JPS6144230B2 - - Google Patents
Info
- Publication number
- JPS6144230B2 JPS6144230B2 JP55180436A JP18043680A JPS6144230B2 JP S6144230 B2 JPS6144230 B2 JP S6144230B2 JP 55180436 A JP55180436 A JP 55180436A JP 18043680 A JP18043680 A JP 18043680A JP S6144230 B2 JPS6144230 B2 JP S6144230B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- hydrogen
- oxide
- temperature
- closed circulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 50
- 238000010521 absorption reaction Methods 0.000 claims description 33
- 229910052739 hydrogen Inorganic materials 0.000 claims description 31
- 239000001257 hydrogen Substances 0.000 claims description 31
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 16
- 239000005751 Copper oxide Substances 0.000 claims description 14
- 229910000431 copper oxide Inorganic materials 0.000 claims description 14
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 229910000464 lead oxide Inorganic materials 0.000 claims description 2
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- 239000002826 coolant Substances 0.000 claims 1
- 238000007865 diluting Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 15
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 14
- 239000006096 absorbing agent Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 239000003507 refrigerant Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000005057 refrigeration Methods 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004868 gas analysis Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
〔産業上の利用分野〕
本発明は密閉循環型吸収式冷凍機に関し、特に
冷凍機内で発生する水素ガスを効率良く除去でき
る液化除去装置を備えた吸収式冷凍機に関するも
のである。
〔発明の背景〕
一般に、密閉循環型吸収式冷凍機は水を冷媒と
し、濃厚臭化リチウム水溶液を吸収液として使用
している。吸収式冷凍機における冷凍サイクルで
最も温度の高い部分は吸収液を濃縮する高温再生
器で、二重効用機では最高温度が約160℃にもな
る。この時の吸収液中の臭化リチウムの濃度は約
65%の高濃度になる。したがつて、元来腐食性の
強い臭化リチウム水溶液が高温高濃度になり、腐
食性が一段と強まるため、一般には冷凍機材料の
腐食を防止する目的でインヒビタを添加してい
る。このインヒビタには種々あるが、いずれも一
長一短があり、腐食を完全に防止できるものはな
い。したがつて、冷凍機の主構成材料である炭素
鋼の腐食により発生する水素が機内に蓄積され
る。しかるに、吸収式冷凍機は全密閉構造で、内
部が数mmHg〜数十mmHgで作動する装置であるた
め、発生した水素により機内圧力が上昇し、冷凍
効果が低下する。このため、従来は冷凍機の運転
員が周期的に真空ポンプ等の排気ポンプにより、
蓄積された水素を強制的に機外に排出していた。
しかるに、最近吸収式冷凍機が一段と小形化され
る傾向にあり、このような小形機ではメンテナス
フリーで無人運転が工業的に大きな利点となつて
いるが、機内の水素ガスの除去が大きな障害にな
つている。さらに、吸収式冷凍機が設置される場
所は一般的には建屋内の地下室等の余り換気の良
くない密室が多い。したがつて、爆発可燃性の水
素ガスを一度に多量排出するのは好ましくない。
従来の吸収式冷凍機には不凝縮ガスを貯めておく
抽気タンク及び真空ポンプはついているが、水素
等の不凝縮ガスを無害化し、自動的に機内圧力を
保つ装置のついているものはなかつた。
〔発明の目的〕
本発明の目的は、上記従来技術の欠点をなく
し、連続的に機内の水素ガスを液化除去するよう
にした密閉循環型吸収式冷凍機を提供することで
ある。
〔発明の概要〕
このような目的を達成するために、本発明は、
密閉容器内で発生する水素ガスを酸化して液化す
るもので、特に該水素ガスと反応時の自由エネル
ギー変化が負である金属酸化物により液化除去す
る装置を備えた構成としたものである。
〔実施例〕
以下、図に示す実施例を用いて本発明の詳細を
説明する。
一般に、密閉循環型吸収式冷凍機は冷媒に水
を、また吸湿性を有する吸収液として臭化リチウ
ムの濃厚水溶液を用いている。第1図にその原理
系統図を示すように、この冷凍機は再生器1、凝
縮器2、蒸発器3、吸収器4及びこれらの間に吸
収液及び冷媒を循環させるポンプ類6と、熱交換
器(図示せず)から構成され、各部分は各々次の
ように作動する。
(A) 蒸発器3
蒸発器3の蒸発器管束の管内には冷水が通じて
おり、管外には冷媒は散布され、その蒸発の潜熱
によつて冷水から熱をうばう。
(B) 吸収器4
臭化リチウム水溶液は同じ温度の水よりも蒸発
圧が著しく低く、かなり低い温度において発生す
る水蒸気を吸収できる。吸収器4では蒸発器3で
蒸発した冷媒は吸収器の管束の外面に散布された
臭化リチウム水溶液(吸収液)に吸収され、この
時発生する吸収熱は管内を通る冷却水により冷却
される。
(C) 再生器1a,1b
吸収器4で冷媒を吸収した希溶液は濃度が低下
し、吸収力が弱くなる。そこで溶液循環ポンプ6
