Nothing Special   »   [go: up one dir, main page]

JPS6132475A - Thin film fet - Google Patents

Thin film fet

Info

Publication number
JPS6132475A
JPS6132475A JP15286184A JP15286184A JPS6132475A JP S6132475 A JPS6132475 A JP S6132475A JP 15286184 A JP15286184 A JP 15286184A JP 15286184 A JP15286184 A JP 15286184A JP S6132475 A JPS6132475 A JP S6132475A
Authority
JP
Japan
Prior art keywords
film
source
electrode
gate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15286184A
Other languages
Japanese (ja)
Inventor
Minoru Fukazawa
深沢 稔
Haruo Matsumaru
松丸 治男
Koichi Seki
浩一 関
Akira Sasano
笹野 晃
Toshihisa Tsukada
俊久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15286184A priority Critical patent/JPS6132475A/en
Publication of JPS6132475A publication Critical patent/JPS6132475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain the titled element which performs high-performance action by a method wherein a required substrate is provided with an amorphous or polycrystalline semiconductor layer, and the current in the state of non-conduction is restricted by a potential barrier, using a metallic film having a higher potential barrier than that of this substrate for source-drain electrodes. CONSTITUTION:The TFT active region is formed by patterning an a-Si 16. Next, a Cr film 17 is deposited by oblique evaporation so that step cuts may generate at the gate edge; then an Al film is evaporated. Heating is carried out in such a manner than the potential barriers of the a-Si 16 and the Cr film become stronger. The pattern is formed, and a source electrode 18 is formed by etching only the Al film with phospho-nitric acid. A source contact electrode 17 self-aligned with a gate insulation film 15 by utilizing step cuts at the gate edge is protected with resist, and the Cr film at unnecessary parts is removed with ammonium ceric nitrate. Finally, the insulation film 13 at the drain electrode 12 lead-out is removed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜電界効果トランジスタ及びその製造方法に
関するものであり、特に液晶駆動のための薄膜電界効果
トランジスタに適した構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film field effect transistor and a method for manufacturing the same, and particularly to a structure suitable for a thin film field effect transistor for driving a liquid crystal.

〔発明の背景〕[Background of the invention]

近年、放電分解(Glow Discharge)或い
は真空蒸着で作製された非晶質、多結晶半導体薄膜を用
いた薄膜電界効果トランジスタ(TPT)が注目されて
いる。特に上記半導体薄膜が低温形成できるため、薄膜
半導体装置を構成するための基板に安価で大面積の絶縁
性基板を用いることができる。
In recent years, thin film field effect transistors (TPT) using amorphous or polycrystalline semiconductor thin films produced by glow discharge or vacuum deposition have attracted attention. In particular, since the semiconductor thin film can be formed at a low temperature, an inexpensive, large-area insulating substrate can be used as a substrate for forming a thin film semiconductor device.

又、従来のリソグラフィー技術をそのまま使用して微細
加工ができ集積化も可能である。第1図は特開昭58−
148458号等で示され・る従来のTPTの構造を概
略的に示した図である。ここで1は絶縁性基板、2はゲ
ート電極、3はゲート絶縁膜、4はアモルファスシリコ
ン(a−5t)或いは多結果シリコン(poly −S
 i )等の非晶質或いは多結晶の半導体層、5,6は
それぞれソース・ドレイン電極であり、7,8は良好な
オーミックコンタクトを得るための不純物ドープ半導体
層である。
In addition, microfabrication and integration are possible using conventional lithography technology as is. Figure 1 is JP-A-58-
FIG. 1 is a diagram schematically showing the structure of a conventional TPT shown in No. 148458 and the like. Here, 1 is an insulating substrate, 2 is a gate electrode, 3 is a gate insulating film, and 4 is amorphous silicon (A-5T) or polysilicon (poly-S).
amorphous or polycrystalline semiconductor layers such as i), 5 and 6 are source and drain electrodes, respectively, and 7 and 8 are impurity-doped semiconductor layers for obtaining good ohmic contact.

半導体層に非晶質或いは多結晶半導体を用いたTPTで
は、半導体中の粒界散乱等の多結晶粒界による欠陥のた
め単結晶半導体を用いたものに比してキャリア移動度が
非常に低いという欠点がある。このためオン電流が小さ
く、又、TPTの動作周波数の限界は低くなる。特にa
−8iを用いたものでは約0.1  (cm” /V−
sec)  のキャリア移動度でしか動作しない6即ち
、非晶質或いは多結晶半導体を用いたTPTの高性能化
には、移動度の低さを補うためチャネル長の減少が有効
である。
In TPTs that use amorphous or polycrystalline semiconductors for the semiconductor layer, carrier mobility is extremely low compared to those that use single-crystalline semiconductors due to defects caused by polycrystalline grain boundaries such as grain boundary scattering in the semiconductor. There is a drawback. Therefore, the on-current is small and the operating frequency limit of the TPT is low. Especially a
-8i is approximately 0.1 (cm"/V-
In other words, in order to improve the performance of a TPT using an amorphous or polycrystalline semiconductor, which operates only with a carrier mobility of sec), it is effective to reduce the channel length in order to compensate for the low mobility.

しかしながら、大面積を目的とするTPTでは、フォト
エツチングによってソース・ドレイン間隙を10μm程
度以下にすることは精度1歩留上困難である。TPTの
短チヤネル化はフォトエツチングを伴わずに実現する必
要があり、基板に平行な層状に積層されたたて形TPT
が考案されている。第2図は従来のたで形TPTの製造
を概略的に示した図である。たて形のTPTのチャネル
長は、半導体の積層する膜厚で決まるため、正確に再現
性よくサブミクロンオーダーのチャネルを形成すること
も可能である。
However, in a TPT whose purpose is to have a large area, it is difficult to reduce the source-drain gap to about 10 μm or less by photoetching in terms of accuracy and yield. Shorter TPT channels must be realized without photo-etching, and vertical TPTs are stacked in layers parallel to the substrate.
has been devised. FIG. 2 is a diagram schematically showing the manufacturing of a conventional vertical TPT. Since the channel length of a vertical TPT is determined by the thickness of the semiconductor layer, it is possible to form a submicron-order channel with accuracy and good reproducibility.

これらのTPTは単結晶シリコンを用いたMOS  F
ET と類似の電気的特性を示すが、動作原理の基本的
な違いはトランジスタのチャネル遮断条件が、MOS 
 FET ではPN接合の逆方向特性を利用するのに対
し、TPTでは半導体層4の高抵抗を利用する点にある
。即ち、TPTの非導通状態のオフ電流を低くするには
半導体層4の抵抗が十分高いことが必要である。しかし
、第2図のたて形TFTでは半導体層の膜厚が薄く、電
流の流れる断面積も大きいためオフ電流が増加してくる
。又、半導体層4の膜厚が2μm程度になると金属電極
5.6とオーミックスコンタクト用の不純物ドープ半導
体層7,8からキャリアが注入され、オフ電流が急速に
増加してくる。更に、ソースとドレイン間の寄生容量の
影響が大きく、高周波特性が著しく劣る。
These TPTs are MOS F using single crystal silicon.
It shows similar electrical characteristics to ET, but the fundamental difference in the operating principle is that the channel cutoff conditions of the transistor are different from those of MOS.
The FET utilizes the reverse characteristic of the PN junction, whereas the TPT utilizes the high resistance of the semiconductor layer 4. That is, in order to reduce the off-state current of the TPT in the non-conducting state, it is necessary that the resistance of the semiconductor layer 4 is sufficiently high. However, in the vertical TFT shown in FIG. 2, the semiconductor layer is thin and the cross-sectional area through which the current flows is large, so the off-state current increases. Furthermore, when the thickness of the semiconductor layer 4 becomes approximately 2 μm, carriers are injected from the metal electrode 5.6 and the impurity-doped semiconductor layers 7 and 8 for ohmic contact, and the off-state current rapidly increases. Furthermore, the influence of parasitic capacitance between the source and drain is large, resulting in significantly poor high frequency characteristics.

一般に、TPTのチャネル長を短かくして高性能化する
にはたて形の構造が用いられる。この場合、従来のたで
形構造のTPTではチャネル長の減少に伴いオフ電流が
急速に増加し、又、寄生容量も増すので本質的な性能の
向上にはならない。
Generally, a vertical structure is used to shorten the channel length of TPT and improve its performance. In this case, in the conventional TPT having a vertical structure, the off-state current rapidly increases as the channel length decreases, and the parasitic capacitance also increases, so that there is no substantial improvement in performance.

なお、たて形のTPT及びさの製造方法に関連するもの
には例えば、特開昭58−63173号及び58−97
868号公報等が挙げられる。
Incidentally, related to the manufacturing method of vertical TPT and sheaths, for example, Japanese Patent Application Laid-open Nos. 58-63173 and 58-97
Publication No. 868 and the like can be mentioned.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の非晶質、多結晶半導体を用いた
薄膜電界効果トランジスタに比して高性能な動作をする
薄膜電界効果トランジスタ及びその製造方法を提供する
ことにある。
An object of the present invention is to provide a thin film field effect transistor that operates with higher performance than conventional thin film field effect transistors using amorphous or polycrystalline semiconductors, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明の骨子は次の通りである。所定の基板上に平行な
層状に金属膜及び半導体層を形成し、基板に垂直な方向
にキャリアを走らせることによりチャネル長の短かいT
F’Tを形成する。この場合、金属膜には半導体との界
面の電位障壁が高い材料を用いることにより非導通状態
にはキャリアの注入を抑えてオフ電流を減少させる。又
、あらがしめゲート電極及びゲート絶縁膜を形成してお
き、ゲートのエツジを用いて自己整合的にソース・ドレ
イン電極を形成し、ゲート・ドレインとソース間の寄生
容量を減少させたTPTを形成するものである。
The gist of the present invention is as follows. By forming metal films and semiconductor layers in parallel layers on a predetermined substrate and running carriers in a direction perpendicular to the substrate, a T with a short channel length can be achieved.
Form F'T. In this case, by using a material with a high potential barrier at the interface with the semiconductor for the metal film, injection of carriers is suppressed in a non-conducting state, thereby reducing off-state current. In addition, a gate electrode and a gate insulating film are formed in advance, and the source/drain electrodes are formed in a self-aligned manner using the edge of the gate to reduce the parasitic capacitance between the gate/drain and the source. It is something that forms.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を、第3図(a)〜(d)を用いて
説明する。まずガラス基板11上にCr膜12を厚さ2
000人蒸着し、この上にプラズマCVDによりドレイ
ンとゲート間の絶縁膜となる厚さ2000人のSiN膜
13を堆積する(、)。次に、スパッタでTa膜を厚さ
2μm程度堆積した後にパターン形成してゲート電極1
4を形成する。このゲート電極14を、0.1%クエン
酸溶液中で陽極酸 化を施し、厚さ3000人のゲート
絶縁膜15を形成する。ドレイン電極I2の取出し部分
をレジストで保護した後に、ゲート電極14とゲート絶
縁膜15をマスクとしてエツチングを行い、ドレイン電
極となるCr膜12を形成する。次にプラズマCVDに
より、非晶質のa−8i16を厚さ8000人堆積した
後、ゲート電極のエツジでa−8i16に段差切れを生
じさせるため、プラズマエツチングa−8i16を30
00人除去する。次に、a−5t16をパターン形成し
てTPTの活性領域をつくる(C)。次に、Cr膜をゲ
ートのエツジで段差切れが生じるように斜め蒸着で厚さ
1000人堆積し、この後AQ膜を厚さ5000人蒸着
する。a −8i 16とCr膜の電位障壁が強固にな
るように、200℃で30分間加熱する。次に、パター
ン形成を行い、リン硝酸でAQ膜のみエツチングしてソ
ース電極18を形成する。ゲートのエツジでの段差切れ
を利用してゲート絶縁膜15に自己整合されたソースコ
ンタクト電極17をレジストで保護し、不要な部分のC
r膜を硝酸第2セリウムアンモンで除去する。次に、ド
レイン電極12の取出し部分の絶縁膜13を除去する(
d)。
Examples of the present invention will be described below with reference to FIGS. 3(a) to 3(d). First, a Cr film 12 is deposited on a glass substrate 11 to a thickness of 2
A SiN film 13 having a thickness of 2,000 wafers is deposited thereon by plasma CVD to serve as an insulating film between the drain and the gate. Next, a Ta film is deposited to a thickness of about 2 μm by sputtering, and then patterned to form a gate electrode 1.
form 4. This gate electrode 14 is anodized in a 0.1% citric acid solution to form a gate insulating film 15 with a thickness of 3000 mm. After protecting the lead-out portion of the drain electrode I2 with a resist, etching is performed using the gate electrode 14 and the gate insulating film 15 as a mask to form a Cr film 12 that will become the drain electrode. Next, after depositing amorphous A-8I16 to a thickness of 8,000 layers by plasma CVD, plasma etching A-8I16 was applied for 30 minutes to create a step cut in A-8I16 at the edge of the gate electrode.
Remove 00 people. Next, a-5t16 is patterned to form the TPT active region (C). Next, a Cr film is deposited to a thickness of 1,000 layers by oblique evaporation so that a step cut occurs at the edge of the gate, and then an AQ film is deposited to a thickness of 5,000 layers. Heating is performed at 200° C. for 30 minutes so that the potential barrier between a-8i 16 and the Cr film becomes strong. Next, a pattern is formed and only the AQ film is etched with phosphoric nitric acid to form the source electrode 18. The source contact electrode 17, which is self-aligned to the gate insulating film 15, is protected by a resist using the step cut at the edge of the gate, and unnecessary portions of C are removed.
Remove the r film with ceric ammonium nitrate. Next, the insulating film 13 at the extraction portion of the drain electrode 12 is removed (
d).

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば半導体層との界面で電位障壁を形成するソース・
ドレインコンタクト電極12゜17は電位障壁が高い不
純物ドープの半導体層や、N i、W、Ta、Mo、T
 i等を含む金属やシリサイドであってもよい。また、
半導体層はa −8iに代ってpoly −S i等の
多結晶半導体や、a−8iC等の化合物半導体であって
もよい。更に。
For example, a source that forms a potential barrier at the interface with a semiconductor layer.
The drain contact electrode 12° 17 is made of an impurity-doped semiconductor layer with a high potential barrier, Ni, W, Ta, Mo, or T.
It may be a metal or silicide containing i or the like. Also,
The semiconductor layer may be a polycrystalline semiconductor such as poly-Si or a compound semiconductor such as a-8iC instead of a-8i. Furthermore.

これらの半導体の形成法はCVD法に代って熱分解法、
蒸着、スパッタ等いかなる方法でもよい。
The method of forming these semiconductors is the thermal decomposition method instead of the CVD method.
Any method such as vapor deposition or sputtering may be used.

又、ゲート絶縁膜はドレイン電極とドレインとゲート間
の絶縁膜を除去する際にマスクとして利用できるもので
あれば、材質・形成法とも何でもよい。
Further, the gate insulating film may be made of any material or formed by any method as long as it can be used as a mask when removing the drain electrode and the insulating film between the drain and the gate.

〔発明の効果〕〔Effect of the invention〕

本発明によればソース・ドレイン電極と半導体層との界
面の電位障壁により、電極から半導体層へのキャリアの
注入が減少され非導通状態でのオフ電流を低くすること
ができる。又、ゲート・ドレイン電極とソース電極間の
重なりも零にすることができるためにこれらの電極間の
寄生容量を最小に形成することができ、チャネル長の減
少と合わせてTPT回路の動作特性を著しく向上するこ
とができる。ソース・ドレインのコンタクト電極はゲー
ト電極及びゲート絶縁膜によって容易に自己整合させる
ことができるため、マスク合わせの厳密な精度は不必要
になり、TPT回路の微細化。
According to the present invention, the potential barrier at the interface between the source/drain electrode and the semiconductor layer reduces the injection of carriers from the electrode into the semiconductor layer, making it possible to lower the off-state current in a non-conducting state. In addition, since the overlap between the gate/drain electrode and the source electrode can be reduced to zero, the parasitic capacitance between these electrodes can be minimized, which, together with the reduction of the channel length, improves the operating characteristics of the TPT circuit. can be significantly improved. Since the source/drain contact electrodes can be easily self-aligned with the gate electrode and gate insulating film, strict accuracy in mask alignment is no longer necessary, allowing for miniaturization of TPT circuits.

高集積化を容易に図ることができる。High integration can be achieved easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来構造のTPTの断面図、第3図(
、)〜(d)は本発明の一実施例のTPTの製造工程を
示す断面図である。 1・・・絶縁性基板、2・・・ゲート電極、3・・・ゲ
ート絶縁膜、4・・・非晶質半導体層、5,6・・・ソ
ース・ドレイン電極、7,8・・・不純物ドープ半導体
層、11・・・ガラス基板、12・・・ドレイン電極(
Cr層)、13・・・SiN膜(絶縁膜)、14・・・
ゲート電極(Ta膜)、15・・・ゲート絶縁膜(酸化
タンタル膜)、16・・・a−8i膜、17・・・ソー
スコンタクト電極CCr膜)、18・・・ソース電極(
AQ)。 γ 1 図 Y  3  図 (^)
Figures 1 and 2 are cross-sectional views of TPT with conventional structure, and Figure 3 (
, ) to (d) are cross-sectional views showing the manufacturing process of TPT according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Gate electrode, 3... Gate insulating film, 4... Amorphous semiconductor layer, 5, 6... Source/drain electrode, 7, 8... Impurity-doped semiconductor layer, 11...Glass substrate, 12...Drain electrode (
Cr layer), 13... SiN film (insulating film), 14...
Gate electrode (Ta film), 15... Gate insulating film (tantalum oxide film), 16... A-8i film, 17... Source contact electrode (CCr film), 18... Source electrode (
AQ). γ 1 Figure Y 3 Figure (^)

Claims (1)

【特許請求の範囲】[Claims] 1、所定の基板上に非晶質あるいは多結晶質半導体層を
有し、この半導体層に対して高い電位障壁を有する金属
膜をソース・ドレイン電極に用い、非導通状態の電流を
上記電位障壁により制限する事を特徴とする薄膜電界効
果トランジスタ。
1. A metal film having an amorphous or polycrystalline semiconductor layer on a predetermined substrate and having a high potential barrier to this semiconductor layer is used as the source/drain electrode, and a non-conducting current is passed through the potential barrier. A thin film field effect transistor characterized by being limited by.
JP15286184A 1984-07-25 1984-07-25 Thin film fet Pending JPS6132475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15286184A JPS6132475A (en) 1984-07-25 1984-07-25 Thin film fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15286184A JPS6132475A (en) 1984-07-25 1984-07-25 Thin film fet

Publications (1)

Publication Number Publication Date
JPS6132475A true JPS6132475A (en) 1986-02-15

Family

ID=15549722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15286184A Pending JPS6132475A (en) 1984-07-25 1984-07-25 Thin film fet

Country Status (1)

Country Link
JP (1) JPS6132475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280370A2 (en) * 1987-02-27 1988-08-31 Philips Electronics Uk Limited Thin film transistors, display devices incorporting such transistors, and methods for their fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280370A2 (en) * 1987-02-27 1988-08-31 Philips Electronics Uk Limited Thin film transistors, display devices incorporting such transistors, and methods for their fabrication

Similar Documents

Publication Publication Date Title
US4746628A (en) Method for making a thin film transistor
JP3193803B2 (en) Manufacturing method of semiconductor element
US5308998A (en) Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode
US5420048A (en) Manufacturing method for SOI-type thin film transistor
US20030148567A1 (en) Poly-silicon thin film transistor having back bias effects and fabrication method thereof
US5053347A (en) Amorphous silicon thin film transistor with a depletion gate
JPH0640550B2 (en) Method of manufacturing thin film transistor
JPH022142A (en) Field effect transistor and its manufacture
JPH10256554A (en) Thin film transistor and manufacture thereof
JP3403115B2 (en) Method for manufacturing semiconductor device
US5422287A (en) Thin film transistor and process for producing the same
KR100272272B1 (en) Thin film transistor and method of manufacturing the same
JPH0235462B2 (en)
JPH059941B2 (en)
JP3420301B2 (en) Method for manufacturing thin film transistor
JPS6132475A (en) Thin film fet
JP2000091591A (en) Thin film transistor c-mos inverter circuit using thin film transistor and manufacture of those
JPH0322064B2 (en)
JPS58190058A (en) Manufacture of thin film field effect transistor
JPS5818966A (en) Manufacture of thin film field-effect transistor
JP3177360B2 (en) Method of manufacturing thin film transistor and thin film transistor
JPS616871A (en) Manufacture of field-effect transistor
JPS63136575A (en) Schottky gate field-effect transistor and manufacture thereof
JP2001036097A (en) Semiconductor device
JP2000150907A (en) Manufacture of semiconductor device