JPS6132475A - Thin film fet - Google Patents
Thin film fetInfo
- Publication number
- JPS6132475A JPS6132475A JP15286184A JP15286184A JPS6132475A JP S6132475 A JPS6132475 A JP S6132475A JP 15286184 A JP15286184 A JP 15286184A JP 15286184 A JP15286184 A JP 15286184A JP S6132475 A JPS6132475 A JP S6132475A
- Authority
- JP
- Japan
- Prior art keywords
- film
- source
- electrode
- gate
- semiconductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000005036 potential barrier Methods 0.000 claims abstract description 10
- 239000010408 film Substances 0.000 claims description 30
- 230000005669 field effect Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 2
- 230000008020 evaporation Effects 0.000 abstract description 2
- 238000001704 evaporation Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 abstract 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract 1
- 229910002651 NO3 Inorganic materials 0.000 abstract 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract 1
- 238000000059 patterning Methods 0.000 abstract 1
- CBMSICGVCDVFQL-UHFFFAOYSA-N phosphonitrate Chemical compound [O-][N+](=O)OP(=O)=O CBMSICGVCDVFQL-UHFFFAOYSA-N 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78642—Vertical transistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は薄膜電界効果トランジスタ及びその製造方法に
関するものであり、特に液晶駆動のための薄膜電界効果
トランジスタに適した構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film field effect transistor and a method for manufacturing the same, and particularly to a structure suitable for a thin film field effect transistor for driving a liquid crystal.
近年、放電分解(Glow Discharge)或い
は真空蒸着で作製された非晶質、多結晶半導体薄膜を用
いた薄膜電界効果トランジスタ(TPT)が注目されて
いる。特に上記半導体薄膜が低温形成できるため、薄膜
半導体装置を構成するための基板に安価で大面積の絶縁
性基板を用いることができる。In recent years, thin film field effect transistors (TPT) using amorphous or polycrystalline semiconductor thin films produced by glow discharge or vacuum deposition have attracted attention. In particular, since the semiconductor thin film can be formed at a low temperature, an inexpensive, large-area insulating substrate can be used as a substrate for forming a thin film semiconductor device.
又、従来のリソグラフィー技術をそのまま使用して微細
加工ができ集積化も可能である。第1図は特開昭58−
148458号等で示され・る従来のTPTの構造を概
略的に示した図である。ここで1は絶縁性基板、2はゲ
ート電極、3はゲート絶縁膜、4はアモルファスシリコ
ン(a−5t)或いは多結果シリコン(poly −S
i )等の非晶質或いは多結晶の半導体層、5,6は
それぞれソース・ドレイン電極であり、7,8は良好な
オーミックコンタクトを得るための不純物ドープ半導体
層である。In addition, microfabrication and integration are possible using conventional lithography technology as is. Figure 1 is JP-A-58-
FIG. 1 is a diagram schematically showing the structure of a conventional TPT shown in No. 148458 and the like. Here, 1 is an insulating substrate, 2 is a gate electrode, 3 is a gate insulating film, and 4 is amorphous silicon (A-5T) or polysilicon (poly-S).
amorphous or polycrystalline semiconductor layers such as i), 5 and 6 are source and drain electrodes, respectively, and 7 and 8 are impurity-doped semiconductor layers for obtaining good ohmic contact.
半導体層に非晶質或いは多結晶半導体を用いたTPTで
は、半導体中の粒界散乱等の多結晶粒界による欠陥のた
め単結晶半導体を用いたものに比してキャリア移動度が
非常に低いという欠点がある。このためオン電流が小さ
く、又、TPTの動作周波数の限界は低くなる。特にa
−8iを用いたものでは約0.1 (cm” /V−
sec) のキャリア移動度でしか動作しない6即ち
、非晶質或いは多結晶半導体を用いたTPTの高性能化
には、移動度の低さを補うためチャネル長の減少が有効
である。In TPTs that use amorphous or polycrystalline semiconductors for the semiconductor layer, carrier mobility is extremely low compared to those that use single-crystalline semiconductors due to defects caused by polycrystalline grain boundaries such as grain boundary scattering in the semiconductor. There is a drawback. Therefore, the on-current is small and the operating frequency limit of the TPT is low. Especially a
-8i is approximately 0.1 (cm"/V-
In other words, in order to improve the performance of a TPT using an amorphous or polycrystalline semiconductor, which operates only with a carrier mobility of sec), it is effective to reduce the channel length in order to compensate for the low mobility.
しかしながら、大面積を目的とするTPTでは、フォト
エツチングによってソース・ドレイン間隙を10μm程
度以下にすることは精度1歩留上困難である。TPTの
短チヤネル化はフォトエツチングを伴わずに実現する必
要があり、基板に平行な層状に積層されたたて形TPT
が考案されている。第2図は従来のたで形TPTの製造
を概略的に示した図である。たて形のTPTのチャネル
長は、半導体の積層する膜厚で決まるため、正確に再現
性よくサブミクロンオーダーのチャネルを形成すること
も可能である。However, in a TPT whose purpose is to have a large area, it is difficult to reduce the source-drain gap to about 10 μm or less by photoetching in terms of accuracy and yield. Shorter TPT channels must be realized without photo-etching, and vertical TPTs are stacked in layers parallel to the substrate.
has been devised. FIG. 2 is a diagram schematically showing the manufacturing of a conventional vertical TPT. Since the channel length of a vertical TPT is determined by the thickness of the semiconductor layer, it is possible to form a submicron-order channel with accuracy and good reproducibility.
これらのTPTは単結晶シリコンを用いたMOS F
ET と類似の電気的特性を示すが、動作原理の基本的
な違いはトランジスタのチャネル遮断条件が、MOS
FET ではPN接合の逆方向特性を利用するのに対
し、TPTでは半導体層4の高抵抗を利用する点にある
。即ち、TPTの非導通状態のオフ電流を低くするには
半導体層4の抵抗が十分高いことが必要である。しかし
、第2図のたて形TFTでは半導体層の膜厚が薄く、電
流の流れる断面積も大きいためオフ電流が増加してくる
。又、半導体層4の膜厚が2μm程度になると金属電極
5.6とオーミックスコンタクト用の不純物ドープ半導
体層7,8からキャリアが注入され、オフ電流が急速に
増加してくる。更に、ソースとドレイン間の寄生容量の
影響が大きく、高周波特性が著しく劣る。These TPTs are MOS F using single crystal silicon.
It shows similar electrical characteristics to ET, but the fundamental difference in the operating principle is that the channel cutoff conditions of the transistor are different from those of MOS.
The FET utilizes the reverse characteristic of the PN junction, whereas the TPT utilizes the high resistance of the semiconductor layer 4. That is, in order to reduce the off-state current of the TPT in the non-conducting state, it is necessary that the resistance of the semiconductor layer 4 is sufficiently high. However, in the vertical TFT shown in FIG. 2, the semiconductor layer is thin and the cross-sectional area through which the current flows is large, so the off-state current increases. Furthermore, when the thickness of the semiconductor layer 4 becomes approximately 2 μm, carriers are injected from the metal electrode 5.6 and the impurity-doped semiconductor layers 7 and 8 for ohmic contact, and the off-state current rapidly increases. Furthermore, the influence of parasitic capacitance between the source and drain is large, resulting in significantly poor high frequency characteristics.
一般に、TPTのチャネル長を短かくして高性能化する
にはたて形の構造が用いられる。この場合、従来のたで
形構造のTPTではチャネル長の減少に伴いオフ電流が
急速に増加し、又、寄生容量も増すので本質的な性能の
向上にはならない。Generally, a vertical structure is used to shorten the channel length of TPT and improve its performance. In this case, in the conventional TPT having a vertical structure, the off-state current rapidly increases as the channel length decreases, and the parasitic capacitance also increases, so that there is no substantial improvement in performance.
なお、たて形のTPT及びさの製造方法に関連するもの
には例えば、特開昭58−63173号及び58−97
868号公報等が挙げられる。Incidentally, related to the manufacturing method of vertical TPT and sheaths, for example, Japanese Patent Application Laid-open Nos. 58-63173 and 58-97
Publication No. 868 and the like can be mentioned.
