JPS6144167A - Production of titanium alloy plate - Google Patents
Production of titanium alloy plateInfo
- Publication number
- JPS6144167A JPS6144167A JP16556884A JP16556884A JPS6144167A JP S6144167 A JPS6144167 A JP S6144167A JP 16556884 A JP16556884 A JP 16556884A JP 16556884 A JP16556884 A JP 16556884A JP S6144167 A JPS6144167 A JP S6144167A
- Authority
- JP
- Japan
- Prior art keywords
- beta
- blooming
- alpha
- slab
- transformation point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は均質かつ等軸α晶組織を有し、機械的特性の優
れたチタン合金の製造方法KvAする。DETAILED DESCRIPTION OF THE INVENTION The present invention describes a method for producing a titanium alloy having a homogeneous and equiaxed α crystal structure and excellent mechanical properties.
一般にチタン合金板塊の製造稜、熱間圧璃用のスラブに
形状を整え、かつ鋳造組織を破壊するために熱間鍛造又
は分塊圧延によるインゴットブレークダウンが行なわれ
る。前記チタン合金の鋳造組織を破壊し、また変形抵抗
を小さくするために通常β変態点以上に加熱し、とのβ
変態点以上の領域で鍛造又は分塊圧延の大半が行なわれ
る。そして加工の終了後又は加工の途中においてβ域か
らβ変態点を通過してα+β域に空冷(徐冷)される。In general, ingot breakdown is performed by hot forging or blooming rolling in order to shape the manufacturing edge of a titanium alloy plate ingot, into a slab for hot rolling, and to destroy the casting structure. In order to destroy the cast structure of the titanium alloy and reduce its deformation resistance, it is usually heated above the β transformation point.
Most of the forging or blooming is performed in the region above the transformation point. Then, after finishing the processing or during the processing, the material is air-cooled (slowly cooled) from the β region through the β transformation point to the α+β region.
メタルスエンジニアリングインステイテユート(196
9)に記載されたチタン合金鍛造温度は第1表に示す通
りである。この第1表には鍛造温度のみが示されている
か分塊圧延の場合の温度も同様である。Metals Engineering Institute (196
The titanium alloy forging temperatures described in 9) are as shown in Table 1. In this Table 1, only the forging temperatures are shown, and the same applies to the temperatures in the case of blooming rolling.
前記の鍛造又は分塊圧電後の冷却の段階では、旧β粒界
にそってネットワーク状の粗大粒界α相が析出し、また
旧β粒内にはα+βlamellar mtlAが粗大
化する(なおα+β1a!IIθ1iar相は板状のα
相とβ相が層状にならんだ組織である。)。At the cooling stage after forging or blooming piezoelectricity described above, a network-like coarse grain boundary α phase precipitates along the prior β grain boundaries, and α+β lamellar mtlA becomes coarse within the prior β grains (in addition, α+β1a! The IIθ1iar phase is a plate-like α
It has a structure in which phase and β phase are arranged in layers. ).
この工程で製造された熱間圧延用スラブは、次にα+β
域で熱間圧延、その後の熱処理が行なわれるが、この熱
間圧延、及びその後の熱処理は微細かつ均質な等軸α晶
組織として機械的特性の向上を図ることを目的としてい
る。例えば、特開昭58−25423においては表面温
度を980℃〜700’CK制御しつつ70%以上の加
工度をとりその後再結晶させることが記載されている。The hot rolling slab produced in this process is then α+β
The purpose of this hot rolling and subsequent heat treatment is to form a fine and homogeneous equiaxed α-crystalline structure to improve mechanical properties. For example, JP-A No. 58-25423 describes that the surface temperature is controlled from 980° C. to 700° C. while the working ratio is 70% or more, followed by recrystallization.
一般にはα+β域での加工度を大きくすればするほど等
軸重組織とならないα相は減少して〜・く傾向にはある
が、この加工度にも製造段Fil:おける制限があり、
またいくら加工度を増大させても等軸重とならない組織
が残存し機械的特性に悪影響を与えている。In general, the larger the working degree in the α+β region, the less the α phase that does not form an equiaxed heavy structure tends to decrease, but this working degree also has a limit in the manufacturing stage.
