JPS6144656B2 - - Google Patents
Info
- Publication number
- JPS6144656B2 JPS6144656B2 JP57114033A JP11403382A JPS6144656B2 JP S6144656 B2 JPS6144656 B2 JP S6144656B2 JP 57114033 A JP57114033 A JP 57114033A JP 11403382 A JP11403382 A JP 11403382A JP S6144656 B2 JPS6144656 B2 JP S6144656B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- stretching
- molded product
- porous
- resin molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 33
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 33
- 239000000047 product Substances 0.000 description 29
- 239000011148 porous material Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 11
- 238000010304 firing Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 239000010687 lubricating oil Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 230000005484 gravity Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 3
- 238000010583 slow cooling Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/20—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
- B29C67/205—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising surface fusion, and bonding of particles to form voids, e.g. sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/12—Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
- B29K2027/18—PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Molding Of Porous Articles (AREA)
- Artificial Filaments (AREA)
Description
本発明は、フイルター、電解用隔膜、電池用隔
膜、ガス分離用隔膜などの用途に適した均一な微
細孔径を有する多孔質四弗化エチレン樹脂成型物
の新規な製造方法に関するものである。多孔質四
弗化エチレン樹脂は、四弗化エチレン樹脂(以下
PTFEと略記する)の優れた耐熱性、耐薬品性、
電気絶縁性、撥水性を生かし、各種フイルター、
隔膜の他、防水通気性材料、電線被覆材料、シー
ル材料等に利用されている。その製造方法は、既
にいくつかの方法が知られているが、その中で商
業的に魅力あるものは、延伸操作により多孔質化
する方法である。基本的には、特公昭42−13560
で開示されているPTFE粉末と液体潤滑剤からペ
ースト法でシートあるいはチユーブ状に成型した
のち未焼成状態で延伸し、ついで焼成することに
より多孔質化する方法である。この方法は、巾広
い製品形態に適用でき、気孔率の高い多孔質体を
得ることが可能という利点を有するが、反面極め
て微細な孔径、例えば0.1μより微細な孔径をも
つ多孔質体を得ることが不可能という欠点があつ
た。従がつて、本発明の目的は均一かつ極めて微
細な孔径を有するフイルム、チユーブ、ロツドあ
るいはフイラメント等の多孔質PTFE成型物の製
造方法を提供することにある。
本発明は、焼成した無孔質PTFE成型物を延伸
温度域により二段に分けて延伸を行い多孔質化す
ることを特徴とする、即ち焼成した無孔質PTFE
成型物を130℃近傍の二次転移点未満の温度で3
倍以下の延伸を行い、次いで該二次転移温度以上
で、かつ融点以下の温度で少くとも2倍以上の延
伸を行う製造方法に関するものであり、均一かつ
極めて微細な孔を有する多孔質PTFE成型物を得
ることができる。焼成により粒子が融着一体化し
た無孔質PTFE成型物を出発材料として低温での
第1の延伸を行うことによりその大きな引張応力
のため、極めて微細なクラツチが全面に数多く形
成され、続いて行う高温での第2の延伸操作では
比較的低い応力により微細クラツクを核としてク
ラツクが相互に成長していくというメカニズムが
推定される。この様な製造方法は従来全く知られ
ていなかつたものであり、以下には本発明を工程
順に更に詳細に説明する。
(1) 無孔質PTFE成型物の製造
所望する製品形状に合わせて未焼成PTFE粉末
を成形した後、焼成、冷却する。成形は圧縮成形
あるいはラム押出で行なわれてもよいが、より好
ましくは、フアインパウダーと液体潤滑剤の混和
物からペースト押出により成形されるのがよい。
ここでいうフアインパウダーとは乳化重合で得ら
れるデイスパージヨンを凝析して製造される微粉
末で、その一次粒子は0.2〜0.4μの直径を有し、
これが更に20メツシユ程度の二次粒子に造粒され
ている。液体潤滑剤はPTFE表面を濡らすことが
出来、かつ成形後蒸発、抽出等により除去するこ
とが可能な、例えばソルベントナフサ、ホワイト
オイル等が使用できる。又、その配合量は通常
PTFE100に対し、17〜35重量%の範囲で用いら
れる。このPTFEフアインパウダーに液体潤滑剤
が均一かつ十分に分散、浸透された混和物を押出
又は/及び圧延によりフイルム状あるいはチユー
ブ状等の形状に成形する。次に液体潤滑剤を蒸発
あるいは抽出により除去する。ここで得られる未
焼成PTFE成型物は、除去された液体潤滑剤の部
分が空隙として残るため、その配合量に応じた気
孔率を有する多孔質体である。これをそのまま例
えば加熱炉中で焼成すると、溶融した樹脂は相互
に融着し、無孔質となる。この場合押出あるいは
圧延の成形方向に幾分熱収縮する傾向にあるた
め、それを圧縮しない様に焼成することが好まし
い。従つて通常の焼成方法では、長さ方向が幾分
収縮するものの断面は、成型時とほぼ同じ寸法の
焼成品を得ることができる。一方焼成前あるいは
焼成中に成型物の厚さあるいは径方向に圧縮力を
与え、長さ方向は収縮しない様に保持したまま焼
成することにより、より薄膜化されたフイルムあ
るいはチユーブ等の無孔質化のより完全な焼成品
を得ることもできる。フイルムでは例えば熱ロー
ル間を通すことにより、チユーブでは、該チユー
ブの外径より細いダイと内径より太い浮遊ダイで
引抜くことでこの圧縮力を与えることが出来る。
焼成された後、成型物は冷却されるが、この冷却
速度によつて成型物の結晶化度が変化してくる。
結晶化度は用いた樹脂の分子量にも幾分関係する
が、一般には急冷した場合、50〜60%の結晶化度
になる。これを徐冷した場合、冷却速度を遅くす
るほど結晶化度が高くなる。本発明のより好まし
い実施においては、結晶化度は高いことが必要で
あり、焼成した後においても65%以上の結晶化度
を有する無孔質PTFE成型物が次の工程の延伸過
程により均一かつ微細な孔をもつた多孔質PTFE
成型物を与えることが判つた。結晶化度を上げる
もう一つの手段としては、焼成したPTFE成型物
を再び融点温度以上から熱分解・劣化が始まる
380℃以下の温度に加熱後徐冷してもよい。
いずれにしても融点近傍での冷却速度が結晶化
度に大きな影響を与える。結晶化度を増大せしめ
るという操作を行うことにより非晶質部分であつ
た部分にも微結晶が新たに発生し、これが延伸と
いう操作時に変形応力を分散させることとなり、
その結果、より均一でかつ微細な孔の生長とより
少ない破断の発生につながると考えられる。
(2) 焼成した無孔質のPTFE成型物の延伸
上記(1)の工程で得た無孔質PTFE成型物をまず
第1に130℃近傍の二次転移点未満の温度で3倍
以下の延伸を行う。この低温での延伸操作は
PTFEの変形に対して極めて高い応力を必要と
し、非晶質と結晶質の界面に極めて微細なクラツ
クを発生せしめる。従つて延伸温度が低いほど生
成するクラツクに微細性と均一性を与え、より好
ましくは60℃以下で行なわれる。又この低温延伸
は、最大で3倍までの延伸倍率の範囲で行うが
1.2倍から2倍の範囲で行う方が破断の発生頻度
を下げる上で好ましい。その理由は、延伸倍率を
高くすると発生するクラツクの数は増えずに専ら
大きさだけが増え、結局、破断を生じやすくして
しまう。それ故低温における第1の延伸だけで得
えられる多孔質PTFE成型物は、極めて気孔率が
低いものが、更に延伸倍率を無理に大きくしたも
のでは孔径のバラツキの大きいものしか得られな
い。
次に二次転移点以上で、かつ融点以下の温度で
第2の延伸を行う。この高温での延伸を行うこと
により、低温延伸で発生した極微細クラツクを核
として相互に成長し、膜の両表面に貫通した均一
孔が発生することになる。
高温延伸は、少なくとも2倍以上の延伸倍率で
行う。これ以下の延伸倍率では微細孔の成長が不
十分であり、一般に延伸倍率が高いほど、気孔率
は増大する。具体的な延伸倍率の設定は、低温延
伸における延伸倍率と合わせて考慮される。通常
低温延伸は少ない倍率で高温延伸は高い倍率で行
うことが好ましく、更に好適な条件として低温で
の延伸倍率と高温での延伸倍率の比が2倍と4倍
という様に1:2以上の値で行うのがよい。
延伸速度は所望の気孔率及び孔径により任意に
設定できるが、延伸される出発材料のPTFEに均
一な温度と変形応力を与えられる範囲であれば、
延伸速度の値が大きい程、変形応力を大きくし、
結果として発出する孔径を均一にし、微細孔径と
するうえで好ましい。
一方、高温延伸だけで所望する均一微細な孔を
有する多孔質PTFE成型物を得ることはできな
い。即ち高温下の延伸を行うと、いわゆるネツキ
ングとなり、ほとんど気孔率は増大せずに専ら成
形品断面積の減少だけが生ずる。従つて破断点近
傍まで延伸変形させても、気孔率の極端に低い多
孔質PTFE成型物を得るにすぎない。結論として
高い応力が作用する低温延伸と結晶、非晶間のす
べり特性がよい高温延伸を組み合せることにより
初めて均一かつ微細な孔を有する多孔質PTFE成
型物が得られることになる。以下本発明を実施例
で説明するが、本発明の範囲がこれに限定される
ものではない。
実施例 1
PTFEフアインパウダー(ダイキン工業社製、
商品名F104)100重量部に対して液体潤滑剤(シ
エル石油社製、ナフサNo.5)27重量部を混和し、