本発明の目的は、従来の非晶質、多結晶半導体を用いた
薄膜電界効果トランジスタに比して高性能な動作をする
薄膜電界効果トランジスタ及びその製造方法を提供する
ことにある。An object of the present invention is to provide a thin film field effect transistor that operates with higher performance than conventional thin film field effect transistors using amorphous or polycrystalline semiconductors, and a method for manufacturing the same.
本発明の骨子は次の通りである。所定の基板上に平行な
層状に金属膜及び半導体層を形成し、基板に垂直な方向
にキャリアを走らせることによりチャネル長の短かいT
F’Tを形成する。この場合、金属膜には半導体との界
面の電位障壁が高い材料を用いることにより非導通状態
にはキャリアの注入を抑えてオフ電流を減少させる。又
、あらがしめゲート電極及びゲート絶縁膜を形成してお
き、ゲートのエツジを用いて自己整合的にソース・ドレ
イン電極を形成し、ゲート・ドレインとソース間の寄生
容量を減少させたTPTを形成するものである。The gist of the present invention is as follows. By forming metal films and semiconductor layers in parallel layers on a predetermined substrate and running carriers in a direction perpendicular to the substrate, a T with a short channel length can be achieved.
Form F'T. In this case, by using a material with a high potential barrier at the interface with the semiconductor for the metal film, injection of carriers is suppressed in a non-conducting state, thereby reducing off-state current. In addition, a gate electrode and a gate insulating film are formed in advance, and the source/drain electrodes are formed in a self-aligned manner using the edge of the gate to reduce the parasitic capacitance between the gate/drain and the source. It is something that forms.
以下本発明の実施例を、第3図(a)〜(d)を用いて
説明する。まずガラス基板11上にCr膜12を厚さ2
000人蒸着し、この上にプラズマCVDによりドレイ
ンとゲート間の絶縁膜となる厚さ2000人のSiN膜
13を堆積する(、)。次に、スパッタでTa膜を厚さ
2μm程度堆積した後にパターン形成してゲート電極1
4を形成する。このゲート電極14を、0.1%クエン
酸溶液中で陽極酸 化を施し、厚さ3000人のゲート
絶縁膜15を形成する。ドレイン電極I2の取出し部分
をレジストで保護した後に、ゲート電極14とゲート絶
縁膜15をマスクとしてエツチングを行い、ドレイン電
極となるCr膜12を形成する。次にプラズマCVDに
より、非晶質のa−8i16を厚さ8000人堆積した
後、ゲート電極のエツジでa−8i16に段差切れを生
じさせるため、プラズマエツチングa−8i16を30
00人除去する。次に、a−5t16をパターン形成し
てTPTの活性領域をつくる(C)。次に、Cr膜をゲ
ートのエツジで段差切れが生じるように斜め蒸着で厚さ
1000人堆積し、この後AQ膜を厚さ5000人蒸着
する。a −8i 16とCr膜の電位障壁が強固にな
るように、200℃で30分間加熱する。次に、パター
ン形成を行い、リン硝酸でAQ膜のみエツチングしてソ
ース電極18を形成する。ゲートのエツジでの段差切れ
を利用してゲート絶縁膜15に自己整合されたソースコ
ンタクト電極17をレジストで保護し、不要な部分のC
r膜を硝酸第2セリウムアンモンで除去する。次に、ド
レイン電極12の取出し部分の絶縁膜13を除去する(
d)。Examples of the present invention will be described below with reference to FIGS. 3(a) to 3(d). First, a Cr film 12 is deposited on a glass substrate 11 to a thickness of 2
A SiN film 13 having a thickness of 2,000 wafers is deposited thereon by plasma CVD to serve as an insulating film between the drain and the gate. Next, a Ta film is deposited to a thickness of about 2 μm by sputtering, and then patterned to form a gate electrode 1.
form 4. This gate electrode 14 is anodized in a 0.1% citric acid solution to form a gate insulating film 15 with a thickness of 3000 mm. After protecting the lead-out portion of the drain electrode I2 with a resist, etching is performed using the gate electrode 14 and the gate insulating film 15 as a mask to form a Cr film 12 that will become the drain electrode. Next, after depositing amorphous A-8I16 to a thickness of 8,000 layers by plasma CVD, plasma etching A-8I16 was applied for 30 minutes to create a step cut in A-8I16 at the edge of the gate electrode.
Remove 00 people. Next, a-5t16 is patterned to form the TPT active region (C). Next, a Cr film is deposited to a thickness of 1,000 layers by oblique evaporation so that a step cut occurs at the edge of the gate, and then an AQ film is deposited to a thickness of 5,000 layers. Heating is performed at 200° C. for 30 minutes so that the potential barrier between a-8i 16 and the Cr film becomes strong. Next, a pattern is formed and only the AQ film is etched with phosphoric nitric acid to form the source electrode 18. The source contact electrode 17, which is self-aligned to the gate insulating film 15, is protected by a resist using the step cut at the edge of the gate, and unnecessary portions of C are removed.
Remove the r film with ceric ammonium nitrate. Next, the insulating film 13 at the extraction portion of the drain electrode 12 is removed (
d).
なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.
例えば半導体層との界面で電位障壁を形成するソース・
ドレインコンタクト電極12゜17は電位障壁が高い不
純物ドープの半導体層や、N i、W、Ta、Mo、T
i等を含む金属やシリサイドであってもよい。また、
半導体層はa −8iに代ってpoly −S i等の
多結晶半導体や、a−8iC等の化合物半導体であって
もよい。更に。For example, a source that forms a potential barrier at the interface with a semiconductor layer.
The drain contact electrode 12° 17 is made of an impurity-doped semiconductor layer with a high potential barrier, Ni, W, Ta, Mo, or T.
It may be a metal or silicide containing i or the like. Also,
The semiconductor layer may be a polycrystalline semiconductor such as poly-Si or a compound semiconductor such as a-8iC instead of a-8i. Furthermore.
これらの半導体の形成法はCVD法に代って熱分解法、
蒸着、スパッタ等いかなる方法でもよい。The method of forming these semiconductors is the thermal decomposition method instead of the CVD method.
Any method such as vapor deposition or sputtering may be used.
又、ゲート絶縁膜はドレイン電極とドレインとゲート間
の絶縁膜を除去する際にマスクとして利用できるもので
あれば、材質・形成法とも何でもよい。Further, the gate insulating film may be made of any material or formed by any method as long as it can be used as a mask when removing the drain electrode and the insulating film between the drain and the gate.
本発明によればソース・ドレイン電極と半導体層との界
面の電位障壁により、電極から半導体層へのキャリアの
注入が減少され非導通状態でのオフ電流を低くすること
ができる。又、ゲート・ドレイン電極とソース電極間の
重なりも零にすることができるためにこれらの電極間の
寄生容量を最小に形成することができ、チャネル長の減
少と合わせてTPT回路の動作特性を著しく向上するこ
とができる。ソース・ドレインのコンタクト電極はゲー
ト電極及びゲート絶縁膜によって容易に自己整合させる
ことができるため、マスク合わせの厳密な精度は不必要
になり、TPT回路の微細化。According to the present invention, the potential barrier at the interface between the source/drain electrode and the semiconductor layer reduces the injection of carriers from the electrode into the semiconductor layer, making it possible to lower the off-state current in a non-conducting state. In addition, since the overlap between the gate/drain electrode and the source electrode can be reduced to zero, the parasitic capacitance between these electrodes can be minimized, which, together with the reduction of the channel length, improves the operating characteristics of the TPT circuit. can be significantly improved. Since the source/drain contact electrodes can be easily self-aligned with the gate electrode and gate insulating film, strict accuracy in mask alignment is no longer necessary, allowing for miniaturization of TPT circuits.
高集積化を容易に図ることができる。High integration can be achieved easily.