により、一部が高温再生器1aに送られ、高温蒸
気等によつて加熱され、冷媒蒸気が蒸発分離し、
溶液は濃縮され濃溶液は吸収器4に戻る。さら
に、吸収器4から出た希溶液の一部は溶液循環ポ
ンプ6により低温再生器1bに送られ、高温再生
器1aで発生した冷媒蒸気により加熱濃縮され、
濃溶液は吸収器4に戻る。
(D) 凝縮器2
再生器1で分離された冷媒蒸気は凝縮器2で管
内を流れる冷却水によつて冷却され、凝縮液化
し、蒸発器3に戻る。
(E) 熱交換器
吸収器4から再生器1に向かう低温の稀薄溶液
を再生器1から吸収器4に向かう高温の濃溶液に
よつて予熱し、再生器加熱量を減少させる。
(F) ポンプ6
ポンプ6に濃溶液、稀薄溶液及び冷媒を循環さ
せる。
吸収器4、再生器1及びポンプ6が圧縮式冷凍
機の圧縮機と同じ機能をする。吸収液は、冷凍機
運転中に熱交換器を介して再生器1と吸収器4の
間を循環する。吸収液の濃度が高い程、一般に冷
凍効率も高まるゆえ、吸収液を濃縮するために、
再生器1はより高温に保持する必要がある。
一方、冷凍機内では高温再生器1a及び低温再
生器1bにおいて、臭化リチウム溶液を濃縮する
際に水蒸気と共に腐食により生ずるH2及びイン
ヒビタのNO3―の還元により生ずるNOx等の不凝
縮ガスが発生する。この不凝縮ガスは高真空に維
持される抽気タンク7に導びかれ蓄えられること
になる。この抽気タンク7は通常約50程度の容
量により、定期的に抽気ポンプ8により、運転員
が操作して不凝縮ガスが機外に排出される。
本発明はこのような密閉循環型吸収式冷凍機に
おいて、冷凍機の高温及び低温再生器中で、特に
構成材料の腐食により発生する水素ガスを酸化し
て液化除去するため、前記再生器と抽気タンクと
の間に金属酸化物、特に酸化銅を充填した反応器
を設置するようにしたものである。そして、この
反応器を高温再生器の廃熱で加熱し、機内で発生
した水素を通して水蒸気とし、ついでこれを冷却
して液化除去するようにしたものである。
水素を無害化し、その体積を小さくするために
は水として液化するのが最もよい。このための酸
化法には触媒を用いる方法、酸化剤を用いる方
法、金属酸化物の還元反応を使用する方法等があ
る。これらの中で、触媒を用いる方法は一般に高
価であり、さらに酸化剤が必要である。酸化剤の
使用は構成材料の腐食を促進することになり好ま
しくない、さらに、酸化剤は一般には高価であ
り、その再生も難しい。これらに対し、金属酸化
物を用いる方法はその種類にもよるが一般に安価
であり、かつ再生が容易である。さらに詳しく述
べれば、金属酸化物を水素で還元する反応時の自
由エネルギー変化が負である金属酸化物であれば
原理的に使用可能である。その中でも酸化銅が有
利である。酸化銅は常温においても水素との反応
時の自由エネルギー変化が負であり、原理的には
常温下でも反応が進行し得る。しかし、実際上は
反応温度を高くして発生した水素を迅速に液化す
ることが好ましい。本発明者らは実験により得た
CuOを用いた場合の水素の除去率と温度の関係
を第2図に示す。水素の除去率は反応温度が高く
なるにしたがつて上昇し、約250℃以上の温度で
あれば水素はH2Oとして除去されることがわか
る。しかるに、密閉循環型吸収式冷凍機では、高
温再生器のボイラから数百℃の燃焼廃ガスが排出
されるので、この廃熱を利用すれば新たなエネル
ギーを必要とせず反応温度を高くできる利点があ
る。
水素を酸化銅で酸化する反応では用いる酸化銅
の表面積が大きい程有利であり、これは充填量に
大きな影響を受けるが、充填量あるいは充填密度
を大きくしすぎると冷凍機内と抽気タンク間の圧
力差がそれ程大きくないために、機内の水素を迅
速に取り出すのが難しくなる。そこで、この場合
は用いる酸化銅が表面だけではなく、内部まで有
効に反応して金属銅になるか否かが重要な問題で
ある。第3図に酸化銅の反応性を調べた結果を示
す。酸化銅としては直径0.05cm、長さ0.5cmの線
状のものを内径1cmの石英管に19g充填して、
290℃に加熱し、水素ガスを3ml/minの流量で
流し、ガスクロマトグラフで水素濃度を分析した
ものである。図から明らかなように水素除去率は
30時間まで100%であるが、30時間以後では急激
に低下する。これは次の反応式から19gのCuO
が100%反応したとして理論的に計算した結果と
一致しており、酸化銅は100%反応することがわ
かる。
CuO+H2→Cu+H2O
本発明は水素の液化除去装置として酸化銅を充
填した反応器とこれに付属する冷却装置とにより
水素を気体状のH2Oとし、さらに冷却して液状
H2Oとして除去するものである。
本発明において、反応器に充填する酸化銅はそ
の表面積をできるだけ大きくするため線状、粒状
等で小さいものが好ましい。また、本発明では比
較的低い温度で高い反応速度が得られる点で酸化
銅を用いたが、これ以外に酸化鉄、酸化ニツケ
ル、酸化コバルト、酸化鉛等が利用できる。さら
に、加熱温度は第2図の結果から100℃以上であ
れば反応が進行し得るが実用的には百数十℃〜
300℃が適当であり、300℃以上の温度は省エネル
ギーの点からも得策ではない。酸化銅との反応で
生じた水蒸気は反応器の後に付属した冷却器によ
り液化除去する。これにより抽気タンクにはガス
の流入がなくなり、常時、機内より低圧力に保た
れ、冷凍機内の圧力を維持でき安定した運転が可
能となる。水蒸気の冷却器には冷凍機内を循環す
る冷却水を利用すれば良い。冷却器にドレンを貯
える場合は、冷凍機の運転時間を約1000時間/年
とし、5年間メンテナンスフリーとして計算する
と通常の冷凍機では約1.5程度の極めて小さい
もので十分である。
次に本発明の実施例を述べる。
実施例 1
冷凍容量250冷凍トンのガス焚二重効用吸収式
冷凍機を用い、高温及び低温再生器から抽気タン
クへの抽気配管の途中に液化除去装置を設置し
た。液化除去装置は、内径3cm、長さ20cmの通気
孔を設けたステンレス製の容器に直径0.05cm、長
さ0.5cmの線状のCuOを100g充填した反応器と、
これに付属させた25℃の冷却水を通水する銅製の
蛇管を備えた冷却器を用いた。冷凍機を全負荷で
運転し、その廃熱で反応器を250℃に維持した。
抽気タンク内から真空ポンプによりサンプリング
したガスをクスクロマトグラフにより分析した結
果、100時間後でも水素ガスは全く検出されなか
つた。また、機内の圧力の上昇も全く認められな
かつた。
実施例 2
実施例1と同様にして反応器の温度を200℃に
維持して抽気タンクのガス分析をした。その結
果、100時間後でも水素は検出されず、さらに冷
凍機内の圧力上昇もなかつた。
実施例 3
実施例1及び2で用いた反応器中から反応後の
金属銅を補集し、これを空気中で400℃に5時間
加熱したものを直径2cm、長さ20cmの反応器に充
填し、反応温度を300℃に維持した。実施例1と
同様な方法により運転時間50時間後の抽気タンク
内のガス分析をした結果、水素は検出されなかつ
た。
実施例 4
