T) IF5 and deuterated tritium TD in the gas, H3 and T.

とり、に組替え、生成するT、を濃縮することを特徴と
・する。
It is characterized by recombining and concentrating the produced T.

この方法において、ヘリウムは触媒表面に8ける水素原
子の組替え反応中に、T、の生成を妨害するH2および
り、を触媒から遠ざけるために、あらかじめ水素同位体
混合ガスに添加する。水素原子の組替え反応に使用する
触媒としては通常用いられる金属でよいが、特に白金、
ニラクル、p″ジラム、パラジウム、鋼、白金−ロジウ
ム、白金−パラジウム、銅−ニッケル等が好ましい。反
応温度は洞見jf 800〜1000℃であり、反応容
器としては例えば1200℃程度迄の高温で使用できる
石英碍子製のものを用いる。
In this method, helium is added in advance to the hydrogen isotope mixture gas in order to keep H2 and T, which interfere with the production of T, away from the catalyst during the recombination reaction of hydrogen atoms on the catalyst surface. The catalyst used for the recombination reaction of hydrogen atoms may be any commonly used metal, but especially platinum,
Niracle, p'' diram, palladium, steel, platinum-rhodium, platinum-palladium, copper-nickel, etc. are preferred.The reaction temperature is 800 to 1000°C, and the reaction vessel is used at a high temperature of, for example, about 1200°C. Use a quartz insulator that can be used.

本発明に使用する濃縮装蓋は、内部ヒーターを具えた一
内H15よび外部冷却装置を具えた外筒から成り濃縮す
る水素同位体混合ガスを内筒と外筒との間に導入する少
なくとも1本の熱拡散分離塔、この分離塔にヘリウムガ
スを導入するガス導入部、および水素同位体混合ガス中
の水素化トリチウムTHおよび重水票化トリチウムDI
を分子T、と■、およびT、とり、に組替える触媒層を
ttr。
The enrichment cap used in the present invention consists of an inner H15 equipped with an internal heater and an outer cylinder equipped with an external cooling device. This thermal diffusion separation column, the gas introduction part that introduces helium gas into this separation column, and tritium hydride TH and deuterated tritium DI in the hydrogen isotope mixed gas
Take the molecules T, and ■, and T, and rearrange the catalyst layer into ttr.

以下、図面に基づき本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on the drawings.

(実施例) 本発明実施例に用いた分離塔とこれに接続するガス処理
装置の概妾を第1図に示す。
(Example) FIG. 1 shows a schematic diagram of a separation column and a gas treatment device connected thereto used in an example of the present invention.

第1図において複数の熱拡散分離塔1.2.8を直列に
接続する。この分離塔は取り扱いの容易さから1III
のものを8本接続して有効長3+aとした。分離塔1の
下部と分離塔2の上部、分離塔2の下部と分離塔3の上
部をそnぞれ2本のパイプで接続し、そのうち1本のバ
イ1にはガス濃度を等しくするためのガス循環ポンプ4
曽5をそれぞn挿入した。水素同位体混合ガス中の木葉
化トリチ’)ムTHおよび重水素化トリチウムDHを分
子T、とH2およびT、とり、に分解する目的で、分離
塔2とガス循環ポンプ6との間のパイプに触媒層を有T
るU字管7を連結した。また分離塔3とガス循環ポンプ
6との間のパイプに同様に触媒層を有するU字管8を連
結した。9は濃縮ガスの取出口である。
In FIG. 1, a plurality of thermal diffusion separation columns 1.2.8 are connected in series. This separation column is classified as 1III because of its ease of handling.
Eight pieces were connected to give an effective length of 3+a. The lower part of separation column 1 and the upper part of separation column 2 are connected by two pipes, and the lower part of separation column 2 and the upper part of separation column 3 are connected by two pipes, one of which is pipe 1, in order to equalize the gas concentration. gas circulation pump 4
So 5 was inserted n times. A pipe between the separation column 2 and the gas circulation pump 6 for the purpose of decomposing the foliated tritium TH and deuterated tritium DH in the hydrogen isotope mixed gas into molecules T, H2 and T. Has a catalyst layer on
The U-shaped tubes 7 were connected. Further, a U-shaped pipe 8 having a catalyst layer was similarly connected to the pipe between the separation column 3 and the gas circulation pump 6. 9 is a condensed gas outlet.

実施例、l。Examples, l.

分離塔1・2・8の各外筒の直径を4 Q vupr 
、内筒の内部ヒーターは石英管にニクロム義を2往復さ
せたもので直径を7111Bとした。分離塔上部のガス
溜の容積を0.5 tとした。まず、分離塔1に   
 !10 nolの水素化トリチウムTHを導入した後
、ヘリウムを導入し1気圧とした。触媒にはアルミナ担
持白金0・2りを用い、あらかじめ真空排気したのち、
550℃で試料ガスに接触させながら、外筒を20℃に
水冷し、内部ヒーターを860℃で一昼夜加熱したO分
離塔8の下部で試料ガス1を中にT、が8μQ1含まれ
ていることをラジオガスクロマトグラフを用いて確認す
ることができた。
The diameter of each outer cylinder of separation towers 1, 2, and 8 is 4 Q vupr.
The internal heater in the inner cylinder was a quartz tube with a nichrome tube that was moved back and forth twice, and had a diameter of 7111B. The volume of the gas reservoir at the top of the separation column was 0.5 t. First, in separation column 1
! After introducing 10 nol of tritium hydride TH, helium was introduced to bring the pressure to 1 atmosphere. Alumina-supported platinum 0.2 was used as the catalyst, and after evacuation in advance,
While contacting the sample gas at 550°C, the outer cylinder was water-cooled to 20°C, and the internal heater was heated at 860°C overnight at the bottom of the O separation tower 8. could be confirmed using a radiogas chromatograph.

実施例2゜ 触媒としてアルミナ担持白金の代りに銅を用しまた以外
は実施例1と同様の操作を行った。
Example 2 The same procedure as in Example 1 was carried out, except that copper was used instead of alumina-supported platinum as a catalyst.

第2図および第8図はトリチウムの濃縮と時間との関係
を示すグラフである。
FIGS. 2 and 8 are graphs showing the relationship between tritium concentration and time.

触媒Pt / Al、O,Tr:55o℃で用いた結果
を第2図に示す。THは上部(△印)に濃縮しqは約2
である。τ、は上部(○印)には全く見られないが、下
部(e印ンには1時間後にすでに生成し濃縮しそれ以後
に増減はほとんど見られないOしかし、24時間後には
下部のT、もほとんど見られなくなり、下部TH(0印
]も減少している。・使用後の触Kに残って排気されな
いトリチウム量を2π−counterで測定した結果
、0.2μC1のトリチウムが検出された口 触媒0uTt550℃で用いた結果を第8図に示す@l
)t / al、o、の場合と同様にT、は下部・印に
1時間後に見らnその後僅かに増加する。
The results using the catalyst Pt/Al, O, Tr at 55°C are shown in Figure 2. TH is concentrated in the upper part (△ mark) and q is about 2
It is. τ is not seen at all in the upper part (○ mark), but in the lower part (e mark), it has already formed and concentrated after 1 hour, and hardly any increase or decrease is seen after that. However, after 24 hours, T in the lower part , is almost no longer visible, and the lower TH (0 mark) has also decreased. - As a result of measuring the amount of tritium remaining in the contact K after use and not being exhausted using a 2π-counter, 0.2μC1 of tritium was detected. Figure 8 shows the results using the mouth catalyst at 0uTt550℃.
) As in the case of t/al, o, T, is seen after 1 hour at the bottom mark and increases slightly thereafter.

これらの実施例では水素化トリチウムT)Iを用いたカ
、重水素化トリチウムDHにツI/1テモ同様の結果が
得られた。
In these Examples, similar results were obtained using tritium hydride T)I and tritium deuteride DH.

(発明の効果) 以上説明したように、本発明によれば水素化トリチウム
Titおよび重水票化トリチウムDHをトリチウムT 
として−縮できるので、高純度のトリチウムを得ること
ができる。
(Effects of the Invention) As explained above, according to the present invention, tritium hydride Tit and deuterated tritium DH are converted into tritium T
Highly purified tritium can be obtained.

さらに、ヘリウムの添加により全圧力が高くなるので従
来の方法におけるよりも分離塔の形状を小型にすること
ができる0
Furthermore, since the total pressure increases with the addition of helium, the shape of the separation column can be made smaller than in conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例による自網装置の概略図、第2図
は本発明実施例による0、5%Pt / Al2O。 触媒によるT、の娘縮を示すグラフ、 第8図は本発明実施例による金属鋼触媒によるT、の濃
縮を示すグラフである。 1、2.8・・・分離塔 4.5.6・・・ガス循環ポンプ 7・8・・・触媒層のU字管 9・・・濃縮ガス取出口 1G、 11.12・・・ガス溜 特許出願人  富 山 大 学 長 第1図
FIG. 1 is a schematic diagram of a self-network device according to an embodiment of the present invention, and FIG. 2 is a diagram of a 0.5% Pt/Al2O according to an embodiment of the present invention. FIG. 8 is a graph showing the concentration of T by the metal steel catalyst according to the embodiment of the present invention. 1, 2.8... Separation column 4.5.6... Gas circulation pump 7, 8... Catalyst layer U-shaped tube 9... Concentrated gas outlet 1G, 11.12... Gas Tame Patent Applicant President, Toyama University Figure 1

Claims (1)

【特許請求の範囲】 1、熱拡散法により水素同位体混合ガス中に存在するト
リチウムを濃縮するに当り、 あらかじめ水素同位体混合ガスにヘリウム を添加し、触媒を用いて前記混合ガス中の水素化トリチ
ウムTHおよび重水素化トリチウムTDをトリチウム(
T_2)と水素(H_2)およびトリチウム(T_2)
と重水素(D_2)に組替え、生成するトリチウム(T
_2)を熱拡散法により濃縮することを特徴とする水素
同位体中のトリチウムの熱拡散法による濃縮方法。 2、内部ヒーターを具えた内筒および外部冷却装置を具
えた外筒から成り、濃縮する水素同位体混合ガスを内筒
と外筒との間に導入し濃縮処理するための少なくとも1
本の熱拡散分離塔、 この分離塔にヘリウムガスを導入するガス 導入部、および 水素同位体混合ガス中の水素化トリチウム THおよび重水素化トリチウムTDをトリチウム(T_
2)と水素(H_2)およびトリチウム(T_2)と重
水素(D_2)に組替える触媒層とよりなることを特徴
とする水素同位体中のトリチウムの熱拡散法による濃縮
装置。 3、ガス導入部はガス循環ポンプとガス溜とを少くとも
具備して成る特許請求の範囲第2項記載の濃縮装置。 4、触媒層は分離塔とガス循環ポンプとの間に介挿する
特許請求の範囲第2項記載の濃縮装置。
[Claims] 1. When concentrating tritium present in a hydrogen isotope mixture gas by the thermal diffusion method, helium is added to the hydrogen isotope mixture gas in advance, and a catalyst is used to concentrate the hydrogen in the hydrogen isotope mixture gas. Tritium oxide TH and tritium deuteride TD are converted into tritium (
T_2) and hydrogen (H_2) and tritium (T_2)
and deuterium (D_2), producing tritium (T
A method for concentrating tritium in a hydrogen isotope by a thermal diffusion method, characterized by concentrating _2) by a thermal diffusion method. 2. At least one cylinder consisting of an inner cylinder equipped with an internal heater and an outer cylinder equipped with an external cooling device, for introducing the hydrogen isotope mixed gas to be concentrated between the inner cylinder and the outer cylinder for concentration processing.
This thermal diffusion separation tower, a gas introduction part that introduces helium gas into this separation tower, and tritium hydride TH and deuterated tritium TD in the hydrogen isotope mixed gas are
2) and a catalyst layer for recombining hydrogen (H_2), tritium (T_2), and deuterium (D_2) using a thermal diffusion method for concentrating tritium in hydrogen isotopes. 3. The concentrating device according to claim 2, wherein the gas introduction section comprises at least a gas circulation pump and a gas reservoir. 4. The concentrating device according to claim 2, wherein the catalyst layer is interposed between the separation column and the gas circulation pump.
JP16774384A 1984-08-13 1984-08-13 Method and apparatus for concentrating tritium in hydrogen isotope by thermodiffusion Granted JPS6146226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16774384A JPS6146226A (en) 1984-08-13 1984-08-13 Method and apparatus for concentrating tritium in hydrogen isotope by thermodiffusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16774384A JPS6146226A (en) 1984-08-13 1984-08-13 Method and apparatus for concentrating tritium in hydrogen isotope by thermodiffusion

Publications (2)

Publication Number Publication Date
JPS6146226A true JPS6146226A (en) 1986-03-06
JPS632208B2 JPS632208B2 (en) 1988-01-18

Family

ID=15855287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16774384A Granted JPS6146226A (en) 1984-08-13 1984-08-13 Method and apparatus for concentrating tritium in hydrogen isotope by thermodiffusion

Country Status (1)

Country Link
JP (1) JPS6146226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152630U (en) * 1987-03-27 1988-10-06
JP2017072599A (en) * 2015-10-09 2017-04-13 クリオン、インコーポレイテッド Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes
US10940437B2 (en) 2010-04-02 2021-03-09 Veolia Nuclear Solutions, Inc. Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152630U (en) * 1987-03-27 1988-10-06
JPH0341781Y2 (en) * 1987-03-27 1991-09-02
US10940437B2 (en) 2010-04-02 2021-03-09 Veolia Nuclear Solutions, Inc. Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes
JP2017072599A (en) * 2015-10-09 2017-04-13 クリオン、インコーポレイテッド Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes
JP2022001887A (en) * 2015-10-09 2022-01-06 ヴェオリア ニュークリア ソリューションズ インコーポレイテッドVeolia Nuclear Solutions Inc. Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes

Also Published As

Publication number Publication date
JPS632208B2 (en) 1988-01-18

Similar Documents

Publication Publication Date Title
US7470350B2 (en) Process for tritium removal from light water
Horibe et al. DH fractionation in the system methane-hydrogen-water
US6461583B1 (en) Method for enrichment of heavy component of oxygen isotopes
US4173620A (en) Extraction method of tritium
US20100239481A1 (en) Process for tritium removal from water by transfer of tritium from water to an elemental hydrogen stream, followed by membrane diffusion tritium stripping and enrichment, and final tritium enrichment by thermal diffusion
US4101375A (en) Isotopically enriched helium-4
US7302812B2 (en) Process for production of isotopes
CN101680712A (en) Method and device for purifying and separating heavy component concentrate and simultaneously obtaining light gas isotope
KR100808706B1 (en) Heavy water production method and apparatus
JPS6146226A (en) Method and apparatus for concentrating tritium in hydrogen isotope by thermodiffusion
US4444737A (en) Process for separating and recovering hydrogen isotope
US20100021372A1 (en) Process for recovery of water isotopologues from impure water
US5468462A (en) Geographically distributed tritium extraction plant and process for producing detritiated heavy water using combined electrolysis and catalytic exchange processes
CA1213417A (en) Method for separating at least one heavy isotope from a hydrogen-containing medium
CA1160428A (en) Process for the extraction of tritium from heavy water
US2923601A (en) Method of isotope concentration
Alexander et al. Oxidation of Carbon Monoxide on Thin Films of Nickel, Palladium, and an Alloy
Kuznetsov Separation of helium isotopes by rectification and thermo-osmosis
Semiokhin Chemical methods of stable isotope separation
Yamamoto et al. Preliminary experiments of separation of tritium isotope by distillation of water
US3535079A (en) Method for fractionation of carbon isotopes
Alekseev et al. Deuterium removal unit for the MuCap experiment
CA1085423A (en) Chloroform deuteration process
US3101256A (en) Separation of hydrogen isotopes
Clusius et al. Results of Low Temperature Research. XXII. The Enrichment of N15 by Rectification of Nitric Oxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term