JPS6130302Y2 - - Google Patents
Info
- Publication number
- JPS6130302Y2 JPS6130302Y2 JP1981084975U JP8497581U JPS6130302Y2 JP S6130302 Y2 JPS6130302 Y2 JP S6130302Y2 JP 1981084975 U JP1981084975 U JP 1981084975U JP 8497581 U JP8497581 U JP 8497581U JP S6130302 Y2 JPS6130302 Y2 JP S6130302Y2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- solar cell
- base
- electrodes
- solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000679 solder Inorganic materials 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- MZFIXCCGFYSQSS-UHFFFAOYSA-N silver titanium Chemical compound [Ti].[Ag] MZFIXCCGFYSQSS-UHFFFAOYSA-N 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/49105—Connecting at different heights
- H01L2224/49107—Connecting at different heights on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Electrodes Of Semiconductors (AREA)
- Die Bonding (AREA)
Description
【考案の詳細な説明】
(1) 考案の利用分野
本考案は、太陽電池の構造に関し、さらに詳し
く太陽電池の電極の構造に関する。[Detailed Description of the Invention] (1) Field of Use of the Invention The present invention relates to the structure of a solar cell, and more specifically to the structure of an electrode of a solar cell.
(2) 従来技術
従来の太陽電池の構造は第1図に示すように二
種に大別できる。第1の型は第1図aにその断面
を示すように、第1の導電形を有する半導体結晶
(たとえばシリコン)1の表面に不純物拡散によ
つて第2の導電形の層2を形成し、裏面の一部を
p−n接合面3を含んで除去して、第一の導電形
領域、第二の導電形領域それぞれに合金化プロセ
スによつて電極4,5を形成し、取出し電極リー
ド7,8を接続した形式のものである。この構造
のものは主に地上用の小型発電装置に用いられて
いた。第2の型は第1図bに示すように、第一の
導電形の半導体結晶11の表面に第二の導電形の
層12を形成し、p−n接合13と交叉するよう
に結晶を劈開して、第一の導電形領域11に合金
化プロセスによつて電極14を、また第二の導電
形層12の表面に格子状の電極15を設けた構造
を有し、電極14には金属リボン、あるいは金属
網を溶接するか、図に示すように導電性基台16
に接続されているような形式のものである。これ
は主に入工衛星等宇宙用に用いられていた。(2) Prior art The structure of conventional solar cells can be roughly divided into two types, as shown in Figure 1. In the first type, a layer 2 of a second conductivity type is formed on the surface of a semiconductor crystal (for example, silicon) 1 of a first conductivity type by diffusion of impurities, as shown in the cross section of FIG. 1a. , a part of the back surface including the p-n junction surface 3 is removed, and electrodes 4 and 5 are formed in the first conductivity type region and the second conductivity type region by an alloying process, respectively, and the extraction electrode is This is a type in which leads 7 and 8 are connected. This structure was mainly used for small ground-based power generation equipment. The second type, as shown in FIG. It has a structure in which an electrode 14 is provided in the first conductivity type region 11 through an alloying process by cleavage, and a grid-like electrode 15 is provided on the surface of the second conductivity type layer 12. Weld a metal ribbon or metal mesh or attach a conductive base 16 as shown in the figure.
It is of the form that is connected to. This was mainly used for space applications such as engineered satellites.
これらに用いられている合金化電極にはニツケ
ル−シリコン合金、あるいはチタン/銀蒸着薄膜
等が用いられ、電極の抵抗を低減し、あわせて電
極の相互接続が容易になるように電極上に半田層
を設けることが行なわれていた。 The alloyed electrodes used in these devices are made of nickel-silicon alloys or titanium/silver vapor-deposited films, and solder is applied on the electrodes to reduce the resistance of the electrodes and to facilitate interconnection of the electrodes. Layers were used.
従来の太陽電池はその大きさが高々2〜3cm径
あるいは2cm角程度であり、特に裏面電極につい
ては、裏面全体にこのような合金化電極を設けて
も何等問題は生じていなかつた。 The size of conventional solar cells is at most about 2 to 3 cm in diameter or 2 cm square, and especially regarding the back electrode, no problem occurred even if such an alloyed electrode was provided on the entire back surface.
しかるに、地上用の大出力用太陽電池では、単
体素子が10cm径あるいは10cm角以上にもなり、ま
た、多結晶半導体を第一導電形層あるいはそれの
形成用基台として用いる場合には、上記電極構造
では次に述べるような不都合が生じる。 However, in a high-output solar cell for terrestrial use, a single element has a diameter of 10 cm or more or a square of 10 cm, and when a polycrystalline semiconductor is used as the first conductivity type layer or the base for forming it, the above-mentioned The following disadvantages occur in the electrode structure.
すなわち、
1 全面に合金層を形成した場合、半田の厚さの
制御が困難で、半田の消費量も多い。 That is, 1. When an alloy layer is formed on the entire surface, it is difficult to control the thickness of the solder, and the amount of solder consumed is large.
2 半田層あるいは下地基台との熱膨張係数の差
により、太陽電池に歪みが生じ、製造中に破断
しやすく歩留りが低くなる。2. Due to the difference in thermal expansion coefficient between the solder layer and the underlying base, distortion occurs in the solar cell, making it more likely to break during manufacturing, resulting in a lower yield.
3 下地基台との接続の際、フラツクスから生じ
るガスが太陽電池と下地基台の間隙に封じ込め
られ、太陽電池と下地基台との接触が十分に行
なわれない場合がある。3. When connecting to the base base, gas generated from flux may be trapped in the gap between the solar cell and the base base, and sufficient contact between the solar cell and the base base may not be achieved.
(3) 考案の目的
本考案はかかる大面積太陽電池の電極形成に伴
なう不都合を解消する新しい電極構造を提供する
ことを目的とする。(3) Purpose of the invention The purpose of the invention is to provide a new electrode structure that eliminates the inconveniences associated with forming electrodes in large-area solar cells.
(4) 考案の総括説明
本考案の骨子は、太陽電池の電極の合金化領域
を制限して、非受光面に隆起した線状、又は帯状
の第一の電極を、基台表面に隆起した線状、又は
帯状の第二の電極を形成し、これらの第一、第二
の電極を交叉するように配置、接続することによ
り、機械的歪みの緩和、基台との確実な接触、電
極材料の節減を可能とするものである。(4) General explanation of the invention The gist of the invention is to limit the alloying area of the electrode of the solar cell, and to form a linear or band-shaped first electrode raised on the non-light-receiving surface and raised on the base surface. By forming a linear or strip-shaped second electrode and arranging and connecting the first and second electrodes so as to cross each other, mechanical strain can be alleviated, reliable contact with the base, and the electrode This makes it possible to save on materials.
(5) 実施例
以下、本考案を実施例を参照して詳細に説明す
る。第2図は本考案の一実施例を示す略図であ
る。21は円形の太陽電池素子であり、比抵抗
1.6×10-3ohm・cmのp形シリコン多結晶板を基
板として、その上にp形シリコン層およびn形シ
リコン層を形成してメサ型に成型したもので直径
は約50mmである。図ではn形層表面に設けた格子
状電極は省略してある。この太陽電池の裏面には
アルミニウムを全面に蒸着し、600℃不活性ガス
中で合金化した後、幅0.3mm、間隔3mmのストラ
イプ状にチタン−銀を蒸着し、ニツケル無電解メ
ツキを施した後、300℃の半田浴に浸漬して、ス
トライプ状の半田電極22を有する構造とした。(5) Examples Hereinafter, the present invention will be explained in detail with reference to examples. FIG. 2 is a schematic diagram showing an embodiment of the present invention. 21 is a circular solar cell element with specific resistance
A p-type silicon polycrystalline plate of 1.6×10 -3 ohm·cm is used as a substrate, and a p-type silicon layer and an n-type silicon layer are formed thereon and molded into a mesa shape, and the diameter is about 50 mm. In the figure, the grid-like electrode provided on the surface of the n-type layer is omitted. Aluminum was vapor-deposited on the entire surface of the back of this solar cell, and after alloying in an inert gas at 600℃, titanium-silver was vapor-deposited in stripes with a width of 0.3 mm and an interval of 3 mm, and electroless nickel plating was applied. Thereafter, it was immersed in a 300° C. solder bath to form a structure having striped solder electrodes 22.