Moreover, no matter how much the degree of processing is increased, a structure that does not have equiaxed loads remains, which has a negative effect on the mechanical properties.
本発明者はこの点を鋭意研究の結果、熱間圧延及びその
俵の熱処理の彼も等軸重とならないα相は、鋳塊の熱間
鍛造又は分塊圧延工程で生ずる旧β粒界に析出したネッ
トワーク状の粗大粒界α相や旧β粒内におけるα+β
lamsllar相の粗大化に起因することを知った。As a result of intensive research on this point, the present inventor found that the α phase, which does not become equiaxed during hot rolling and heat treatment of the bales, is located at the prior β grain boundaries that occur during the hot forging or blooming process of the ingot. α + β in precipitated network-like coarse grain boundary α phase and prior β grains
It was learned that this is caused by coarsening of the lamsllar phase.
そこでα+β型チタン合金鋳塊の熱間鍛造又は分塊圧延
の工程後、該工程で発生した粗大粒界α相及び粗大1a
mellar相を消失させろために、前記熱間m造又は
分塊圧延によって得られたスラブをβ変態点以上β変態
点+150℃以下の範囲に加熱した後、50℃/min
以上の冷却速度で急冷し、その後α+β域で断面減少率
50%以上の熱間圧延を行なうことを特徴とするチタン
合金板の製造方法を開発した。Therefore, after the process of hot forging or blooming rolling of an α+β type titanium alloy ingot, the coarse grain boundary α phase and the coarse 1a phase generated in this process are
In order to eliminate the mellar phase, the slab obtained by hot molding or blooming is heated to a range from β transformation point to β transformation point + 150°C, and then heated at 50°C/min.
We have developed a method for producing a titanium alloy plate, which is characterized by rapidly cooling at the above cooling rate and then hot rolling in the α+β region with a cross-sectional reduction rate of 50% or more.
このようにして得られた熱間圧延板は製品用途に応じて
、焼鈍、溶体化時効処理等の熱処理が行なわれる。The hot-rolled plate thus obtained is subjected to heat treatments such as annealing and solution aging treatment depending on the intended use of the product.
前記α+β型チタン合金鋳塊の熱間鍛造又)を分塊圧延
はβ変態点以上のβ域で行なわれるが、この鍛造又は圧
延の途中においてα+β域に材料の温度が低下する場合
もある。しかし、この工程において鋳造組織を完全に破
壊するという品質面及び変形抵抗のl」・さいβ域での
加工度を大きくとつて製造コストを減少させるという面
からみてβ変態点以上での鍛造又は分塊圧延を行なうこ
とが好ましい。Hot forging or blooming of the α+β type titanium alloy ingot is carried out in the β region above the β transformation point, but the temperature of the material may drop to the α+β region during this forging or rolling. However, in terms of quality and deformation resistance as the casting structure is completely destroyed in this process, forging at a temperature above the β transformation point or It is preferable to perform blooming rolling.
この工程によって、スラブが形成され空冷されるが、ス
ラブは、旧β粒界にネットワーク状に粗大粒界α相が析
出し、また旧β粒内には粗大α十βlam@1llar
相が発達した組織となる。しかし、このスラブをβ変態
点以上l変態点+150℃以下の範囲に加熱した後、5
0℃/min以上の冷却速度で急冷することKより前記
ネットワーク状の粗大粒界α相や粗大α+βlamel
lar相を消失させα′(マルテンサイト)あるいは微
細なα+β1runellar相組識とすることができ
る。Through this process, a slab is formed and cooled in air, but in the slab, a coarse grain boundary α phase precipitates in a network shape at the prior β grain boundaries, and a coarse α-decade β lam@1llar exists within the prior β grains.
The structure becomes a well-developed phase. However, after heating this slab to a range from β transformation point to l transformation point + 150°C,
By rapid cooling at a cooling rate of 0°C/min or more, the network-like coarse grain boundary α phase and coarse α+βlamel
The lar phase can be eliminated to form α' (martensite) or a fine α+β1 runellar phase structure.