該混和物を予備成形後、丸棒状に押出し、ロール
圧延で厚さ0.1mmのフイルムを得た。
次に該フイルムを160〜200℃に加熱し、ナフサ
を揮発除去した後、355〜370℃の焼成炉と300〜
340℃の徐冷炉を通過させ、厚さ0.1mm、結晶化度
68%の無孔質PTFEフイルムを得た。このフイル
ムを出発材として、まず初めに温度20℃におい
て、表1に示すように長さ方向に1.2倍以上から
3倍までの延伸を行なつた。3倍より高い倍率の
延伸を行なうとフイルムは、しばしば破断し、不
安定な状態であつた。次に低温延伸されたフイル
ムを180℃から280℃の温度範囲で同じ方向に2倍
以上の延伸を行い多孔質PTFEフイルムを得た。
以上の延伸条件と得られたフイルムの特性を表−
1に示す。更に比較例として、低温延伸だけを行
なつた場合と高温延伸だけを行なつた場合の結果
も表−1に示した。この比較例では生成した孔が
0.1μよりも大きくなるか、または気孔率の低い
多孔質フイルムを得るにとどまつている。
ここで各物性の測定方法について説明する。結
晶化度は、該PTFEの比重をアセトン中で測定
し、比重と結晶化度の関係から求めた。この比重
と結晶化度の関係はX線回折および赤外線吸収ス
ペクトル法によつて求められる。
多孔質PTFE成型物の気孔率は、水中浮遊法に
よつて比重を測定し、出発材との比重と比較して
算出した。生成孔の大きさの測定は、水銀ポロシ
メーターを用いて行なえるが、又5000倍以上で撮
映した電子顕微鏡写真により評価することもでき
る。又孔が貫通孔であるかどうかの簡易判定法と
しては、PTFEを濡らすことが可能な溶剤を該成
形品に滴下し、それが浸透して該成形品が透明化
すれば貫通孔であることがわかる。
The present invention relates to a novel method for producing a porous tetrafluoroethylene resin molded product having a uniform micropore diameter suitable for use as filters, electrolytic membranes, battery membranes, gas separation membranes, and the like. Porous tetrafluoroethylene resin is called tetrafluoroethylene resin (hereinafter referred to as
(abbreviated as PTFE) has excellent heat resistance, chemical resistance,
Utilizing electrical insulation and water repellency, various filters,
In addition to diaphragms, it is used in waterproof and breathable materials, wire covering materials, sealing materials, etc. Several methods are already known for producing the material, but the most commercially attractive method is to make it porous through a stretching operation. Basically, Tokuko Showa 42-13560
This is a method in which PTFE powder and a liquid lubricant are formed into a sheet or tube shape using a paste method, which is then stretched in an unfired state, and then fired to make it porous. This method has the advantage that it can be applied to a wide range of product forms and that it is possible to obtain porous bodies with high porosity, but on the other hand, it produces porous bodies with extremely fine pore diameters, for example, pore diameters finer than 0.1μ. The drawback was that it was impossible. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing porous PTFE molded products such as films, tubes, rods, and filaments having uniform and extremely fine pore diameters. The present invention is characterized in that the fired non-porous PTFE molded product is stretched in two stages depending on the stretching temperature range to make it porous.
The molded product is heated at a temperature below the second-order transition point near 130°C.
This relates to a manufacturing method in which a porous PTFE molding having uniform and extremely fine pores is carried out by stretching at least twice as much, and then stretching at least twice as much at a temperature above the secondary transition temperature and below the melting point. can get things. By performing the first stretching at low temperature using a non-porous PTFE molded product in which particles are fused and integrated by firing, many extremely fine clutches are formed on the entire surface due to the large tensile stress. In the second stretching operation performed at a high temperature, the mechanism is presumed to be that the cracks grow together with the fine cracks as nuclei due to relatively low stress. Such a manufacturing method was completely unknown in the past, and the present invention will be explained in more detail in the order of the steps below. (1) Manufacture of non-porous PTFE molded product After molding unfired PTFE powder into the desired product shape, it is fired and cooled. The molding may be performed by compression molding or ram extrusion, but it is more preferable to mold by paste extrusion from a mixture of fine powder and liquid lubricant.
The fine powder mentioned here is a fine powder produced by coagulating dispersion obtained by emulsion polymerization, and its primary particles have a diameter of 0.2 to 0.4 μ.
This is further granulated into secondary particles of about 20 mesh. The liquid lubricant that can wet the PTFE surface and can be removed by evaporation, extraction, etc. after molding, such as solvent naphtha or white oil, can be used. Also, the amount added is usually
It is used in a range of 17 to 35% by weight based on PTFE100. The mixture in which the liquid lubricant is uniformly and sufficiently dispersed and permeated into the PTFE fine powder is formed into a film-like or tube-like shape by extrusion and/or rolling. The liquid lubricant is then removed by evaporation or extraction. The unfired PTFE molded product obtained here is a porous body having a porosity depending on the amount of the liquid lubricant mixed, since the removed liquid lubricant remains as voids. When this is fired as it is, for example, in a heating furnace, the molten resins fuse together and become non-porous. In this case, since it tends to undergo some heat shrinkage in the direction of extrusion or rolling, it is preferable to sinter it without compressing it. Therefore, with a normal firing method, it is possible to obtain a fired product having approximately the same cross-sectional dimensions as when molded, although it shrinks somewhat in the length direction. On the other hand, by applying compressive force to the thickness or radial direction of the molded product before or during firing, and firing while maintaining the lengthwise direction so as not to shrink, thinner films or non-porous materials such as tubes can be created. It is also possible to obtain a fired product with more complete oxidation. This compressive force can be applied to a film, for example, by passing it between heated rolls, and to a tube, by drawing it with a die that is thinner than the outer diameter of the tube and a floating die that is thicker than the inner diameter of the tube.
After being fired, the molded product is cooled, and the degree of crystallinity of the molded product changes depending on the cooling rate.
The degree of crystallinity is somewhat related to the molecular weight of the resin used, but in general, when rapidly cooled, the degree of crystallinity is 50 to 60%. When this is slowly cooled, the slower the cooling rate, the higher the degree of crystallinity. In a more preferred implementation of the present invention, it is necessary that the degree of crystallinity is high, and even after firing, a non-porous PTFE molded product with a degree of crystallinity of 65% or more is uniformly and Porous PTFE with fine pores
It was found that molded products can be given. Another way to increase the crystallinity is to heat the fired PTFE molded product so that it begins to decompose and deteriorate again at a temperature above its melting point.
It may be heated to a temperature of 380°C or less and then slowly cooled. In any case, the cooling rate near the melting point has a large effect on the degree of crystallinity. By performing an operation to increase the degree of crystallinity, new microcrystals are generated in the previously amorphous portion, which disperses the deformation stress during the stretching operation.
This is thought to lead to more uniform and finer pore growth and fewer fractures. (2) Stretching of the fired non-porous PTFE molded product First, the non-porous PTFE molded product obtained in the step (1) above is stretched at a temperature below the second order transition point near 130°C by a factor of 3 times or less. Perform stretching. This low temperature stretching operation
Extremely high stress is required to deform PTFE, and extremely fine cracks are generated at the interface between amorphous and crystalline materials. Therefore, the lower the stretching temperature, the finer and more uniform the cracks produced, and the stretching is preferably carried out at 60°C or lower. In addition, this low-temperature stretching is performed at a stretching ratio of up to 3 times.
It is preferable to do this in the range of 1.2 times to 2 times in order to reduce the frequency of breakage. The reason for this is that when the stretching ratio is increased, the number of cracks that occur does not increase, but only the size of the cracks increases, which ultimately makes them more likely to break. Therefore, a porous PTFE molded product obtained by only the first stretching at a low temperature has an extremely low porosity, but if the stretching ratio is further increased forcibly, only a product with large variations in pore diameter can be obtained. Next, a second stretching is performed at a temperature above the secondary transition point and below the melting point. By carrying out the stretching at this high temperature, the ultrafine cracks generated during the low-temperature stretching grow mutually as nuclei, and uniform pores penetrating both surfaces of the film are generated. The high temperature stretching is performed at a stretching ratio of at least 2 times or more. If the stretching ratio is lower than this, the growth of micropores is insufficient, and in general, the higher the stretching ratio is, the higher the porosity is. The setting of the specific stretching ratio is considered together with the stretching ratio in low-temperature stretching. Generally, it is preferable to carry out low-temperature stretching at a low stretching ratio and high-temperature stretching at a high stretching ratio.More preferable conditions are that the ratio of the stretching ratio at low temperature to that at high temperature is 1:2 or more, such as 2 times and 4 times. It is better to do it by value. The stretching speed can be set arbitrarily depending on the desired porosity and pore size, but as long as it can give uniform temperature and deformation stress to the starting material PTFE to be stretched,
The larger the stretching speed, the larger the deformation stress.
As a result, it is preferable to make the diameter of the pores emitted uniform and to make the diameter of the pores fine. On the other hand, it is not possible to obtain a porous PTFE molded product having desired uniform fine pores only by high-temperature stretching. That is, when stretching is carried out at high temperatures, so-called netting occurs, and the porosity hardly increases and only the cross-sectional area of the molded product decreases. Therefore, even if the material is stretched and deformed to near the breaking point, only a porous PTFE molded product with extremely low porosity will be obtained. In conclusion, porous PTFE molded products with uniform and fine pores can only be obtained by combining low-temperature stretching, where high stress acts, and high-temperature stretching, which has good sliding properties between crystals and amorphous. The present invention will be explained below with reference to examples, but the scope of the present invention is not limited thereto. Example 1 PTFE fine powder (manufactured by Daikin Industries, Ltd.,
Mix 27 parts by weight of a liquid lubricant (manufactured by Shell Oil Co., Ltd., Naphtha No. 5) to 100 parts by weight of product name F104,
After preforming the mixture, it was extruded into a round bar shape and rolled into a film with a thickness of 0.1 mm. Next, the film is heated to 160-200℃ to volatilize and remove the naphtha, and then heated in a firing furnace at 355-370℃.
Passed through a slow cooling furnace at 340℃, thickness 0.1mm, crystallinity
A 68% non-porous PTFE film was obtained. Using this film as a starting material, it was first stretched at a temperature of 20° C. from 1.2 times or more to 3 times in the length direction as shown in Table 1. When stretched at a magnification higher than 3 times, the film often broke and was unstable. Next, the low-temperature stretched film was stretched more than twice in the same direction in a temperature range of 180°C to 280°C to obtain a porous PTFE film.
The above stretching conditions and properties of the obtained film are shown in the table below.
Shown in 1. Furthermore, as comparative examples, Table 1 also shows the results when only low-temperature stretching was performed and when only high-temperature stretching was performed. In this comparative example, the generated pores
Porous films with porosity larger than 0.1μ or with low porosity have been obtained. Here, methods for measuring each physical property will be explained. The degree of crystallinity was determined by measuring the specific gravity of the PTFE in acetone and from the relationship between the specific gravity and the degree of crystallinity. The relationship between specific gravity and crystallinity is determined by X-ray diffraction and infrared absorption spectroscopy. The porosity of the porous PTFE molded product was calculated by measuring the specific gravity by an underwater floating method and comparing it with the specific gravity of the starting material. The size of the generated pores can be measured using a mercury porosimeter, but it can also be evaluated using an electron micrograph taken at a magnification of 5000 times or more. A simple method for determining whether a hole is a through hole is to drop a solvent capable of wetting PTFE onto the molded product, and if the solvent permeates and the molded product becomes transparent, it is a through hole. I understand.
【表】
実施例 2
実施例1と同じ方法で製造した0.1mm厚さの未
焼成PTFEフイルムを第1図に示す様なエンドレ
スベルト上に圧縮力を与えながら貼りつける。
ここで第1図に従つて焼成工程を説明すると、
1の供給ロールから未焼成PTFEフイルム9が送
り出され、圧着ロール2によりエンドレスベルト
8上に圧着される。加熱ロール3の伝熱により焼
成されたフイルムは、徐冷炉7で熱処理された
後、冷却ロール4で放冷され、引取りロール5を
経て巻取ロール6に巻取られる。得られたフイル
ムは、厚さ0.075mm、結晶化度70%の無孔質フイ
ルムであつた。これを用い表−2に示す条件で低
温延伸と高温延伸を続けて行ない、表−2に併記
した多孔質特性のフイルムを得た。[Table] Example 2 A 0.1 mm thick unfired PTFE film produced in the same manner as in Example 1 was pasted onto an endless belt as shown in FIG. 1 while applying compressive force. Here, the firing process will be explained according to Fig. 1.
An unfired PTFE film 9 is sent out from the supply roll 1 and is crimped onto the endless belt 8 by the crimping roll 2. The film fired by heat transfer from the heating roll 3 is heat-treated in a slow cooling furnace 7, then allowed to cool on a cooling roll 4, passed through a take-up roll 5, and then wound onto a take-up roll 6. The obtained film was a non-porous film with a thickness of 0.075 mm and a crystallinity of 70%. Using this, low-temperature stretching and high-temperature stretching were successively carried out under the conditions shown in Table 2 to obtain a film having the porous properties shown in Table 2.
【表】
実施例 3
実施例1と同じ混和物を用い、予備成形後、外
径4mm、内径3mmのチユーブを押出し、乾燥炉、
焼成炉、徐冷炉を通過させて、上記寸法で結晶化
度74%の無孔質PTFEチユーブを得た。このチユ
ーブを用い表−3に示す条件で低温延伸と高温延
伸を続けて行い、表−3に併記した多孔質特性の
チユーブを得た。[Table] Example 3 Using the same mixture as in Example 1, after preforming, a tube with an outer diameter of 4 mm and an inner diameter of 3 mm was extruded, dried in a drying oven,
A non-porous PTFE tube having the above dimensions and a crystallinity of 74% was obtained by passing through a firing furnace and a slow cooling furnace. Using this tube, low-temperature stretching and high-temperature stretching were successively performed under the conditions shown in Table 3 to obtain tubes with porous properties shown in Table 3.
【表】
実施例 4
実施例1と同一方法により0.1mm厚さの未焼成
PTFEフイルムを得た後、加熱炉に通し、焼成
後、直ちに室温下で冷却した場合(試料Aとす
る)、70℃/hrの冷却速度で徐冷した場合(試料
B)、更に15℃/hrの冷却速度で徐冷した場合
(試料C)と3種類の冷却速度を変えた無孔質フ
イルムを製造した。
各試料の結晶化度を測定すると、試料Aが55
%、試料Bが65%、試料Cは71%であつた。次に
各試料を表−4に示す条件で低温延伸と高温延伸
を続けて行い、表−4に併記した多孔質特性のフ
イルムを得た。[Table] Example 4 Unfired 0.1 mm thick by the same method as Example 1
After obtaining the PTFE film, it was passed through a heating furnace, and after firing, it was immediately cooled at room temperature (Sample A), and when it was slowly cooled at a cooling rate of 70℃/hr (Sample B), it was further cooled to 15℃/hr. Non-porous films were produced in which the film was slowly cooled at a cooling rate of hr (sample C) and at three different cooling rates. When measuring the crystallinity of each sample, sample A was 55
%, sample B was 65%, and sample C was 71%. Next, each sample was successively subjected to low-temperature stretching and high-temperature stretching under the conditions shown in Table 4 to obtain films with porous properties shown in Table 4.
第1図は、厚さ方向に圧縮を与え、焼成無孔質
化するのに適当な装置を模式的に例示する。
1は供給ロール、2は圧着ロール、3は加熱ロ
ール、4は冷却ロール、5は引取ロール、6は巻
取ロール、7は徐冷炉、8はエンドレスベルト、
9はPTFEフイルム。
FIG. 1 schematically illustrates an apparatus suitable for applying compression in the thickness direction and firing to make the material non-porous. 1 is a supply roll, 2 is a pressure roll, 3 is a heating roll, 4 is a cooling roll, 5 is a take-up roll, 6 is a winding roll, 7 is a lehr, 8 is an endless belt,
9 is PTFE film.
Claims (1)
孔質四弗化エチレン樹脂成型物を該二次転移点未
満の温度(以下低温という)で3倍以下の延伸を
行ない、次いで該二次転移温度以上でかつ融点以
下の温度(以下高温という)で少なくとも2倍以
上の延伸を行なうことを特徴とする多孔質四弗化
エチレン樹脂成型物の製造方法。 2 低温での延伸を60℃以下の温度で行なうこと
を特徴とする特許請求の範囲第1項記載の多孔質
四弗化エチレン樹脂成型物の製造方法。 3 低温での延伸を1.2倍から2倍の範囲で行な
うことを特徴とする特許請求の範囲第1項記載の
多孔質四弗化エチレン樹脂成型物の製造方法。 4 低温での延伸倍率と高温での延伸倍率の比が
1:2以上の値であることを特徴とする特許請求
の範囲第1項記載の多孔質四弗化エチレン樹脂成
型物の製造方法。 5 無孔質四弗化エチレン樹脂成型物の結晶化度
が65%以上であることを特徴とする特許請求の範
囲第1項記載の多孔質四弗化エチレン樹脂成型物
の製造方法。[Claims] 1. A fired non-porous tetrafluoroethylene resin molded product having a second-order transition point near 130°C is stretched three times or less at a temperature below the second-order transition point (hereinafter referred to as low temperature). A method for producing a porous tetrafluoroethylene resin molded product, which comprises stretching at least twice or more at a temperature above the secondary transition temperature and below the melting point (hereinafter referred to as high temperature). 2. A method for producing a porous tetrafluoroethylene resin molded product according to claim 1, characterized in that the low-temperature stretching is carried out at a temperature of 60° C. or lower. 3. The method for producing a porous tetrafluoroethylene resin molded product according to claim 1, characterized in that the stretching at low temperature is carried out in a range of 1.2 to 2 times. 4. The method for producing a porous tetrafluoroethylene resin molded product according to claim 1, wherein the ratio of the draw ratio at low temperature to the draw ratio at high temperature is 1:2 or more. 5. The method for producing a porous tetrafluoroethylene resin molded product according to claim 1, wherein the crystallinity of the nonporous tetrafluoroethylene resin molded product is 65% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57114033A JPS595037A (en) | 1982-07-02 | 1982-07-02 | Manufacture of porous tetrafluoroethylene resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57114033A JPS595037A (en) | 1982-07-02 | 1982-07-02 | Manufacture of porous tetrafluoroethylene resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS595037A JPS595037A (en) | 1984-01-11 |
JPS6144656B2 true JPS6144656B2 (en) | 1986-10-03 |
Family
ID=14627344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57114033A Granted JPS595037A (en) | 1982-07-02 | 1982-07-02 | Manufacture of porous tetrafluoroethylene resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS595037A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010094579A (en) | 2008-10-14 | 2010-04-30 | Sumitomo Electric Fine Polymer Inc | Method of manufacturing porous fluororesin thin film and porous fluororesin thin film |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5834433A (en) * | 1981-08-25 | 1983-02-28 | Optrex Corp | Electro-optical element of high reliability and its production |
JPH0691995B2 (en) * | 1985-03-09 | 1994-11-16 | 清水建設株式会社 | Wastewater treatment method |
JPS62244493A (en) * | 1986-04-16 | 1987-10-24 | Totoku Electric Co Ltd | Apparatus for recirculating and purifying water |
JPS62279920A (en) * | 1986-05-28 | 1987-12-04 | Daikin Ind Ltd | Porous heat-shrinkable tetrafluoroethylene polymer pipe and its manufacture |
JPH0781736B2 (en) * | 1987-07-23 | 1995-09-06 | 松下電器産業株式会社 | Remote control device |
DE3878899T2 (en) * | 1987-07-30 | 1993-07-22 | Toray Industries | POROESE POLYTETRAFLUORAETHYLENE MEMBRANE, SEPARATING DEVICE USING THIS MEMBRANE AND METHOD FOR THE PRODUCTION THEREOF. |
JP5177937B2 (en) * | 2003-09-09 | 2013-04-10 | 財団法人神奈川科学技術アカデミー | Sliding valve device |
JP5873389B2 (en) * | 2012-05-16 | 2016-03-01 | 住友電工ファインポリマー株式会社 | Method for producing modified polytetrafluoroethylene microporous membrane |
JP6690101B2 (en) * | 2016-05-19 | 2020-04-28 | 住友電工ファインポリマー株式会社 | Method for manufacturing fluororesin coated body |
WO2018221688A1 (en) * | 2017-05-31 | 2018-12-06 | 日東電工株式会社 | Polytetrafluoroethylene porous film |
JP2023051890A (en) * | 2021-09-30 | 2023-04-11 | ダイキン工業株式会社 | Polytetrafluoroethylene fine powder |
-
1982
- 1982-07-02 JP JP57114033A patent/JPS595037A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010094579A (en) | 2008-10-14 | 2010-04-30 | Sumitomo Electric Fine Polymer Inc | Method of manufacturing porous fluororesin thin film and porous fluororesin thin film |
Also Published As
Publication number | Publication date |
---|---|
JPS595037A (en) | 1984-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5102921A (en) | Polytetrafluoroethylene porous material and process for producing the same | |
US4049589A (en) | Porous films of polytetrafluoroethylene and process for producing said films | |
US5234751A (en) | Porous material of polytetrafluoroethylene and process for producing the same | |
US5026513A (en) | Process for making rapidly recoverable PTFE | |
AU639912B2 (en) | A monoaxially stretched shaped article of polytetrafluoroethylene and a process for producing the same | |
US3962153A (en) | Very highly stretched polytetrafluoroethylene and process therefor | |
US4707314A (en) | Process for producing polytetrafluoroethylene porous films | |
US4830062A (en) | Porous heat-shrinkable tetrafluoroethylene polymer tube and process for producing the same | |
JPS6144656B2 (en) | ||
EP0313263A2 (en) | Rapid recoverable PTFE and a process for its manufacture | |
CN104271649B (en) | Porous polytetrafluoroethylene film and waterproof and breathable member | |
RU2119978C1 (en) | Formed articles made of polytetrafluoroethylene and method of their production | |
JP2001011224A (en) | Preparation of porous tube and usage of porous tube | |
JP7175106B2 (en) | Polytetrafluoroethylene porous membrane | |
JPH07119303B2 (en) | Method for producing tetrafluoroethylene resin porous membrane | |
EP0418155B1 (en) | Porous material of polytetrafluoroethylene and process for producing the same | |
WO2004078831A1 (en) | Porous polytetrafluoroethylene resin body and process for producing the same | |
WO2017090247A1 (en) | Polytetrafluoroethylene porous film | |
JP3914302B2 (en) | Method for producing porous film made of polytetrafluoroethylene | |
JP3221074B2 (en) | Method for producing continuous molded article of high crystallinity polytetrafluoroethylene | |
KR102267597B1 (en) | Porous fluorine resin film and method for preparing the same | |
JP3456284B2 (en) | Porous tetrafluoroethylene resin laminate and method for producing the same | |
JP3539441B2 (en) | Porous ethylene tetrafluoride resin and method for producing the same | |
JPS6157328A (en) | Manufacture of polytetrafluoroethylene porous material | |
JP3539440B2 (en) | Polytetrafluoroethylene porous body and method for producing the same |