反応器は、第4図に示すよう、熱交換用フイン
8を設けた直径30mmのステンレス製の内筒9と直
径150mmの外筒10、高温再生器の排ガス導入管
11、ガス排出管12、内筒9に充填した直径
0.5mm、長さ5mmの線状CuO13から成る。
このような反応器を冷凍容量125冷凍トンのガ
ス焚二重効用吸収式冷凍機の抽気配管に第5図に
系統図を示す如く配置した。
高温及び低温再生器内で発生した水素ガスは抽
気管14、バルブ15を通つて反応器16に導入
される。該反応器16のCuOペレツト13は加
熱ガス導入管18を通つて供給される高温再生器
からの約500℃の排ガスにより約300℃に加熱され
る。この時、CuOの加熱効率は熱交換用フイン
8により高められる。反応器16の中では水素ガ
スはCuOと反応して水蒸気となり、また反応し
たCuOは金属Cuに還元される。生成した水蒸気
は、バルブ20を通り、冷却水を通水している蛇
管21を有する冷却器22により、冷却されてド
レンになる。抽気タンク23内には水素検知器2
4をセツトして、該抽気タンク23内に水素ガス
が流入した時は警報器25で知らせるよう構成し
てある。
125冷凍トンの二重効用吸収式冷凍機を全負荷
で50時間運転したが、抽気タンク23内に水素の
流入を知らせる警報は生じなかつた。また、抽気
タンク23から真空ポンプ26によりサンプリン
グしたガスをガスクロマトグラフにより分析した
が水素は検出されなかつた。
その後、さらに運転を続けて500時間経過した
際に警報器25が作動して抽気タンク23内に水
素の流入が検知された。そこでバルブ15,20
を閉じ、バルブ26,27を開いて水素ガスを反
応器16を通して流れるようにし、さらに真空ポ
ンプ26によ抽気タンク23内の微量の水素を排
出した。これにより、再び警報器25が作動しな
くなり、以後、冷凍機は順調に運転を続けた。ま
た、反応器16の中の還元された金属Cuは空気
導入バルブ28,29を開けて、空気を導入すら
ことにより再びCuOに再生することができた。
〔発明の効果〕
以上述べたように本発明によれば、従来、冷凍
機内で発生する水素ガスを簡便な操作で効率良く
しかも連続的に液化除去できることが明白であ
る。これにより機内の圧力上昇を防ぐことがで
き、メンテナンスフリーで高い冷凍性能を維持し
続けることができるという大きな効果を奏する。
また、本発明によれば危険な水素ガスを一度に狭
い室内に放出する際の危険性がなくなり、爆発危
険性の高い水素ガスを容易に無害化できる。さら
に水素を連続的に液化除去しながら同時に反応生
成物を労せずして再生でき、排ガス利用と相まつ
て経済的にも省資源の点からも大きな効果を奏す
ることが明白である。
[Industrial Application Field] The present invention relates to a closed circulation type absorption refrigerating machine, and more particularly to an absorption refrigerating machine equipped with a liquefaction removal device that can efficiently remove hydrogen gas generated within the refrigerating machine. [Background of the Invention] Generally, a closed circulation type absorption refrigerator uses water as a refrigerant and a concentrated lithium bromide aqueous solution as an absorption liquid. The highest temperature part of the refrigeration cycle in an absorption chiller is the high-temperature regenerator that concentrates the absorption liquid, and the maximum temperature in a dual-effect chiller can reach approximately 160°C. The concentration of lithium bromide in the absorption liquid at this time is approximately
The concentration is as high as 65%. Therefore, the lithium bromide aqueous solution, which is originally highly corrosive, becomes high temperature and highly concentrated, further increasing its corrosivity, and therefore an inhibitor is generally added for the purpose of preventing corrosion of refrigerator materials. There are various types of inhibitors, but they all have advantages and disadvantages, and none can completely prevent corrosion. Therefore, hydrogen generated due to corrosion of carbon steel, which is the main constituent material of the refrigerator, accumulates inside the refrigerator. However, since the absorption refrigerator has a completely hermetic structure and operates at several mmHg to several tens of mmHg internally, the generated hydrogen increases the internal pressure and reduces the refrigeration effect. For this reason, in the past, refrigerator operators periodically used exhaust pumps such as vacuum pumps to
Accumulated hydrogen was forcibly discharged from the aircraft.