さらにその後該スラブをα+β域で断面減少率50%以
上の熱間圧延を行なうことKより、加工歪をたくわえて
、これをドライビングフォースとして再結晶させ均質か
つ微細な等軸α晶組織を得ることができる。これによっ
て機械的特性にIれたチタン合金板を容挑に製造するこ
とに成功した。Furthermore, the slab is then hot-rolled in the α+β region with a cross-section reduction rate of 50% or more, thereby accumulating processing strain and recrystallizing this as a driving force to obtain a homogeneous and fine equiaxed α-crystal structure. Can be done. As a result, we successfully succeeded in producing a titanium alloy plate with excellent mechanical properties.
前記スラブの加熱温度はネットワーク状の粗大粒界α相
や粗大α+βlamellar相を消失させるためにβ
変態点以上の加熱が必要であるが、高すぎると表面の酸
化が激しくなり、またβ粒の粗大化が著しくなるので上
限はβ変態点+150℃とする必要がある。再結晶のた
めのドライビングフォースとなる加工歪をたくわえるた
めにα+β域で断面減少率50%以上の熱間圧延を必要
とする。The heating temperature of the slab is set to β in order to eliminate the network-like coarse grain boundary α phase and the coarse α+β lamellar phase.
It is necessary to heat above the transformation point, but if the temperature is too high, the oxidation of the surface will be severe and the β grains will become coarse, so the upper limit should be set to the β transformation point + 150°C. Hot rolling with a cross-section reduction rate of 50% or more is required in the α+β region in order to accumulate processing strain that becomes the driving force for recrystallization.
この時の温度はα+β域であれば特に規制はないが、β
変態点直下では、加工熱により材料温度がβ変態点以上
になる可能性があり、また、温度が低すぎると加工によ
る割れが発生するためβ変態点以下50℃〜β変態点以
下200°Cまでの範囲の温度が好ましい。There are no particular regulations regarding the temperature at this time as long as it is in the α+β range, but
Just below the transformation point, the material temperature may rise above the β-transformation point due to processing heat, and if the temperature is too low, cracks will occur due to processing, so the temperature should be 50°C below the β-transformation point to 200°C below the β-transformation point. Temperatures in the range up to are preferred.
このα+β域での熱間圧延工程をDた版はその後、焼鈍
や溶体化時効処理等によって均質かつ等軸α晶組織が得
られる。The plate subjected to the hot rolling process in the α+β region is then subjected to annealing, solution aging, etc. to obtain a homogeneous and equiaxed α crystal structure.
次に実施例について説明する。Next, an example will be described.
実施例
代表的なα+β梨チクチタフ合金るTi−6Al−4v
合金における本発明の実施例及び従来工程等の比較結果
を第2表に示す。試験材のβ変態点は1000℃であっ
た。スラブは直径5501111のインゴットを用いて
分塊圧延により製造した。第2表の引張り特性について
は板厚中心部より平行部6闘φ、GL35’mの試験片
を最終圧延方向にサンプリングして測定した。圧延後の
熱処9i(8T人処理)は12.5F+1(厚)xlO
O顛(巾)Xi 25正(長さ)の板で行なった。非等
軸α晶の発生率は任意に70ケ所のミクロ組織写真を撮
影し、その中で明らかに等軸となっていないα晶が観察
された写真の割合で示した。ミクロ組織観察面は最終圧
延方向平行断面(L−Z面)とし、また一枚の写真の視
野は180 X 120 amとした。Example Typical α+β pear prickly tough alloy Ti-6Al-4v
Table 2 shows the comparison results between the examples of the present invention and conventional processes for alloys. The β transformation point of the test material was 1000°C. The slab was produced by blooming using an ingot with a diameter of 5,501,111 mm. The tensile properties shown in Table 2 were measured by sampling test specimens with a parallel portion of 6mm φ and GL 35'm from the center of the plate thickness in the final rolling direction. Heat treatment after rolling 9i (8T manual treatment) is 12.5F + 1 (thickness) xlO
The test was carried out using a board with an O length (width) of 25 mm (length). The incidence of non-equiaxed α-crystals was expressed as the percentage of microstructure photographs taken at 70 locations in which clearly non-equiaxed α-crystals were observed. The microstructure observation plane was a cross section parallel to the final rolling direction (LZ plane), and the field of view of one photograph was 180 x 120 am.