第1図、第2図は従来構造のTPTの断面図、第3図(
、)〜(d)は本発明の一実施例のTPTの製造工程を
示す断面図である。
1・・・絶縁性基板、2・・・ゲート電極、3・・・ゲ
ート絶縁膜、4・・・非晶質半導体層、5,6・・・ソ
ース・ドレイン電極、7,8・・・不純物ドープ半導体
層、11・・・ガラス基板、12・・・ドレイン電極(
Cr層)、13・・・SiN膜(絶縁膜)、14・・・
ゲート電極(Ta膜)、15・・・ゲート絶縁膜(酸化
タンタル膜)、16・・・a−8i膜、17・・・ソー
スコンタクト電極CCr膜)、18・・・ソース電極(
AQ)。
γ 1 図
Y 3 図
(^)Figures 1 and 2 are cross-sectional views of TPT with conventional structure, and Figure 3 (
, ) to (d) are cross-sectional views showing the manufacturing process of TPT according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Gate electrode, 3... Gate insulating film, 4... Amorphous semiconductor layer, 5, 6... Source/drain electrode, 7, 8... Impurity-doped semiconductor layer, 11...Glass substrate, 12...Drain electrode (
Cr layer), 13... SiN film (insulating film), 14...
Gate electrode (Ta film), 15... Gate insulating film (tantalum oxide film), 16... A-8i film, 17... Source contact electrode (CCr film), 18... Source electrode (
AQ). γ 1 Figure Y 3 Figure (^)
Claims (1)
有し、この半導体層に対して高い電位障壁を有する金属
膜をソース・ドレイン電極に用い、非導通状態の電流を
上記電位障壁により制限する事を特徴とする薄膜電界効
果トランジスタ。1. A metal film having an amorphous or polycrystalline semiconductor layer on a predetermined substrate and having a high potential barrier to this semiconductor layer is used as the source/drain electrode, and a non-conducting current is passed through the potential barrier. A thin film field effect transistor characterized by being limited by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15286184A JPS6132475A (en) | 1984-07-25 | 1984-07-25 | Thin film fet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15286184A JPS6132475A (en) | 1984-07-25 | 1984-07-25 | Thin film fet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6132475A true JPS6132475A (en) | 1986-02-15 |
Family
ID=15549722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15286184A Pending JPS6132475A (en) | 1984-07-25 | 1984-07-25 | Thin film fet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6132475A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0280370A2 (en) * | 1987-02-27 | 1988-08-31 | Philips Electronics Uk Limited | Thin film transistors, display devices incorporting such transistors, and methods for their fabrication |
-
1984
- 1984-07-25 JP JP15286184A patent/JPS6132475A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0280370A2 (en) * | 1987-02-27 | 1988-08-31 | Philips Electronics Uk Limited | Thin film transistors, display devices incorporting such transistors, and methods for their fabrication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4746628A (en) | Method for making a thin film transistor | |
JP3193803B2 (en) | Manufacturing method of semiconductor element | |
US5308998A (en) | Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode | |
US5420048A (en) | Manufacturing method for SOI-type thin film transistor | |
US20030148567A1 (en) | Poly-silicon thin film transistor having back bias effects and fabrication method thereof | |
US5053347A (en) | Amorphous silicon thin film transistor with a depletion gate | |
JPH0640550B2 (en) | Method of manufacturing thin film transistor | |
JPH022142A (en) | Field effect transistor and its manufacture | |
JPH10256554A (en) | Thin film transistor and manufacture thereof | |
JP3403115B2 (en) | Method for manufacturing semiconductor device | |
US5422287A (en) | Thin film transistor and process for producing the same | |
KR100272272B1 (en) | Thin film transistor and method of manufacturing the same | |
JPH0235462B2 (en) | ||
JPH059941B2 (en) | ||
JP3420301B2 (en) | Method for manufacturing thin film transistor | |
JPS6132475A (en) | Thin film fet | |
JP2000091591A (en) | Thin film transistor c-mos inverter circuit using thin film transistor and manufacture of those | |
JPH0322064B2 (en) | ||
JPS58190058A (en) | Manufacture of thin film field effect transistor | |
JPS5818966A (en) | Manufacture of thin film field-effect transistor | |
JP3177360B2 (en) | Method of manufacturing thin film transistor and thin film transistor | |
JPS616871A (en) | Manufacture of field-effect transistor | |
JPS63136575A (en) | Schottky gate field-effect transistor and manufacture thereof | |
JP2001036097A (en) | Semiconductor device | |
JP2000150907A (en) | Manufacture of semiconductor device |