However, recently there has been a trend towards further downsizing of absorption chillers, and although maintenance-free and unmanned operation has become a major industrial advantage for such small machines, the removal of hydrogen gas inside the machine has become a major obstacle. It's summery. Furthermore, absorption chillers are generally installed in closed rooms with poor ventilation, such as basements within buildings. Therefore, it is not preferable to discharge a large amount of explosive and flammable hydrogen gas at once.
Conventional absorption refrigerators are equipped with a bleed tank and vacuum pump to store non-condensable gases, but none have a device that detoxifies non-condensable gases such as hydrogen and automatically maintains internal pressure. . [Object of the Invention] An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to provide a closed circulation type absorption refrigerating machine that continuously liquefies and removes hydrogen gas inside the machine. [Summary of the invention] In order to achieve such an object, the present invention has the following features:
It oxidizes and liquefies hydrogen gas generated in a closed container, and is particularly equipped with a device that liquefies and removes it using a metal oxide whose free energy change during reaction with the hydrogen gas is negative. [Example] Hereinafter, details of the present invention will be explained using examples shown in the drawings. Generally, closed circulation absorption refrigerators use water as a refrigerant and a concentrated aqueous solution of lithium bromide as a hygroscopic absorbent. As shown in the principle system diagram in Fig. 1, this refrigerator consists of a regenerator 1, a condenser 2, an evaporator 3, an absorber 4, pumps 6 that circulate absorption liquid and refrigerant between these, and It consists of an exchanger (not shown), and each part operates as follows. (A) Evaporator 3 Chilled water flows through the tubes of the evaporator tube bundle of evaporator 3, and refrigerant is spread outside the tubes, drawing heat from the cold water using the latent heat of evaporation. (B) Absorber 4 Lithium bromide aqueous solution has a significantly lower evaporation pressure than water at the same temperature, and can absorb water vapor generated at considerably lower temperatures. In the absorber 4, the refrigerant evaporated in the evaporator 3 is absorbed by a lithium bromide aqueous solution (absorption liquid) sprinkled on the outer surface of the tube bundle of the absorber, and the absorption heat generated at this time is cooled by cooling water passing through the tubes. . (C) Regenerators 1a, 1b The concentration of the dilute solution that has absorbed the refrigerant in the absorber 4 decreases, and its absorption capacity becomes weaker. Therefore, the solution circulation pump 6
A part of the refrigerant is sent to the high-temperature regenerator 1a, heated by high-temperature steam, etc., and the refrigerant vapor is evaporated and separated.