第2表から明らかなように、本発明方法による工程A
1〜3については比較工程A4〜7に比べ非等軸α晶の
発生率が大巾に低下し、引張り強さ、耐力、伸び、絞り
等の強度、延性が格段に優れていることが分る。As is clear from Table 2, Step A according to the method of the present invention
It was found that for Nos. 1 to 3, the incidence of anisometric α crystals was greatly reduced compared to Comparative Steps A4 to A7, and the tensile strength, yield strength, elongation, drawing strength, etc., and ductility were significantly superior. Ru.
比較工程ムロは加工度が30%であり他は木兄i
+、)方法を満足L−(い、も充分ヶ特性が得
、わ。The comparative process unevenness is 30% in processing degree and the others are Ki-nii
+,) The method satisfies L-(I, I also obtained sufficient characteristics.)
いないのが分る。なお、この第2表でα+β域圧延でク
ロス圧延を行っているが、一方向圧延でも同様の結果が
得られた。I know he's not there. Note that although cross rolling was performed in the α+β region rolling in Table 2, similar results were obtained with unidirectional rolling.
以上本発明方法は均質かつ等軸のm織の機械的特性に優
れたチタン合金板を得ることができる優れた方法である
。As described above, the method of the present invention is an excellent method for obtaining a titanium alloy plate having a homogeneous, equiaxed m weave and excellent mechanical properties.
第 1 表Table 1
Claims (2)
の工程後、該工程で発生した粗大粒界α相及び粗大α+
βlamellar相を消失させるために、前記熱間鍛
造又は分塊圧延によって得られたスラブをβ変態点以上
β変態点+150℃以下の範囲に加熱した後、50℃/
min以上の冷却速度で急冷し、その後α+β域で断面
減少率50%以上の熱間圧延を行なうことを特徴とする
チタン合金板の製造方法。(1) After the process of hot forging or blooming rolling of α+β type titanium alloy ingot, coarse grain boundary α phase and coarse α+ generated in this process
In order to eliminate the βlamellar phase, the slab obtained by hot forging or blooming is heated to a temperature above the β transformation point and below the β transformation point + 150°C, and then heated at 50°C/
1. A method for producing a titanium alloy sheet, which comprises rapidly cooling at a cooling rate of min or more, and then hot rolling in the α+β region with a cross-section reduction rate of 50% or more.
理を行なうことを特徴とする特許請求の範囲第1項記載
のチタン合金板の製造方法。(2) The method for manufacturing a titanium alloy plate according to claim 1, wherein heat treatment such as annealing and solution aging treatment is performed depending on the product use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16556884A JPS6144167A (en) | 1984-08-09 | 1984-08-09 | Production of titanium alloy plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16556884A JPS6144167A (en) | 1984-08-09 | 1984-08-09 | Production of titanium alloy plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6144167A true JPS6144167A (en) | 1986-03-03 |
JPS634908B2 JPS634908B2 (en) | 1988-02-01 |
Family
ID=15814831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16556884A Granted JPS6144167A (en) | 1984-08-09 | 1984-08-09 | Production of titanium alloy plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6144167A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102581188A (en) * | 2012-02-29 | 2012-07-18 | 湖南金天钛业科技有限公司 | Method for machining TC4-DT titanium alloy large-specification slab forged piece |
JP2016137502A (en) * | 2015-01-27 | 2016-08-04 | 新日鐵住金株式会社 | MANUFACTURING METHOD OF TITANIUM MATERIAL CONSISTING MAINLY OF α PHASE AND HOT ROLLING RAW MATERIAL MADE OF TITANIUM |
TWI551367B (en) * | 2011-02-24 | 2016-10-01 | Nippon Steel & Sumitomo Metal Corp | Cold rolling and cold rolling Α + Β Type titanium alloy sheet and manufacturing method thereof |
US9850564B2 (en) | 2011-02-24 | 2017-12-26 | Nippon Steel & Sumitomo Metal Corporation | High-strength α+β titanium alloy hot-rolled sheet excellent in cold coil handling property and process for producing the same |
