Nothing Special   »   [go: up one dir, main page]

JPS6131404B2 - - Google Patents

Info

Publication number
JPS6131404B2
JPS6131404B2 JP55187651A JP18765180A JPS6131404B2 JP S6131404 B2 JPS6131404 B2 JP S6131404B2 JP 55187651 A JP55187651 A JP 55187651A JP 18765180 A JP18765180 A JP 18765180A JP S6131404 B2 JPS6131404 B2 JP S6131404B2
Authority
JP
Japan
Prior art keywords
flow path
valve
pressure chamber
air
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55187651A
Other languages
Japanese (ja)
Other versions
JPS57111404A (en
Inventor
Hisao Sagara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoketsu Kinzoku Kogyo KK
Original Assignee
Shoketsu Kinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoketsu Kinzoku Kogyo KK filed Critical Shoketsu Kinzoku Kogyo KK
Priority to JP18765180A priority Critical patent/JPS57111404A/en
Publication of JPS57111404A publication Critical patent/JPS57111404A/en
Publication of JPS6131404B2 publication Critical patent/JPS6131404B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Safety Valves (AREA)
  • Details Of Valves (AREA)
  • Flow Control (AREA)

Description

【発明の詳細な説明】 本発明は、空気マイクロメータの非測定時にお
ける空気消費量を節減するために用いる自動開閉
弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic opening/closing valve used to reduce the amount of air consumed by an air micrometer when not measuring.

最近、あらゆる分野で省エネルギ対策が講じら
れているが、空気マイクロメータにおいては非測
定時の空気消費量が測定時の2〜3倍にも及ぶ50
N/minもあり、極めてエネルギロスが大きく、
このため非測定時における空気消費量を節減する
ための遮断弁が考案されている。この種の弁は、
測定ヘツドに取付けて使用し、測定時に開放して
測定用の圧縮空気を放出すると共に、非測定時に
遮断して圧縮空気の放出を停止するものであり、
それによつて空気消費量を節減できても、操作性
において満足できるものではなく、また測定ヘツ
ドの重量が増大するために測定時における作業性
が著しく低下するという難点があつた。
Recently, energy saving measures have been taken in all fields, but with air micrometers, the amount of air consumed when not measuring is 2 to 3 times that when measuring.
N/min, and the energy loss is extremely large.
For this reason, shutoff valves have been devised to reduce air consumption during non-measurement periods. This kind of valve is
It is used by being attached to the measurement head, and is opened during measurement to release compressed air for measurement, and shut off when not measuring to stop the release of compressed air.
Even though air consumption can be reduced by this, the operability is not satisfactory, and the weight of the measuring head increases, resulting in a significant decrease in workability during measurement.

本発明は、上記に鑑みてなされたもので、圧縮
空気の流れを通断する弁を空気マイクロメータ本
体と測定ヘツドとの間に接続することにより、測
定ヘツドの重量増加を回避すると共に、その弁を
測定時と非測定時のそれぞれにおける測定ヘツド
の背圧の変化に基づいて自動的に開閉させ、無駄
な空気の消費を抑制すると共に測定時における操
作の煩雑さをも排除したことを特徴とするもので
ある。
The present invention has been made in view of the above, and by connecting a valve that cuts off the flow of compressed air between the main body of the air micrometer and the measuring head, it is possible to avoid an increase in the weight of the measuring head and to reduce the weight of the measuring head. The valve is automatically opened and closed based on changes in the back pressure of the measurement head during measurement and non-measurement, which reduces wasteful air consumption and eliminates the complexity of operations during measurement. That is.

次に、本発明の空気マイクロメータ用自動開閉
弁の原理を汎用の空気マイクロメータの特性を例
示した第1図に基づいて説明する。
Next, the principle of the automatic opening/closing valve for an air micrometer of the present invention will be explained based on FIG. 1, which illustrates the characteristics of a general-purpose air micrometer.

第1図において、曲線A0は空気マイクロメー
タの出力特性、曲線B0は測定ヘツドの非測定時
特性、曲線B1,B2はそれぞれ異なる被測定物に
ついての測定ヘツドの測定時特性を示すものであ
る。上記特性曲線A0とB0の交点C0は非測定時に
おける動作点、特性曲線A0と特性曲線B1,B2
交点D0,E0は異なる測定状態における動作点で
ある。なお、特性曲線B1,B2は測定公差の幅に
基づく相違を示し、従つて個々の異なる被測定物
における特性曲線はほぼ上記両曲線B1,B2に囲
まれた範囲内に入る。
In Figure 1, curve A 0 shows the output characteristics of the air micrometer, curve B 0 shows the non-measuring characteristics of the measuring head, and curves B 1 and B 2 show the measuring characteristics of the measuring head when measuring different objects. It is something. The intersection point C 0 between the characteristic curves A 0 and B 0 is the operating point in the non-measurement state, and the intersection points D 0 and E 0 between the characteristic curve A 0 and the characteristic curves B 1 and B 2 are the operating points in different measurement states. Note that the characteristic curves B 1 and B 2 show differences based on the width of the measurement tolerance, and therefore the characteristic curves for individual different objects to be measured fall approximately within the range surrounded by the above-mentioned curves B 1 and B 2 .

而して、本発明の原理は、空気マイクロメータ
本体と測定ヘツドとの間に測定ヘツドの背圧の上
昇、低下に応じて自動的に開閉する自動開閉弁を
装着することにより、空気マイクロメータの出力
特性を修正し、非測定時における空気マイクロメ
ータの出力特性曲線をA0からA2へ変化させ、そ
れによつて動作点を交点C0から交点C1に移動さ
せて、非測定時における空気消費量を大幅に節減
すると共に、上記自動開閉弁の装着時に不可避と
なる測定時における空気マイクロメータの出力特
性曲線の変化を、曲線A0から曲線A1への如く微
小なものとなり、測定時における動作点の移動を
交点D0から交点D1へあるいは交点E0から交点E1
への如く測定にほとんど影響を与えることのない
微小な変更に留めようとするものである。
The principle of the present invention is that an air micrometer can be operated by installing an automatic opening/closing valve between the air micrometer body and the measuring head, which automatically opens and closes in response to increases and decreases in the back pressure of the measuring head. By modifying the output characteristic of the air micrometer when not measuring, change the output characteristic curve of the air micrometer from A 0 to A 2 , thereby moving the operating point from the intersection C 0 to the intersection C 1 . In addition to greatly reducing air consumption, the change in the output characteristic curve of the air micrometer during measurement, which is inevitable when installing the automatic on-off valve mentioned above, is reduced to a minute value, such as from curve A 0 to curve A 1 , making it possible to measure Move the operating point from the intersection D 0 to the intersection D 1 or from the intersection E 0 to the intersection E 1
The aim is to limit the changes to minute changes that have little effect on the measurements.

以下、本発明の実施例を図面に基づいて詳細に
説明するに、第2図において、1は空気マイクロ
メータ本体と測定ヘツドとの間に接続装着される
自動開閉弁のボデイで、該ボデイ1は空気マイク
ロメータ本体からの圧縮空気を流入させる入口2
と、該圧縮空気を測定ヘツドに供給する出口3と
を備えている。上記入口2と出口3は、測定時に
のみ自動的に開口される主流路と常時開口状態に
ある副流路によつて連通せしめられている。上記
主流路は、入口2に通じる入口側流路4、第1圧
力室5及び出口3に通じる出口側流路6の連通に
より構成されている。また上記副流路は、入口側
流路4から分岐し、供給可変絞り8を備えた第1
バイパス流路7及び第1圧力室5を経て出口側流
路6に連通するように構成され、上記供給可変絞
り8は、第1バイパス流路7内に形設した弁座8
aの開口量を、外部からボデイ1に螺挿した調節
ねじ9のニードル部9aによつて調節可能に構成
している。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In FIG. is the inlet 2 that lets compressed air flow in from the air micrometer body.
and an outlet 3 for supplying the compressed air to the measuring head. The inlet 2 and outlet 3 are communicated with each other by a main channel that is automatically opened only during measurement and a sub-channel that is always open. The main flow path is constituted by an inlet side flow path 4 communicating with the inlet 2, a first pressure chamber 5, and an outlet side flow path 6 communicating with the outlet 3. Further, the sub-channel is a first branched from the inlet-side channel 4 and equipped with a variable supply throttle 8.
The variable supply throttle 8 is configured to communicate with the outlet side flow path 6 via the bypass flow path 7 and the first pressure chamber 5, and the variable supply throttle 8 is connected to a valve seat 8 formed in the first bypass flow path 7.
The opening amount of a can be adjusted by a needle portion 9a of an adjustment screw 9 screwed into the body 1 from the outside.

上記第1圧力室5は、入口側流路4に形設した
第1弁座4aを開閉するダイヤフラム弁体11の
一面に形設され、該弁体11に他面側に形設され
た第2圧力室12は、固定絞り14を備えた第2
バイパス流路13によつて入口側流路4と連通さ
せると共に排気可変絞り16を備えた第1排気流
路15及び固定絞り18を備えた第2排気流路1
7によつてそれぞれ大気に連通させ、上記第1排
気流路15の入口にダイヤフラム弁体11によつ
て開閉される第2弁座15aを形設している。上
記第1排気流路15における可変絞り16は、第
1排気流路15内に設けた弁座15aの開口量
を、外部からボデイ1に螺挿した調節ねじ19の
ニードル部19aによつて調節可能に構成されて
いる。而して、上記構成によつて、圧縮空気が入
口2、固定絞り14を有する第2バイパス流路1
3を通して第2圧力室12に流入し、一方、該圧
縮空気の大気への流出が第1及び第2排気流路1
5,17における絞り16,18によつて制限さ
れるため、第2圧力室12内の圧力が一定量まで
上昇してダイヤフラム弁体11を第1弁座4aに
向けて付勢する空気ばねが形成される。該空気ば
ねの付勢力は、弁体11が第2弁座15aを閉鎖
したときに最大になり、第2弁座15aが完全に
開放したときに最小となるが、その最小値は排気
可変絞り16によつて調節することができる。上
記空気ばねの付勢力は、測定時には測定ヘツドの
背圧力によつて増大する第1圧力室5の圧力によ
る力により小さく設定されて、弁体11が第1弁
座4aを開放すると共に第2弁座5aを閉鎖し、
非測定時には測定ヘツドの背圧力と共に降下する
第1圧力室5の圧力による力より大きく設定され
て、弁体11が第1弁座4aを閉鎖すると共に第
2弁座15aを開放するように構成している。
The first pressure chamber 5 is formed on one side of a diaphragm valve body 11 that opens and closes a first valve seat 4a formed in the inlet side flow path 4, and a diaphragm valve body 11 formed on the other side of the valve body 11. The second pressure chamber 12 has a second pressure chamber 12 equipped with a fixed throttle 14.
A first exhaust flow path 15 that communicates with the inlet side flow path 4 through a bypass flow path 13 and is equipped with a variable exhaust throttle 16 and a second exhaust flow path 1 that is equipped with a fixed throttle 18.
A second valve seat 15a, which is opened and closed by a diaphragm valve element 11, is formed at the inlet of the first exhaust flow path 15. The variable throttle 16 in the first exhaust flow path 15 adjusts the opening amount of a valve seat 15a provided in the first exhaust flow path 15 using a needle portion 19a of an adjustment screw 19 screwed into the body 1 from the outside. configured to be possible. With the above configuration, compressed air flows through the second bypass passage 1 having the inlet 2 and the fixed throttle 14.
3 into the second pressure chamber 12, while the compressed air flows out into the atmosphere through the first and second exhaust flow paths 1.
5 and 17, the air spring increases the pressure in the second pressure chamber 12 to a certain level and urges the diaphragm valve body 11 toward the first valve seat 4a. It is formed. The biasing force of the air spring is maximum when the valve body 11 closes the second valve seat 15a, and is minimum when the second valve seat 15a is completely opened. 16. During measurement, the biasing force of the air spring is set to be small due to the force of the pressure in the first pressure chamber 5, which increases due to the back pressure of the measuring head, so that the valve body 11 opens the first valve seat 4a and the second valve seat 4a is opened. Close the valve seat 5a,
During non-measurement, the force is set to be larger than the force due to the pressure in the first pressure chamber 5, which decreases with the back pressure of the measurement head, so that the valve body 11 closes the first valve seat 4a and opens the second valve seat 15a. are doing.

さらに詳細に説明すると、ダイヤフラム弁体1
1に作用する第2圧力室12の圧力即ち空気ばね
の第1弁座4aに対する閉弁力は、絞り14,
16,18及び弁座15aの開度によつて定ま
り、また上記弁体11に作用する第1圧力室5の
圧力に基づく第1弁座4aに対する開弁力Fは、 F=(S−a)P+aPS …(1) S:ダイヤフラム弁体11の有効面積 a:第1弁座4aの有効面積 P:測定ヘツドの背圧力 PS:入口2における圧力 として表わされ、このため、 測定時:F>(第1弁座4aの開放) 非測定時:F>(第1弁座4aの閉鎖) となるように諸元を定めて、測定時及び非測定
時における空気マイクロメータ全体としての出力
特性がそれぞれ第1図における特性曲線A1及び
特性曲線A2で表わされるように構成している。
To explain in more detail, diaphragm valve body 1
The pressure of the second pressure chamber 12 acting on the valve 14, that is, the valve closing force of the air spring against the first valve seat 4a, is
16, 18 and the opening degree of the valve seat 15a, and the valve opening force F against the first valve seat 4a based on the pressure of the first pressure chamber 5 acting on the valve body 11 is as follows: F=(S-a )P+aP S ...(1) S: Effective area of diaphragm valve body 11 a: Effective area of first valve seat 4a P: Back pressure of measurement head P S : Expressed as pressure at inlet 2, therefore, during measurement :F>(Opening of first valve seat 4a) When not measuring: F>(Closing of first valve seat 4a) The output characteristics are respectively represented by characteristic curve A1 and characteristic curve A2 in FIG.

次に、上記構成の空気マイクロメータ用自動開
閉弁の動作について説明する。
Next, the operation of the automatic on-off valve for an air micrometer having the above structure will be explained.

非測定時には、測定ヘツドの背圧力が小さいた
め第1圧力室5の圧力による開弁力Fが第2圧力
室12の圧力による閉弁力より小さく、このた
めダイヤフラム弁体11は第1弁座4aを閉鎖す
ると共に第2弁座15aを開放する。従つて、空
気マイクロメータ本体から入口2に供給された空
気は、入口側流路4、第2バイパス流路13、第
2圧力室12、及び第1、第2排気流路15,1
7を通つて大気に流出し、第2圧力室12に空気
ばねを構成させると共に、副流路即ち入口側流路
4、第1バイパス流路7、第1圧力室5、出口側
流路6を通つて出口3から測定ヘツドに至る。従
つて、測定ヘツドへの供給空気量は、第1バイパ
ス流路7における供給可変絞り8によつて制限さ
れて著しく少ないものとなる。
When not measuring, the back pressure of the measurement head is small, so the valve opening force F due to the pressure in the first pressure chamber 5 is smaller than the valve closing force due to the pressure in the second pressure chamber 12, and therefore the diaphragm valve body 11 is pressed against the first valve seat. 4a and opens the second valve seat 15a. Therefore, the air supplied from the air micrometer main body to the inlet 2 flows through the inlet side flow path 4, the second bypass flow path 13, the second pressure chamber 12, and the first and second exhaust flow paths 15, 1.
7 to the atmosphere, forming an air spring in the second pressure chamber 12, and auxiliary flow paths, that is, the inlet side flow path 4, the first bypass flow path 7, the first pressure chamber 5, and the outlet side flow path 6. from the outlet 3 to the measuring head. Therefore, the amount of air supplied to the measuring head is limited by the variable supply restrictor 8 in the first bypass flow path 7 and becomes extremely small.

また、測定時、即ち例えば測定ヘツドを被測定
物における内径を測定すべき孔に挿入した場合に
は、測定ヘツドの背圧力の上昇に伴つて第1圧力
室5の圧力も上昇し、ダイヤフラム弁体11の第
1弁座4aに対する開弁力Fが閉弁力より大き
くなるため、ダイヤフラム弁体11は第1弁座4
aを開放すると共に第2弁座15aを閉鎖する。
而して、弁体11が第2弁座15aを閉鎖した場
合には、第1弁座4aに対する閉弁力が第2バ
イパス流路13及び第2排気流路17の絞り1
4,18によつて決定される最大値maxとなる
が、この最大値max閉弁力Fの最大値Fmcxよ
り小さく設定してあるので、弁体11は第1弁座
4aを開放し、第2弁座15Aを閉鎖して状態を
維持する。従つて、入口2に供給された空気は、
入口側流路4、第2バイパス流路13、第2圧力
室12及び第2排気流路17を通つて大気に流出
し、第2圧力室12に空気ばねを構成させると共
に、主流路及び副流路の両方を通つて出口3から
流出する。即ち、入口2から流入する空気は、入
口側流路4をそのまま通るものと第1バイパス流
路7に流れ込むものとに分流し、その後再び第1
圧力室5において合流して出口側流路6から出口
3に至る。
Furthermore, during measurement, for example, when the measuring head is inserted into a hole in the object to be measured whose inner diameter is to be measured, the pressure in the first pressure chamber 5 also increases as the back pressure of the measuring head increases, and the diaphragm valve Since the valve opening force F of the body 11 against the first valve seat 4a is greater than the valve closing force, the diaphragm valve body 11
a is opened and the second valve seat 15a is closed.
Therefore, when the valve body 11 closes the second valve seat 15a, the valve closing force against the first valve seat 4a is applied to the throttle 1 of the second bypass flow path 13 and the second exhaust flow path 17.
4 and 18, but this maximum value max is set smaller than the maximum value Fmcx of the valve closing force F, so the valve body 11 opens the first valve seat 4a and The state is maintained by closing the second valve seat 15A. Therefore, the air supplied to inlet 2 is
It flows out to the atmosphere through the inlet side flow path 4, the second bypass flow path 13, the second pressure chamber 12, and the second exhaust flow path 17, and forms an air spring in the second pressure chamber 12. It flows out from the outlet 3 through both channels. That is, the air flowing in from the inlet 2 is divided into two parts: one that passes through the inlet side flow path 4 as it is, and one that flows into the first bypass flow path 7, and then the air flows into the first bypass flow path 7 again.
They merge in the pressure chamber 5 and reach the outlet 3 from the outlet side flow path 6.

上記測定ヘツドを被測定物の孔から抜き出すこ
とにより非測定状態とすれば、測定ヘツドにおけ
る背圧力が低下し、それに伴つて上記第1圧力室
5の圧力即ちダイヤフラム弁体11に対する開弁
力Fが減少して閉弁力より小さくなり、このた
めダイヤフラム弁体11は第2弁座15aを開放
すると共に第1弁座4aを閉鎖し、測定前の状態
に復帰する。
When the measuring head is brought into a non-measuring state by being pulled out of the hole of the object to be measured, the back pressure in the measuring head decreases, and accordingly, the pressure in the first pressure chamber 5, that is, the valve opening force F against the diaphragm valve body 11. decreases and becomes smaller than the valve closing force, so that the diaphragm valve body 11 opens the second valve seat 15a and closes the first valve seat 4a, returning to the state before measurement.

次に、上述したように測定時にF>となり、
非測定時にF>となるように必要な諸元を定め
る設計手法について簡単に説明する。
Next, as mentioned above, F> during measurement,
A design method for determining necessary specifications such that F> during non-measurement will be briefly described.

空気マイクロメータ本体、空気マイクロメータ
用自動開閉弁及び測定ヘツドのそれぞれについ
て、 RS:空気マイクロメータ本体の内部抵抗係数 RV:空気マイクロメータ用自動開閉弁の抵抗
係数 RH:測定ヘツドの抵抗係数 RSO空気マイクロメータの出口締切り圧力 Q:空気量 とすると、測定ヘツド側大気圧を基準とした圧力
P,PS及びPSOは、 P=RHQ2 …(2) PS=(RH+RV)Q2 …(3) PSO=(RH+RV+RS)Q2 …(4) として近似でき、また上記(1)式は(2)〜(4)式によつ
て、 F=SR+aR/R+R+R・RSO…(5
) として近似でき、さらに空気マイクロメータ用自
動開閉弁の抵抗係数RVは、ダイヤフラム弁体1
1のストロークxで定まると共にそのストローク
に逆比例的であるため、RV(x0)と(x−x0)の
関数r(x−x1)として与えられる値との差、即
ち RV(x)=RV(x0)−r(x−x0) …(6) として表わされる。
Regarding the air micrometer body, the automatic on-off valve for the air micrometer, and the measuring head, R S : Internal resistance coefficient of the air micrometer body R V : Resistance coefficient of the automatic on-off valve for the air micrometer R H : Resistance of the measuring head Coefficient R SO air micrometer outlet cut-off pressure Q: If air volume is the pressure P, P S and P SO based on the atmospheric pressure on the measurement head side, P = R H Q 2 ...(2) P S = ( R H + R V ) Q 2 ...(3) P SO = (R H + R V + R S ) Q 2 ... (4) It can be approximated as , F=SR H +aR V /R H +R S +R V・R SO …(5
), and furthermore, the resistance coefficient R V of the automatic on-off valve for air micrometer is given by the diaphragm valve body 1
Since it is determined by one stroke x and is inversely proportional to that stroke, the difference between R V (x 0 ) and the value given as the function r (x-x 1 ) of (x-x 0 ), that is, R V It is expressed as (x)=R V (x 0 )−r(x−x 0 ) (6).

而して、第3図は、上記各式を計算図表として
表わしたものである。第1象限にはを、第2象
限には=Fを、第3象限には(5)式、第4象限に
は(6)式を示しており、これら個々の特性は第1図
を参照して個々に算出することができる。この第
4図についてさらに詳しく説明するに、同図にお
けるa点は第1図の動作点C1に相当し、測定ヘ
ツドを被測定物に挿入して測定状態とすれば、ダ
イヤフラム弁体11に作用する開弁力Fが閉弁力
より大きくなるため、両者の間には破線の矢印
で示す経路をたどる力の不釣合が生じ、これによ
りダイヤフラム弁体11がダ1弁座4aを全開す
ると同時に第2弁座15aを全開するまでストロ
ークしてb点に至る。該b点は第1図における測
定物の動作点D1,E1に相当する点である。逆
に、測定ヘツドを被測定物から抜き取つて非測定
状態とすれば、開弁力Fと閉弁力との間にb点
から一定鎖線の矢印で示す経路をたどる力の不釣
合が生じ、これによりダイヤフラム弁体11が第
1弁座4aを全閉すると同時に第2弁座を全開す
るまでストロークしてa点に達する。よつて、第
3図に基づいて必要な諸元を定めることができ
る。
FIG. 3 shows each of the above formulas as a calculation chart. The first quadrant shows =F, the second quadrant shows =F, the third quadrant shows equation (5), and the fourth quadrant shows equation (6).For these individual characteristics, see Figure 1. can be calculated individually. To explain this FIG. 4 in more detail, point a in the same figure corresponds to the operating point C1 in FIG. Since the applied valve opening force F becomes larger than the valve closing force, an unbalance occurs between the two forces that follow the path shown by the broken line arrow, and as a result, the diaphragm valve body 11 fully opens the valve seat 4a, and at the same time The second valve seat 15a is stroked until it is fully opened and reaches point b. The point b corresponds to the operating points D 1 and E 1 of the object to be measured in FIG. On the other hand, if the measuring head is removed from the object to be measured and placed in a non-measuring state, an imbalance will occur between the valve opening force F and the valve closing force, which follow the path shown by the constant chain arrow from point b. As a result, the diaphragm valve body 11 strokes until it fully closes the first valve seat 4a and simultaneously fully opens the second valve seat, reaching point a. Therefore, necessary specifications can be determined based on FIG.

このように本発明の空気マイクロメータ用自動
開閉弁によれば、測定時には測定に必要なだけの
空気量を供給できると共に非測定時には大幅に空
気消費量を節減できるので、測定に影響を与える
ことなく空気消費量を節減でき、また上記自動開
閉弁を空気マイクロメータ本体と測定ヘツドとの
間に接続、装着するようにしたので、測定ヘツド
の重量増加が回避されると共に、該自動開閉弁
を、測定ヘツドにおける測定時と非測定時の背圧
の変化をフイードバツクして自動的に開閉するも
のとしたので、著しく操作性が向上する。
As described above, according to the automatic opening/closing valve for air micrometers of the present invention, it is possible to supply the amount of air necessary for measurement during measurement, and it is possible to significantly reduce air consumption when not measuring, so that it does not affect measurement. Moreover, since the automatic on-off valve is connected and installed between the air micrometer body and the measuring head, an increase in the weight of the measuring head is avoided, and the automatic on-off valve is Since the measuring head is automatically opened and closed based on feedback of changes in back pressure during measurement and non-measurement, operability is significantly improved.

さらに、本発明の空気マイクロメータ用自動開
閉弁は、入口側流路を、弁座を通る流路と絞りを
有する第1バイパス流路との2つの流路によつて
第1圧力室を介して出口側流路に連通させたこと
により、弁座を開閉する弁体によつて流路の切換
えが行えるので、弁体の構成及び非測定時の流量
設定が簡単であり、また弁体が2つの圧力室を区
画形設しているので、圧力室の圧力変化によつて
弁体自体が弁座を開閉して他に弁体を開閉させる
機構を必要とせず、そのため自動開閉弁の構成を
簡素化して安価なものにすることができる。その
上、弁体を第1弁座に付勢するばねとして、第2
圧力室の空気ばねを用いたので、構成が簡単で組
立が容易となり、且つ第2圧力室の圧力即ち空気
ばねの付勢力は絞りの調節によつて任意に変化さ
せることができ、これによつて各種空気マイクロ
メータに適応させることができるなどの効果があ
る。
Further, in the automatic on-off valve for an air micrometer of the present invention, the inlet side flow path is connected to the first pressure chamber by two flow paths: a flow path passing through the valve seat and a first bypass flow path having a restriction. By communicating with the outlet side flow path, the flow path can be switched by the valve body that opens and closes the valve seat, making it easy to configure the valve body and set the flow rate when not measuring. Since the two pressure chambers are separated, the valve body itself opens and closes the valve seat in response to changes in pressure in the pressure chamber, eliminating the need for any other mechanism to open and close the valve body. can be simplified and made cheaper. Moreover, the second valve acts as a spring that biases the valve body toward the first valve seat.
Since the air spring in the pressure chamber is used, the structure is simple and assembly is easy, and the pressure in the second pressure chamber, that is, the biasing force of the air spring, can be changed arbitrarily by adjusting the throttle. It has the advantage that it can be adapted to various air micrometers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明するための線図、
第2図は本発明の実施例の断面図、第3図は本発
明の各部の諸元を定めるための線図である。 2…入口、3…出口、4…入口側流路、4a…
弁座、5…第1圧力室、6…出口側流路、7…第
1バイパス流路、8,14,16,18…絞り、
11…弁体、12…第2圧力室、13…第2バイ
パス流路。
FIG. 1 is a diagram for explaining the principle of the present invention,
FIG. 2 is a sectional view of an embodiment of the present invention, and FIG. 3 is a diagram for determining the specifications of each part of the present invention. 2...Inlet, 3...Outlet, 4...Inlet side channel, 4a...
Valve seat, 5... First pressure chamber, 6... Outlet side flow path, 7... First bypass flow path, 8, 14, 16, 18... Throttle,
DESCRIPTION OF SYMBOLS 11...Valve body, 12...2nd pressure chamber, 13...2nd bypass flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 空気マイクロメータ本体からの圧縮空気を流
入させる入口と、該圧縮空気を測定ヘツドに供給
する出口とを備え、入口側流路をそれに形設した
弁座及び該弁座を開閉する弁体の一面側に区画形
設した第1圧力室を介して出口側流路に連通させ
ると共に、該入口側流路から分岐した絞りを有す
る第1バイパス流路及び上記第1圧力室を介して
出口側流路に連通させ、上記弁体の他面側に形設
した第2圧力室と入口側流路を絞りを有する第2
バイパス流路によつて連通させ、該第2圧力室を
絞りを介して大気に連通させたことを特徴とする
空気マイクロメータ用自動開閉弁。
1. A valve seat, which is equipped with an inlet for inflowing compressed air from the air micrometer body and an outlet for supplying the compressed air to the measurement head, with an inlet side flow path formed therein, and a valve body for opening and closing the valve seat. The outlet side is communicated with the outlet side flow path through a first pressure chamber partitioned on one side, and the outlet side is communicated with the outlet side through a first bypass flow path having a restriction branched from the inlet side flow path and the first pressure chamber. A second pressure chamber formed on the other surface of the valve body and a second pressure chamber formed on the other surface of the valve body and a second pressure chamber having a restriction are connected to the flow path.
An automatic opening/closing valve for an air micrometer, characterized in that the second pressure chamber is communicated with the atmosphere via a bypass flow path, and the second pressure chamber is communicated with the atmosphere through a restriction.
JP18765180A 1980-12-29 1980-12-29 Automatic open/close valve for air micrometer Granted JPS57111404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18765180A JPS57111404A (en) 1980-12-29 1980-12-29 Automatic open/close valve for air micrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18765180A JPS57111404A (en) 1980-12-29 1980-12-29 Automatic open/close valve for air micrometer

Publications (2)

Publication Number Publication Date
JPS57111404A JPS57111404A (en) 1982-07-10
JPS6131404B2 true JPS6131404B2 (en) 1986-07-19

Family

ID=16209826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18765180A Granted JPS57111404A (en) 1980-12-29 1980-12-29 Automatic open/close valve for air micrometer

Country Status (1)

Country Link
JP (1) JPS57111404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136606U (en) * 1984-08-08 1986-03-06 初井 良太郎 Attachment type displacement seat plate device that continuously and labor-savingly measures sitting height at the same time using a height measuring machine stand.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780963A (en) * 2019-02-28 2019-05-21 东北大学 A kind of structural plane opening width measurement device and its application method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553369U (en) * 1979-04-26 1980-01-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553369U (en) * 1979-04-26 1980-01-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136606U (en) * 1984-08-08 1986-03-06 初井 良太郎 Attachment type displacement seat plate device that continuously and labor-savingly measures sitting height at the same time using a height measuring machine stand.

Also Published As

Publication number Publication date
JPS57111404A (en) 1982-07-10

Similar Documents

Publication Publication Date Title
US4431020A (en) Flow-control system having a wide range of flow-rate control
US5372109A (en) Exhaust modulator
US4195552A (en) Pressure reducer and flow control valve
EP0105808A2 (en) Exhaust gas recirculation system
US4197874A (en) Pressure regulator and flow control valve with pre-exhaust vent means
JPH09189583A (en) Flow sensor and fuel control apparatus
JPS6131404B2 (en)
US4253603A (en) Temperature responsive control apparatus
JP3010912B2 (en) Control valve opening / closing speed and flow rate control device by air pressure control
JPS6131403B2 (en)
JP3536243B2 (en) Hydraulic supply device
US4075993A (en) Fuel mixture control apparatus
US5876184A (en) Electrohydraulic pressure regulating valve
JPH09133103A (en) Hydraulic control device
JP4137665B2 (en) Mass flow controller
CA1121692A (en) Pressure-regulator and flow control valve with pre-exhaust vent means
JPS5855448Y2 (en) Seat type flow regulating valve device
JPS6162681A (en) Relief valve
US4297981A (en) Fuel flow rate measuring device
JP3415512B2 (en) Valve device
SU1043607A1 (en) Gas pressure adjusting device
JP2569649Y2 (en) Fuel injection device
JP2002022038A (en) Pilot-type pressure proportional control valve system
JP2558752Y2 (en) Air micrometer
JP2529815Y2 (en) Pressure regulator