The solution is concentrated and the concentrated solution is returned to the absorber 4. Furthermore, a part of the dilute solution discharged from the absorber 4 is sent to the low-temperature regenerator 1b by the solution circulation pump 6, where it is heated and concentrated by the refrigerant vapor generated in the high-temperature regenerator 1a.
The concentrated solution returns to absorber 4. (D) Condenser 2 The refrigerant vapor separated in the regenerator 1 is cooled by cooling water flowing through the pipes in the condenser 2, condenses into liquid, and returns to the evaporator 3. (E) Heat exchanger A low-temperature dilute solution heading from the absorber 4 to the regenerator 1 is preheated by a high-temperature concentrated solution heading from the regenerator 1 to the absorber 4, thereby reducing the amount of heating by the regenerator. (F) Pump 6 Pump 6 circulates concentrated solution, dilute solution, and refrigerant. The absorber 4, the regenerator 1, and the pump 6 have the same function as the compressor of a compression refrigerator. The absorption liquid circulates between the regenerator 1 and the absorber 4 via a heat exchanger during refrigerator operation. Generally, the higher the concentration of the absorption liquid, the higher the refrigeration efficiency, so in order to concentrate the absorption liquid,
Regenerator 1 needs to be maintained at a higher temperature. On the other hand, in the refrigerator, in the high-temperature regenerator 1a and the low-temperature regenerator 1b, when concentrating the lithium bromide solution, non-condensable gases such as H 2 generated by corrosion and NOx generated by the reduction of the inhibitor NO 3 - are generated together with water vapor. do. This non-condensable gas is led to and stored in a bleed tank 7 maintained at a high vacuum. This bleed tank 7 normally has a capacity of about 50 ml, and is periodically operated by an operator to discharge non-condensable gas to the outside of the machine using a bleed pump 8. The present invention provides such a closed-circulation absorption refrigerator, in which hydrogen gas generated by corrosion of constituent materials is oxidized and removed in the high-temperature and low-temperature regenerators of the refrigerator. A reactor filled with metal oxide, especially copper oxide, is installed between the tank and the tank. The reactor is then heated with waste heat from a high-temperature regenerator, and hydrogen generated within the reactor is passed through to form water vapor, which is then cooled and removed by liquefaction. The best way to make hydrogen harmless and reduce its volume is to liquefy it as water. Oxidation methods for this purpose include methods using catalysts, methods using oxidizing agents, and methods using reduction reactions of metal oxides. Among these, methods using catalysts are generally expensive and additionally require an oxidizing agent. The use of oxidizing agents is undesirable because it promotes corrosion of the constituent materials. Furthermore, oxidizing agents are generally expensive and difficult to regenerate. On the other hand, methods using metal oxides are generally cheaper and easier to regenerate, although it depends on the type. More specifically, any metal oxide whose free energy change during the reaction of reducing the metal oxide with hydrogen is negative can be used in principle. Among them, copper oxide is advantageous. Copper oxide has a negative free energy change when reacting with hydrogen even at room temperature, and in principle the reaction can proceed even at room temperature. However, in practice, it is preferable to raise the reaction temperature to quickly liquefy the generated hydrogen. The inventors obtained through experiments
Figure 2 shows the relationship between hydrogen removal rate and temperature when CuO is used. It can be seen that the hydrogen removal rate increases as the reaction temperature increases, and hydrogen is removed as H 2 O at temperatures above about 250°C. However, in a closed circulation absorption chiller, combustion waste gas of several hundred degrees Celsius is discharged from the boiler of the high-temperature regenerator, so the advantage of using this waste heat is that the reaction temperature can be raised without the need for new energy. There is. In the reaction of oxidizing hydrogen with copper oxide, the larger the surface area of the copper oxide used, the more advantageous it is, and this is greatly affected by the filling amount, but if the filling amount or packing density is too large, the pressure between the inside of the refrigerator and the bleed tank will increase. Since the difference is not that large, it will be difficult to quickly extract hydrogen from the aircraft. Therefore, in this case, the important issue is whether the copper oxide used will react effectively not only on the surface but also on the inside to become metallic copper. Figure 3 shows the results of investigating the reactivity of copper oxide. A quartz tube with an inner diameter of 1 cm was filled with 19 g of copper oxide in the form of a wire with a diameter of 0.05 cm and a length of 0.5 cm.
It was heated to 290°C, hydrogen gas was flowed at a flow rate of 3 ml/min, and the hydrogen concentration was analyzed using a gas chromatograph. As is clear from the figure, the hydrogen removal rate is
It is 100% up to 30 hours, but drops rapidly after 30 hours. From the following reaction equation, 19g of CuO
This agrees with the theoretically calculated results assuming that 100% reaction occurs, and it can be seen that copper oxide reacts 100%. CuO+H 2 →Cu+H 2 O As a hydrogen liquefaction removal device, the present invention uses a reactor filled with copper oxide and an attached cooling device to convert hydrogen into gaseous H 2 O, and then cools it to liquid form.
It is removed as H 2 O. In the present invention, the copper oxide filled in the reactor is preferably small in the form of linear or granular shapes in order to maximize its surface area. Further, in the present invention, copper oxide is used because a high reaction rate can be obtained at a relatively low temperature, but other materials such as iron oxide, nickel oxide, cobalt oxide, lead oxide, etc. can be used. Furthermore, as for the heating temperature, from the results shown in Figure 2, the reaction can proceed if it is 100℃ or higher, but in practical terms, it is more than 100℃ or higher.
300°C is appropriate; temperatures over 300°C are not a good idea from the point of view of energy conservation. The water vapor generated by the reaction with copper oxide is liquefied and removed by a cooler attached after the reactor. As a result, no gas flows into the bleed tank, and the pressure is always kept lower than that inside the machine, allowing the pressure inside the refrigerator to be maintained and stable operation to be possible. The water vapor cooler may use cooling water that circulates inside the refrigerator. When storing condensate in a cooler, assuming that the operating time of the refrigerator is approximately 1000 hours/year and assuming maintenance free for 5 years, an extremely small size of about 1.5 is sufficient for a normal refrigerator. Next, examples of the present invention will be described. Example 1 A gas-fired dual-effect absorption refrigerator with a refrigeration capacity of 250 tons was used, and a liquefaction removal device was installed in the middle of the bleed piping from the high-temperature and low-temperature regenerators to the bleed tank. The liquefaction removal device consists of a reactor in which 100 g of linear CuO with a diameter of 0.05 cm and a length of 0.5 cm is filled in a stainless steel container with a vent hole of 3 cm in inner diameter and 20 cm in length.
A cooler with attached copper pipes for passing 25°C cooling water was used. The refrigerator was operated at full load and its waste heat was used to maintain the reactor at 250°C.
As a result of gas chromatography analysis of gas sampled from the bleed tank using a vacuum pump, no hydrogen gas was detected even after 100 hours. Additionally, no increase in pressure inside the aircraft was observed. Example 2 The temperature of the reactor was maintained at 200° C. in the same manner as in Example 1, and gas analysis of the bleed tank was conducted. As a result, no hydrogen was detected even after 100 hours, and there was no pressure increase inside the refrigerator. Example 3 Metal copper was collected after the reaction from the reactors used in Examples 1 and 2, heated to 400°C in air for 5 hours, and then filled into a reactor with a diameter of 2 cm and a length of 20 cm. and the reaction temperature was maintained at 300°C. As a result of gas analysis in the extraction tank after 50 hours of operation using the same method as in Example 1, no hydrogen was detected. Example 4 As shown in Fig. 4, the reactor consists of an inner tube 9 made of stainless steel with a diameter of 30 mm and an outer tube 10 with a diameter of 150 mm provided with heat exchange fins 8, an exhaust gas inlet pipe 11 of a high temperature regenerator, and a gas discharge tube. Diameter filled into pipe 12 and inner cylinder 9
It consists of linear CuO13 with a length of 0.5 mm and a length of 5 mm. Such a reactor was arranged in the extraction piping of a gas-fired dual-effect absorption refrigerator having a refrigeration capacity of 125 tons as shown in the system diagram in FIG. Hydrogen gas generated in the high-temperature and low-temperature regenerators is introduced into the reactor 16 through a bleed pipe 14 and a valve 15. The CuO pellets 13 in the reactor 16 are heated to about 300° C. by exhaust gas at about 500° C. from the high temperature regenerator supplied through the heating gas inlet pipe 18. At this time, the heating efficiency of CuO is increased by the heat exchange fins 8. In the reactor 16, hydrogen gas reacts with CuO to become water vapor, and the reacted CuO is reduced to metal Cu. The generated water vapor passes through a valve 20 and is cooled into a drain by a cooler 22 having a flexible pipe 21 through which cooling water is passed. There is a hydrogen detector 2 in the bleed tank 23.
4 is set, and an alarm 25 is configured to notify when hydrogen gas flows into the bleed tank 23. A 125 refrigeration ton dual effect absorption chiller was operated at full load for 50 hours, but no alarm was generated to notify the inflow of hydrogen into the bleed tank 23. Further, gas sampled from the bleed tank 23 by the vacuum pump 26 was analyzed using a gas chromatograph, but no hydrogen was detected. Thereafter, after 500 hours of continued operation, the alarm 25 was activated and the inflow of hydrogen into the bleed tank 23 was detected. So valves 15 and 20
was closed, valves 26 and 27 were opened to allow hydrogen gas to flow through the reactor 16, and a small amount of hydrogen in the bleed tank 23 was discharged by the vacuum pump 26. As a result, the alarm 25 stopped operating again, and the refrigerator continued to operate smoothly from then on. Moreover, the reduced metal Cu in the reactor 16 could be regenerated into CuO again by opening the air introduction valves 28 and 29 and introducing air. [Effects of the Invention] As described above, according to the present invention, it is clear that the hydrogen gas conventionally generated in a refrigerator can be efficiently and continuously liquefied and removed with a simple operation. This has the great effect of preventing a pressure rise inside the machine and maintaining high refrigeration performance without maintenance.
Further, according to the present invention, there is no danger of releasing dangerous hydrogen gas into a small room all at once, and hydrogen gas, which has a high risk of explosion, can be easily rendered harmless. Furthermore, it is clear that hydrogen can be continuously liquefied and removed while at the same time the reaction product can be regenerated without much effort, and that, together with exhaust gas utilization, this method has great effects both economically and in terms of resource conservation.
第1図は密閉循環型吸収式冷凍機の原理系統
図、第2図は水素除去率と反応温度の関係を示す
図、第3図は水素の除去率と時間の関係を示す
図、第4図は本発明で使用する液化除去用の反応
器の一実施例の断面図、第5図は本発明の密閉循
環型吸収式冷凍機の一実施例の系統図である。
1……再生器、2……凝縮器、3……蒸発器、
4……吸収器、7……抽気タンク、16……反応
器、22……冷却器、23……抽気タンク、24
……水素検知器。
Figure 1 is a diagram showing the principle of a closed circulation absorption refrigerator, Figure 2 is a diagram showing the relationship between hydrogen removal rate and reaction temperature, Figure 3 is a diagram showing the relationship between hydrogen removal rate and time, and Figure 4 is a diagram showing the relationship between hydrogen removal rate and time. The figure is a sectional view of an embodiment of a reactor for liquefaction removal used in the present invention, and FIG. 5 is a system diagram of an embodiment of a closed circulation type absorption refrigerator of the present invention. 1... Regenerator, 2... Condenser, 3... Evaporator,
4...Absorber, 7...Bleed tank, 16...Reactor, 22...Cooler, 23...Bleed tank, 24
...Hydrogen detector.
Claims (1)
の濃縮及び希釈を繰返し、冷却媒体を冷却するも
のにおいて、金属酸化物を充填したものであつ
て、かつ前記金属酸化物に前記容器内に発生する
水素ガスを通して酸化させた後に蒸発させる反応
器と該反応器からの蒸気を冷却して液化する冷却
器とを含み、前記水素ガスを液化して除去するよ
うに構成してなる液化除去装置を備えたことを特
徴とする密閉循環型吸収冷凍機。 2 前記液化除去装置は、高温及び低温再生器と
抽気タンクの間に配置されることを特徴とする特
許請求の範囲第1項記載の密閉循環型吸収式冷凍
機。 3 前記液化除去装置の反応器を、高温再生器の
排ガスで加熱することを特徴とする特許請求の範
囲第1項記載の密閉循環型吸収式冷凍機。 4 前記反応器に充填されている金属酸化物は、
酸化銅であることを特徴とする特許請求の範囲第
1項記載の密閉循環型吸収式冷凍機。 5 前記反応器に充填されている金属酸化物は、
酸化鉄、酸化ニツケル、酸化コバルト、酸化鉛の
うちのいずれか一つであることを特徴とする特許
請求の範囲第1項記載の密閉循環型吸収式冷凍
機。 6 前記液化除去装置は冷凍機内で発生する水素
を液化除去しながら反応済みの金属銅を再生でき
るように2ケ以上の反応器を並列に備えることを
特徴とする特許請求の範囲第1項記載の密閉循環
型吸収式冷凍機。[Scope of Claims] 1. A device for cooling a cooling medium by repeatedly concentrating and diluting an aqueous solution of a hygroscopic substance in a closed container, the container being filled with a metal oxide, and containing a metal oxide. a reactor that oxidizes and evaporates hydrogen gas generated in the container through the hydrogen gas; and a cooler that cools and liquefies the vapor from the reactor, and is configured to liquefy and remove the hydrogen gas. A closed circulation absorption refrigerator characterized by being equipped with a liquefaction removal device. 2. The closed circulation absorption refrigerating machine according to claim 1, wherein the liquefaction removal device is disposed between the high-temperature and low-temperature regenerators and the bleed tank. 3. The closed circulation absorption refrigerator according to claim 1, wherein the reactor of the liquefaction removal device is heated with exhaust gas from a high-temperature regenerator. 4 The metal oxide filled in the reactor is:
A closed circulation absorption refrigerator according to claim 1, characterized in that the material is copper oxide. 5 The metal oxide filled in the reactor is:
The closed circulation absorption refrigerator according to claim 1, characterized in that the material is any one of iron oxide, nickel oxide, cobalt oxide, and lead oxide. 6. Claim 1, characterized in that the liquefaction removal device is equipped with two or more reactors in parallel so that the reacted metal copper can be regenerated while liquefying and removing hydrogen generated in the refrigerator. Closed circulation type absorption refrigerator.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55180436A JPS57105665A (en) | 1980-12-22 | 1980-12-22 | Closed circulation type absorption refrigerating machine |
US06/332,181 US4398399A (en) | 1980-12-22 | 1981-12-18 | Hermetically circulating, absorption type refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55180436A JPS57105665A (en) | 1980-12-22 | 1980-12-22 | Closed circulation type absorption refrigerating machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57105665A JPS57105665A (en) | 1982-07-01 |
JPS6144230B2 true JPS6144230B2 (en) | 1986-10-01 |
Family
ID=16083203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55180436A Granted JPS57105665A (en) | 1980-12-22 | 1980-12-22 | Closed circulation type absorption refrigerating machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57105665A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH063333B2 (en) * | 1985-04-30 | 1994-01-12 | 三洋電機株式会社 | Non-condensing gas removal device |
JP3553833B2 (en) * | 1998-10-12 | 2004-08-11 | 本田技研工業株式会社 | Absorption refrigerator |
JP3719491B2 (en) * | 2000-01-25 | 2005-11-24 | 本田技研工業株式会社 | Absorption refrigeration system |
JP3719490B2 (en) * | 2000-01-25 | 2005-11-24 | 本田技研工業株式会社 | Absorption refrigeration system |
JP4159220B2 (en) * | 2000-01-27 | 2008-10-01 | 大阪瓦斯株式会社 | Absorption refrigerator hydrogen gas removal device |
JP2006162243A (en) * | 2004-11-10 | 2006-06-22 | Osaka Gas Co Ltd | Gaseous hydrogen removing device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5113048A (en) * | 1974-07-23 | 1976-02-02 | Suzuki Motor Co | L gatadanmenpisutonringu |
-
1980
- 1980-12-22 JP JP55180436A patent/JPS57105665A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5113048A (en) * | 1974-07-23 | 1976-02-02 | Suzuki Motor Co | L gatadanmenpisutonringu |
Also Published As
Publication number | Publication date |
---|---|
JPS57105665A (en) | 1982-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05507141A (en) | Branch GAX absorption vapor compressor | |
CN105202797B (en) | A kind of Minitype vehicle absorption type refrigerating unit of waste heat driving | |
JPS6144230B2 (en) | ||
JPH11223409A (en) | Heat absorbing system | |
US4398399A (en) | Hermetically circulating, absorption type refrigerator | |
CN110030755A (en) | A kind of battery pack carbon dioxide refrigerating system | |
US4857222A (en) | Absorption type refrigerator and absorbing solution therefor | |
KR100542833B1 (en) | Absorption type refrigerating apparatus | |
US6055821A (en) | Purge system for an absorption air conditioner | |
CN101849147A (en) | Non-vacuum absorption refrigeration | |
CN209926639U (en) | Battery package carbon dioxide refrigerating system | |
CN201062894Y (en) | Sfterheat type ammonia absorption refrigerator and device using flue gas thereof | |
JP7313356B2 (en) | Motorless Purge System and Method for Removing Non-Condensable Gases from Closed Cycle Absorption Transformer Heat Pump and Closed Cycle Absorption Chiller Systems | |
JPS60205161A (en) | Device for removing noncondensable gas of absorption type refrigerator | |
JP3466018B2 (en) | Liquid phase separation type absorption refrigeration system | |
JP2523579B2 (en) | Air-cooled absorption type water heater | |
JP2002221379A (en) | Hydrogen-removing device | |
US6595023B2 (en) | Structure of evaporation region of absorption diffusion type refrigerating circulation | |
JPH0345090Y2 (en) | ||
JPS6256751A (en) | Heat accumulating and heat dissipating device | |
JPS5848820B2 (en) | Freezing method and equipment | |
JPS6122224B2 (en) | ||
JPS5852463Y2 (en) | Water-lithium salt compact absorption refrigerator | |
JP2001235261A (en) | Absorption refrigeration system | |
JP2865305B2 (en) | Absorption refrigerator |