CN110508732A (en) * | 2019-08-29 | 2019-11-29 | 陕西天成航空材料有限公司 | Eliminate the method for forging and molding of TC4 titanium alloy slab end month dental impression |
-
1984
- 1984-08-09 JP JP16556884A patent/JPS6144167A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI551367B (en) * | 2011-02-24 | 2016-10-01 | Nippon Steel & Sumitomo Metal Corp | Cold rolling and cold rolling Α + Β Type titanium alloy sheet and manufacturing method thereof |
US9624566B2 (en) | 2011-02-24 | 2017-04-18 | Nippon Steel & Sumitomo Metal Corporation | Alpha and beta titanium alloy sheet excellent in cold rollability and cold handling property and process for producing the same |
US9850564B2 (en) | 2011-02-24 | 2017-12-26 | Nippon Steel & Sumitomo Metal Corporation | High-strength α+β titanium alloy hot-rolled sheet excellent in cold coil handling property and process for producing the same |
CN102581188A (en) * | 2012-02-29 | 2012-07-18 | 湖南金天钛业科技有限公司 | Method for machining TC4-DT titanium alloy large-specification slab forged piece |
JP2016137502A (en) * | 2015-01-27 | 2016-08-04 | 新日鐵住金株式会社 | MANUFACTURING METHOD OF TITANIUM MATERIAL CONSISTING MAINLY OF α PHASE AND HOT ROLLING RAW MATERIAL MADE OF TITANIUM |
CN110508732A (en) * | 2019-08-29 | 2019-11-29 | 陕西天成航空材料有限公司 | Eliminate the method for forging and molding of TC4 titanium alloy slab end month dental impression |
Also Published As
Publication number | Publication date |
---|---|
JPS634908B2 (en) | 1988-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4355342B2 (en) | Method for producing aluminum alloy sheet material that performs heat treatment and annealing in-line | |
JPH0686638B2 (en) | High-strength Ti alloy material with excellent workability and method for producing the same | |
KR20170140771A (en) | High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same | |
JPS619561A (en) | Manufacture of al alloy plate having superior hot formability | |
JP3485577B2 (en) | Diffusion bonded sputter target assembly having a precipitation hardened backing plate and method of making same | |
JPS62267438A (en) | High-strength ti alloy material excellent in workability and its production | |
US4486244A (en) | Method of producing superplastic aluminum sheet | |
JPH03193850A (en) | Production of titanium and titanium alloy having fine acicular structure | |
JPS6144167A (en) | Production of titanium alloy plate | |
US5092940A (en) | Process for production of titanium and titanium alloy material having fine equiaxial microstructure | |
US4528042A (en) | Method for producing superplastic aluminum alloys | |
US4486242A (en) | Method for producing superplastic aluminum alloys | |
JPS5953347B2 (en) | Manufacturing method of aircraft stringer material | |
US7172664B2 (en) | Method of making aluminum foil for fins | |
JPS63230858A (en) | Manufacture of titanium-alloy sheet for superplastic working | |
JPH0517857A (en) | Method for treating metal matrix composite material | |
JPS634907B2 (en) | ||
JPS61110756A (en) | Rolling method of titanium alloy plate | |
JP6623950B2 (en) | Titanium plate excellent in balance between proof stress and ductility and method for producing the same | |
JPH0672295B2 (en) | Method for producing aluminum alloy material having fine crystal grains | |
JPH0663076B2 (en) | Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure | |
JP2004124154A (en) | Rolled wire rod of magnesium based alloy, and production method therefor | |
JP3557953B2 (en) | Aluminum alloy sheet for precision machining and method of manufacturing the same | |
JP2019167584A (en) | α + β TYPE TITANIUM ALLOY EXTRUSION SHAPE | |
JPH0266142A (en) | Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy |