JPS6142743A - Optical information reader - Google Patents
Optical information readerInfo
- Publication number
- JPS6142743A JPS6142743A JP16337684A JP16337684A JPS6142743A JP S6142743 A JPS6142743 A JP S6142743A JP 16337684 A JP16337684 A JP 16337684A JP 16337684 A JP16337684 A JP 16337684A JP S6142743 A JPS6142743 A JP S6142743A
- Authority
- JP
- Japan
- Prior art keywords
- optical axis
- signal
- light receiving
- disk
- receiving element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/0908—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
Landscapes
- Automatic Focus Adjustment (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明け、VD、CD等に記録ざわた情報を、光ビー
ムに依り読み出す光学的情報読取装置、或いは光ビーム
に依り情報をディスク等に書き込む光学的情報書き通入
装置に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention provides an optical information reading device for reading out information recorded on a VD, CD, etc. using a light beam, or for reading information onto a disk, etc. using a light beam. This invention relates to an optical information writing/passing device.
(従来技術〕
従来、焦点ずれ検出法に非点収差法、トラッキングずれ
検出法にプルシュプル法を用いた光学的情報読取装置が
知られていた。(Prior Art) Conventionally, optical information reading devices have been known that use an astigmatism method to detect defocus and a pull-pull method to detect tracking deviation.
上述した方法を用いた光学的情報読取装置の線図をf4
2図に示す。A diagram of an optical information reading device using the above method is f4
Shown in Figure 2.
半導体レーザ1から放射ブれた光け、偏光ビームスプリ
ッタ2によって、ディスク6方向釦100憾反射され、
174波長板3を介し、コリメータレンズ4によって平
行光と泗れ、対物レンズ5を介してディスク6上忙収光
ブれる。この光束は、凹凸のピット形状を持つ情報トラ
9りにより反射され、対物レンズ5、コリメータレンズ
4.1/4 波長板3、偏光ビームスプリッタ2を介し
て、入射光束とけ直交する向きに透過し、光軸に垂直な
面内で45°回転させたシリンドリカルレンズ9に入射
する。合焦時に各受光素子に等光量入射する様に4分割
受光素子を配置する。ディスクが近づくと、第3図(α
)に示す様忙、ビームは楕円となり、ディスクが遠去か
ると第3図(6)に示す様に1社)とけ異なりた方向に
楕円となる。この為、ioA+100)−(10B+1
07))より句点ずれ信号を得、又、ディスクに刻まれ
た凹凸ビ・ノドによる一次回折光の方向変化より、トラ
ッキングずれ信号を得ていた。上述したトラッキングず
れ信号は、シリンドリカルレンズ9の作用によりディラ
クタ上では90°程度回転するので、(10A+10B
)−(10G++ 10D )より得ていた。The beam emitted from the semiconductor laser 1 is reflected by the polarizing beam splitter 2 toward the disk direction button 100,
The parallel light passes through the 174 wavelength plate 3, is collimated by the collimator lens 4, and is converged onto the disk 6 via the objective lens 5. This light beam is reflected by the information tray 9, which has an uneven pit shape, and is transmitted through the objective lens 5, collimator lens 4, 1/4 wavelength plate 3, and polarizing beam splitter 2 in a direction perpendicular to the incident light beam. , enters the cylindrical lens 9 rotated by 45° in a plane perpendicular to the optical axis. The four-part light-receiving elements are arranged so that the same amount of light enters each light-receiving element during focusing. As the disk approaches, Figure 3 (α
), the beam becomes an ellipse, and as the disk moves away, it becomes an ellipse in a different direction as shown in Figure 3 (6). For this reason, ioA+100)-(10B+1
07)), and a tracking deviation signal was obtained from the change in the direction of the first-order diffracted light due to the grooves and grooves carved on the disk. The above-mentioned tracking deviation signal is rotated by about 90° on the diraktor due to the action of the cylindrical lens 9, so that (10A+10B)
)-(10G++ 10D).
しかし従来の非点収差法とプツシニブル法による方法で
は1合焦時の4分割受光素子上のビーム形状け、コリメ
ータレンズ4とシリンドリカルレンズ9の収差等により
真円とけならず、紡錘形となる上1両焦線の間罠受光素
子が配ltすれるのでディスク像が正確に90°回転し
ていない。この為1合焦時に一次回折光の方向変化が、
正確に4分割受光素子のトラッキングサーボ方向の暗線
を境界に生じないで、微かに傾きを持っていた。従って
、トラッキングエラi信号に擬信号が混入し、正確にト
ラックをトレースできなかった。ζらに、焦点ずれ信号
とトラッキングずれ信号を同一の4分割受光素子より得
ているので、お互いの信号に影響を与えあい、安定で正
確なエラー信号を取11Hす事が困難であ−た。又、非
点収差法は、比較的エラー検出範囲が狭いので、焦点引
込回路などが必要であっfC,6
そこでこの発明は従来のこの様な欠点を解決する為、焦
点ずれ信号とトラッキングずれ信号とを完全に分離し、
お互いの干渉を生じさせる事なく高精度で安定なエラー
信号を得、ざらに、焦点引込回路など複雑な回路を必要
としない千学的読取装置を得ることを目的としている。However, in the conventional astigmatism method and pushinable method, the beam shape on the 4-split light receiving element at the time of one focus, the aberration of the collimator lens 4 and the cylindrical lens 9, etc. prevent it from being a perfect circle, and the beam becomes spindle-shaped. Since a trap light receiving element is placed between both focal lines, the disk image is not rotated exactly 90 degrees. For this reason, the direction change of the first-order diffracted light when the first focus is
The dark line in the tracking servo direction of the 4-split light-receiving element did not appear exactly at the boundary, but had a slight inclination. Therefore, a false signal was mixed into the tracking error i signal, and the track could not be accurately traced. Furthermore, since the defocus signal and the tracking deviation signal are obtained from the same 4-split photodetector, they affect each other's signals, making it difficult to obtain a stable and accurate error signal. . In addition, since the astigmatism method has a relatively narrow error detection range, it requires a focus pull-in circuit. Completely separate the
The purpose is to obtain a highly accurate and stable error signal without causing mutual interference, and to obtain a sensual reading device that does not require a complicated circuit such as a focus drawing circuit.
上記問題点を解決する為にこの発明け、ディスクからの
反射光を収束させるレンズと、対物レンズと上記レンズ
との光軸方向、及び光軸方向に対して垂直な面内で、光
軸1とトラックとがなす平面を境界としてお互い逆向き
、或いはお互い直交する向きに光量の埠しい2光束に分
けるビームスプリ9り、と上記光軸方向に、シリンドリ
カルレンズと4分割受光素子を配置し上記光軸方向に対
して租直な面内の夫々の光軸上に、トラック方向と平行
な方向に分割線を有する少なくとも2分割以上の受光素
子を、結像点より等距離だけ離して、一方はディスクに
近い測知、他方はディスクから遠い測知配置し、焦点ず
れ信号を上記2分割受光素子の一方の、光軸を含む受光
素子の出力から、光軸を含まない受光素子の出力を引い
た第1の差成分と、上記2分割受光素子の他方の、光軸
を含まない受光素子の出力から、光軸を含む受光素子の
出力を引い友第2の差成分との和信号より得、RF傷信
号得たしかる後に、上記4分割、受光素子の2対の対角
和の差信号より得、トラッキングずれ信号を、上記両方
の2分割受光素子のお互いの差成分工Q得る争で、焦点
ずれ信号とトラ9キングずれ信号の相互干渉性を無くシ
、高精度で安定な両エラー信号を得る様にした。In order to solve the above problems, the present invention provides a lens that converges the reflected light from the disk, an optical axis direction between the objective lens and the above lens, and an optical axis 1 in a plane perpendicular to the optical axis direction. A cylindrical lens and a 4-split light receiving element are arranged in the optical axis direction, and a beam splitter 9 divides the beam into two light beams with a large amount of light in directions opposite to each other or perpendicular to each other using the plane formed by the and the track as a boundary. On each optical axis in a plane perpendicular to the optical axis direction, at least two or more divided light receiving elements each having a dividing line in a direction parallel to the track direction are placed equidistantly apart from the imaging point, and one One is for sensing close to the disk, and the other is for sensing far from the disk, and the defocus signal is transferred from the output of one of the two-split photodetectors that includes the optical axis to the output of the photodetector that does not include the optical axis. From the sum signal of the first difference component subtracted, the output of the light receiving element including the optical axis from the output of the other of the two-split light receiving elements, which does not include the optical axis, and the second difference component. After obtaining the RF flaw signal, a tracking error signal is obtained from the difference signal of the diagonal sum of the two pairs of light-receiving elements divided into four parts, and a tracking deviation signal is obtained by calculating the difference component Q between the two light-receiving elements divided into two parts. In this way, the mutual interference between the defocus signal and the tracking deviation signal is eliminated, and highly accurate and stable error signals of both are obtained.
〔作用〕
上記の様に配置し、エラー信号を得ると、上記2分割受
光素子より得た焦点ずれ信号で、広範囲の焦点引込を行
ない、RF倍信号得た後、4分割受光素子より排反焦点
ずれ信号に切り換えて高精度な焦点サーボを行ない、上
記両方の2分割受光素子より得友トラ・ノキングずれ信
号を用いてトラッキングサーボを行なうので、両エラー
信号を別個の受光素子よゆ得る事がでべろ。[Operation] When arranged as described above and obtaining an error signal, the defocus signal obtained from the two-split light receiving element is used to pull in a wide range of focus, and after obtaining the RF multiplied signal, the 4-split light receiving element rejects the focus. High-precision focus servo is performed by switching to the focus deviation signal, and tracking servo is performed using the tokutomo tracking and knocking deviation signals from both of the above-mentioned two-split light receiving elements, so both error signals can be obtained from separate light receiving elements. Gadebero.
以下にこの発明の実施例を図面に基すいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図において、半導体レーザ1より出射これた光け、
偏光ビームスプリッタ2、1A波長板3ヲ介シて、コリ
メータレンズ4によって平行光とされ、対物レンズ5を
介して、ディスク6上に照射される。”ディスク6で反
射された光は、対物レンズ5、コリメータレンズ4を介
し、1A波長板3、及び偏光ビームスプリッタ20作用
に依り、入射光束とf′i直交直交面きに分けられ、ビ
ームスプリッタ7に入射する。この時、ビームスプリッ
タ7の作用に依り、光軸とトラック方向とがなす平面を
境界とした半面を通過した反射光束と、他の半面を通過
した反射光束とけ、お互い逆向きに光軸方向に垂直な方
向、及び光軸方向の3方向に分けられる。ブて、光軸方
向に垂直な方向におL/1ては、半導体レーザ1の出射
端の共役、4A、A’より等距離だけ離して、一方は、
ビームスプリッタ7に、近い非結像点B′に、他方はビ
ームスブ+1 、’7り7より遠い非結像点Bに、トラ
〜り方向に平行な分割線を有する2分割受光素子8′、
8を配置し夫々の半光束を入射させ、合焦点時に各受光
素子の出力が、同じになる様に、2分割受光素子8′。In FIG. 1, the light emitted from the semiconductor laser 1,
The light is collimated by a collimator lens 4 through a polarizing beam splitter 2 and a 1A wavelength plate 3, and is irradiated onto a disk 6 via an objective lens 5. ``The light reflected by the disk 6 passes through the objective lens 5 and the collimator lens 4, and is divided into the incident light beam and the plane orthogonal to f'i by the action of the 1A wavelength plate 3 and the polarizing beam splitter 20, and is then sent to the beam splitter. At this time, due to the action of the beam splitter 7, the reflected light beam that has passed through one half of the plane bounded by the plane formed by the optical axis and the track direction, and the reflected light beam that has passed through the other half of the plane, are separated and are directed in opposite directions. The direction is perpendicular to the optical axis direction, and the direction perpendicular to the optical axis direction is divided into three directions. ', equidistant apart from each other, and one side is
A two-split light-receiving element 8' having a dividing line parallel to the rear direction, one at a non-imaging point B' near the beam splitter 7, and the other at a non-imaging point B' farther from the beam sub+1,
A two-split light-receiving element 8' is arranged so that each half-luminous flux is incident on the light-receiving element 8, and the output of each light-receiving element is the same at the time of focusing.
8を調整する。Adjust 8.
tas図は1反射光束のうち、ビームスプリッタ7で左
右に分れた光束を同一の光軸上に表わし、1/4波長板
5、偏光ビームスプリッタ21 ビームスプリッタ7を
省略した光路図と各受光素子8゜8′上のビーム状態を
表わし九図である。(ロ))図は、合焦時、ω)図はデ
ィスク6が近づい次状態、(C)図はディスク6が遠の
いた状態を示す。実際にはレンズの上側と下側を通過す
る半光束は、ビームスプリッタ7で第1図に示す様に、
左右に分かれて反射するので、お互いが、影響を与える
事はない。The tas diagram shows the beam split into left and right beams by the beam splitter 7 out of one reflected beam on the same optical axis, and shows an optical path diagram with the quarter-wave plate 5, polarizing beam splitter 21, and beam splitter 7 omitted, and each light receiving beam. FIG. 9 shows the state of the beam on the element 8°8'. (B)) Figure shows the state in focus, ω) Figure shows the state in which the disc 6 is approaching, and Figure (C) shows the state in which the disc 6 is far away. In reality, the half-luminous flux passing through the upper and lower sides of the lens is divided by the beam splitter 7 as shown in FIG.
Since the light is reflected on the left and right sides, they do not affect each other.
ばて、合焦時には(2))図に示す様に、各受光素子α
。At the time of focusing, as shown in the figure (2)), each light receiving element α
.
b、c、d、の出力け、全て同じになる。ディスクが近
づくと受光素子8の状態は、ディスクが遠のいた状態の
受光素子8′の状態と同じになる。又、ディスクが遠の
くと、受光素子8の状態は、ディスクが近づ・・・た状
態の受光素子8′の状態と同じになる。このようにして
、(8cL−ah )+(8’c−8’d)より焦点ず
れ信号を得る事ができる。即ち、合焦時にけ0となり、
ディスクが近づいた時には負となり、ディスクが遠のい
た時には正となる。プらに、受光素子8,8′の各々の
出力特性としては、第6図に示す様忙、ディスクのずれ
量に対してエラー出力が非線形となるが、上記し友様な
相補的な信号の取り方をする事で、エラー出力は、第7
図に示す様にディスクのずれ量に対し、極めて線形性の
良いエラー出力が得られる。ζらに、広範囲の焦点引込
が可能となり、自動引込回路などが不要となる。The outputs of b, c, and d are all the same. When the disk approaches, the state of the light receiving element 8 becomes the same as the state of the light receiving element 8' when the disk moves away. Furthermore, when the disk moves away, the state of the light receiving element 8 becomes the same as the state of the light receiving element 8' when the disk approaches. In this way, a defocus signal can be obtained from (8cL-ah)+(8'c-8'd). In other words, when in focus, the value becomes 0,
It becomes negative when the disc approaches, and becomes positive when the disc moves away. In addition, the output characteristics of each of the light-receiving elements 8 and 8' are as shown in FIG. 6, and the error output is non-linear with respect to the amount of disc deviation. By taking the following method, the error output becomes the 7th
As shown in the figure, an error output with extremely good linearity can be obtained with respect to the amount of disk deviation. ζ et al., it becomes possible to pull in a focus over a wide range, and an automatic pull-in circuit becomes unnecessary.
次に、光軸方向においては、適当なシリンドリカルレン
ズ9を配置し、4分割受光素子1oを合焦時忙各受光素
子出力が同じになる様に醪R+る、第3図に示した様に
、ディスクのずれに対して、ビームの楕円になる方向か
異なるので、(10A+1oe)−NoBs1oD)
よりエラー出力が第8図の様に得られる。Next, in the optical axis direction, a suitable cylindrical lens 9 is arranged, and the four-divided light receiving element 1o is adjusted so that the output of each light receiving element is the same during focusing, as shown in Fig. 3. , the direction in which the beam becomes elliptical differs depending on the disc displacement, so (10A+1oe)-NoBs1oD)
As a result, an error output as shown in FIG. 8 is obtained.
ばて、トラ−、−?ングずれ信号け、第1図に示す様に
正確に(8a+8b)−(8c+8dl より得る事
ができる。なぜならば、トラ9〃で発生した一次回折光
は、トラックずれに伴い、トラック方向に垂直な方向に
偏向するので、受光素子8,8′に異なる強度で入射す
る為である。又、トラッキングずれ信号は、従来(10
A+10B’1−(10C+1Or))から得ていたが
、前述した様に焦点ずれ信号との相互干渉が起こる上、
復信号が混入するので高精度トラッキングサーボには不
向きである、ヌ、Ry倍信号、各受光素子の出力の和、
即ち(8a+8b)+(8’c+8’d)+(10A+
10B)+(10c!+10D)より得る事ができる。Bate, tiger, -? As shown in Figure 1, the tracking deviation signal can be obtained accurately from (8a+8b)-(8c+8dl).This is because the first-order diffracted light generated by the track 9 is caused by the deviation perpendicular to the track direction due to the track deviation. This is because the tracking deviation signal is incident on the light receiving elements 8 and 8' with different intensities because it is deflected in the direction
A+10B'1-(10C+1Or)), but as mentioned above, mutual interference with the defocus signal occurs, and
It is not suitable for high-precision tracking servo because the return signal is mixed in.
That is, (8a+8b)+(8'c+8'd)+(10A+
It can be obtained from 10B) + (10c! + 10D).
そこで、2分割受光素子868′による焦点ずれ検出を
広範囲に設定し、4分割受光素子10による焦点ずれ検
出を極めて高精度忙設定しておき、前者によって焦点引
込を行ないRF倍信号得た後、後者に切り換え、高精度
焦点ずれ検出を行ない、トラッキングずれ検出を2分割
受光素子8.8′で行なう。この様にすれば、焦点ずれ
検出を極めて広範囲に、しかも高精度に行なう事が可能
とな性さらに、トラッキングずれ検出を、焦点ずれ検出
とけ全く別の受光素子より得る事ができるので。Therefore, the defocus detection by the two-divided light receiving element 868' is set to a wide range, and the defocus detection by the four-divided light receiving element 10 is set to extremely high accuracy. Switching to the latter, high-precision focus shift detection is performed, and tracking shift detection is performed using the two-split light-receiving element 8.8'. In this way, defocus detection can be performed over a very wide range and with high precision.Furthermore, tracking deviation detection can be obtained from a completely different light receiving element.
焦点ずれ信号との相互干渉がなくなり、擬信号が混入す
る事もなくなる。ざらに、焦点自動引込回路が不要とな
り、弾点検出の切り換えを行なう簡単なスイクチング回
路が必要となるだけとなる、尚、−ヒ記実施例で用いた
ビームスプリッタ7は第9図に示す様忙、反射光束をお
互いに直交する向きと、光軸方向の5方向に分けるもの
でも良い。Mutual interference with the defocus signal is eliminated, and false signals are no longer mixed. In general, an automatic focus retraction circuit is no longer required, and only a simple switching circuit for switching bullet point detection is required. Alternatively, the reflected light beam may be divided into five directions, one in each direction perpendicular to the other and in the optical axis direction.
以上述べた様K、本発明に依れば焦点ずれ検出を極めて
広範囲忙、しかも極めて高精度に行なう事ができると共
に、トラッキングずれ信号と焦点ずれ信号との相互干渉
がないので、極めて高精度なトラ9キングずれ検出を行
rr ’l事ができる、As stated above, according to the present invention, defocus detection can be performed over an extremely wide range and with extremely high accuracy.In addition, since there is no mutual interference between tracking deviation signals and defocus signals, extremely high accuracy can be achieved. It is possible to perform 9-king deviation detection,
第1図・・本発明に係る光学系の線図
第2図・・従来の非点収差法における光学系の線図
第5図・・従来の非点収差法における4分割受光素子上
のビーム状態図
(ロ))ディスクが近づいた時
(b)ディスクが遠のいた時
第4図・・従来の非点収差法における4分割受光素子上
の合焦時のビーム状態図
第5図・・本発明に係る焦点イれ検出法における光路図
と2分割受光素子上のビーム状
態図
6)合焦時
の)ディスクが近づいた時
(c)ディスクが遠のいた時
第6図・・本発明に係る片側2分割受光素子の焦点ずれ
帝とエラー量との関係を示した
図
第7図・・本発明に係る焦点ずれ検出法における焦点ず
れ量とエラー量との関係を示し
た図
第8図・・従来の非点収差法Tlc:I、−ける焦点ず
れ量とエラー量との関係を示した図
f49図・・本発明に係るお互い直交する向きと、光軸
方向の3方向に分けるビームスプ
リー/)を示した立体図
1・・・・・・半導体レーザ
2・・・・・・偏光ビームスプリータ
3・・・・・・1A波長板
4・・・・・・コリメータレンズ
5・・・・・・対物レンズ
6……デイスク
7・・・・・・ビームスプリッタ
8.8′・・・・・・2分割受光素子
?・・・・・・シリンドリカルレンズ
10・・・・・・4分割受光素子 以 上第1
図
/トラ゛″りi薗
4−+卜ラッキンク゛サーボ方向
第7図
第9図Figure 1: Diagram of the optical system according to the present invention Figure 2: Diagram of the optical system in the conventional astigmatism method Figure 5: Beam on the 4-split light receiving element in the conventional astigmatism method State diagram (b)) When the disc approaches (b) When the disc moves away Figure 4: Beam state diagram when focused on the 4-split light receiving element in the conventional astigmatism method Figure 5: Book Optical path diagram and beam state diagram on the two-split light-receiving element in the out-of-focus detection method according to the invention 6) When the disk approaches (at the time of focusing) (c) When the disk moves away Figure 6: According to the invention Figure 7 is a diagram showing the relationship between the amount of defocus and the amount of error for a two-split light receiving element on one side; Figure 8 is a diagram showing the relationship between the amount of defocus and the amount of error in the defocus detection method according to the present invention.・Figure f49 showing the relationship between the amount of defocus and the amount of error using the conventional astigmatism method Tlc:I. 1...Semiconductor laser 2...Polarizing beam splitter 3...1A wave plate 4...Collimator lens 5... ...Objective lens 6...Disc 7...Beam splitter 8.8'...Two-split light receiving element? ......Cylindrical lens 10...Four-division light receiving element Above 1st
Figure/Travel direction 4- + racking servo direction Figure 7 Figure 9
Claims (1)
る装置、又はディスク等に情報を光学的に記録する事を
目的とする装置において、少なくとも前記ディスクから
の反射光束を集光させる対物レンズと、前記対物レンズ
を介した光を収束させるレンズと、前記対物レンズと前
記対物レンズとの光軸方向及び光軸方向に対して垂直な
面内で光軸とトラックとがなす平面を境界としてお互い
逆向き、或いはお互い直交する向きに光量の等しい2光
束に分けるビームスプリッタと、前記光軸方向にシリン
ドリカルレンズと4分割受光素子を配置し前記光軸方向
に対して垂直な面内の夫々の光軸上に、トラック方向と
平行な方向に分割線を有する少なくとも2分割以上の受
光素子を、結像点より等距離だけ離して、一方はディス
クに近い側に、他方はディスクから遠い側に配置し、焦
点ずれ信号を前記2分割受光素子の一方の、光軸を含む
光学素子の出力から、光軸を含まない受光素子の出力を
引いた第1の差成分と、前記2分割受光素子の他方の光
軸を含まない受光素子の出力から、光軸を含む受光素子
の出力を引いた第2の差成分との和信号より得、RF信
号を得たしかる後に、前記4分割受光素子の2対の対角
和の差信号より得、トラッキングずれ信号を、前記両方
の2分割受光素子のお互いの差信号より得る事を特徴と
する光学的情報読取装置。In a device that optically detects information recorded on a disk or the like in a non-contact manner, or in a device that aims to optically record information on a disk or the like, an objective lens that focuses at least a reflected light beam from the disk. and a lens that converges the light passing through the objective lens, the optical axis direction of the objective lens and the objective lens, and a plane formed by the optical axis and the track in a plane perpendicular to the optical axis direction as the boundary. A beam splitter that splits the beam into two light beams having equal amounts of light in directions opposite to each other or orthogonal to each other, and a cylindrical lens and a four-split light receiving element arranged in the optical axis direction, each in a plane perpendicular to the optical axis direction. On the optical axis, a light receiving element divided into at least two parts, each having a dividing line in a direction parallel to the track direction, is spaced equidistantly from the image forming point, one on the side closer to the disk and the other on the side farther from the disk. and a first difference component obtained by subtracting the output of the light receiving element not including the optical axis from the output of the optical element including the optical axis of one of the two split light receiving elements, and the two split light receiving elements. A sum signal is obtained by subtracting the output of the light receiving element including the optical axis from the output of the other light receiving element not including the optical axis, and an RF signal is obtained. An optical information reading device characterized in that a tracking deviation signal is obtained from a difference signal between two pairs of diagonal sums, and a tracking deviation signal is obtained from a difference signal between the two split light receiving elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16337684A JPS6142743A (en) | 1984-08-02 | 1984-08-02 | Optical information reader |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16337684A JPS6142743A (en) | 1984-08-02 | 1984-08-02 | Optical information reader |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6142743A true JPS6142743A (en) | 1986-03-01 |
Family
ID=15772703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16337684A Pending JPS6142743A (en) | 1984-08-02 | 1984-08-02 | Optical information reader |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6142743A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5281802A (en) * | 1991-02-20 | 1994-01-25 | Ricoh Company, Ltd. | Focus error signal detection device with separating prism |
WO1996028815A1 (en) * | 1995-03-14 | 1996-09-19 | Thomson-Csf | Optical focus control system |
US7307928B2 (en) | 2002-08-14 | 2007-12-11 | Fujitsu Limited | Optical storage device, optical device and servo controlling method therefor having first and second focus error signal detectors with different detection ranges and target trajectory generator |
-
1984
- 1984-08-02 JP JP16337684A patent/JPS6142743A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5281802A (en) * | 1991-02-20 | 1994-01-25 | Ricoh Company, Ltd. | Focus error signal detection device with separating prism |
WO1996028815A1 (en) * | 1995-03-14 | 1996-09-19 | Thomson-Csf | Optical focus control system |
FR2731808A1 (en) * | 1995-03-14 | 1996-09-20 | Thomson Csf | OPTICAL FOCUS ADJUSTMENT SYSTEM |
US7307928B2 (en) | 2002-08-14 | 2007-12-11 | Fujitsu Limited | Optical storage device, optical device and servo controlling method therefor having first and second focus error signal detectors with different detection ranges and target trajectory generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5231621A (en) | Focus detector which serves to split off a portion of a detected light beam only when the detected light beam is not refocused at an expected refocus point | |
JP3019181B2 (en) | Optical head servo signal detection device | |
JPS6142743A (en) | Optical information reader | |
JPS6329337B2 (en) | ||
JPS6159630A (en) | Focus detector | |
JP2552660B2 (en) | Focus error detector | |
JPS6215865Y2 (en) | ||
JPS61227233A (en) | Optical reading device | |
JPS6093647A (en) | Reproducing optical system control means of optical type disc player | |
JP2660523B2 (en) | Optical recording / reproducing device | |
JPH0240576Y2 (en) | ||
JP2644110B2 (en) | Optical recording / reproducing device | |
JPS6142745A (en) | Optical information reader | |
JP2686323B2 (en) | Focus error detection device | |
JP2748903B2 (en) | Method and apparatus for detecting servo error in optical head | |
JP2594957B2 (en) | Optical recording / reproducing device | |
JP2596993B2 (en) | Information reading method for optical disk | |
JPS61113137A (en) | Optical head | |
JPH0556568B2 (en) | ||
JPS6032132A (en) | Optical head device | |
JPS6223373B2 (en) | ||
JPH01130331A (en) | Focal point detecting device for optical pickup | |
JPH03130937A (en) | Focus detector | |
JP2000276742A (en) | Device and method for detecting optical pickup focusing error | |
JPS60247832A (en) | Tracking error detector |