一方基台23は銅張エポキシ積層板で、銅電極
を幅0.5mm、間隔4mmのストライプ状部分24
と、幅2mmの共通帯状部分25から成る形状に成
型し、300℃の半田浴に浸漬して同形状の半田電
極を形成した。 On the other hand, the base 23 is a copper-clad epoxy laminate, and the copper electrodes are placed in striped portions 24 with a width of 0.5 mm and an interval of 4 mm.
It was molded into a shape consisting of a common band-shaped portion 25 with a width of 2 mm, and was immersed in a solder bath at 300° C. to form a solder electrode of the same shape.
上記の太陽電池と基台とを、各々のストライプ
が直交するように相対して配置し、250℃の雰囲
気で短時間加熱することによつてストライプの交
叉部分を再溶融・凝固せしめ、接続した。 The above solar cell and base were placed opposite each other so that the stripes were perpendicular to each other, and the intersections of the stripes were remelted and solidified by heating in a 250°C atmosphere for a short period of time to connect them. .
上記の電極構造とすることによつて、太陽電池
上への半田電極形成の際には半田とシリコンの熱
膨張係数の差による歪の発生が小さく抑えられ、
多結晶体を用いているにもかかわらず、半田付け
の際の割れ欠け等の不良発生が著るしく減少し
た。また基台への接着工程においても破断不良が
減少し、接触抵抗値の変動が小幅に抑えられるよ
うになつた。 By adopting the above electrode structure, the generation of distortion due to the difference in thermal expansion coefficient between solder and silicon can be suppressed to a small level when forming solder electrodes on solar cells.
Despite the use of polycrystalline materials, the occurrence of defects such as cracks and chips during soldering has been significantly reduced. In addition, the number of breakage defects has been reduced in the process of adhering to the base, and fluctuations in contact resistance have been suppressed to a small extent.
前記Al・Si合金層は、太陽電池に背面電界を形
成し、太陽電池の出力電圧を向上させるのに効果
がある。しかし、この場合、半田との接着性が良
くないので、電流取り出しのためのリードとの電
気的接続が困難となる。そこでチタン−銀層を蒸
着すると、チタンがAl・Si合金層に密着し、半田
付けが可能となる。 The Al-Si alloy layer forms a backside electric field in the solar cell and is effective in improving the output voltage of the solar cell. However, in this case, since the adhesion with solder is not good, it becomes difficult to electrically connect with a lead for taking out current. Therefore, when a titanium-silver layer is deposited, the titanium adheres to the Al-Si alloy layer, making soldering possible.
以上の様な電極構造とすることにより、取り出
し電極の接着は隆起したストライプの交点で確実
に行なわれ、はがれに対する機械的強度が十分保
たれ、かつ太陽電池の電流取り出しに対しても十
分低い接触抵抗が確保できる。 With the electrode structure described above, the extraction electrode is reliably bonded at the intersections of the raised stripes, maintaining sufficient mechanical strength against peeling, and maintaining a sufficiently low contact point for current extraction from the solar cell. Resistance can be ensured.
(6) まとめ
以上説明したごとく本考案によれば、大面積の
太陽電池あるいは、多結晶半導体基板を用いた太
陽電池素子でも、電極形成による歪発生を抑制
し、基台との確実かつ良好な電気的、機械的接続
を可能ならしめ、しかも原材料の節減をはかるこ
とができる。(6) Summary As explained above, according to the present invention, even in large-area solar cells or solar cell elements using polycrystalline semiconductor substrates, distortion caused by electrode formation can be suppressed, and reliable and good connection with the base can be achieved. It enables electrical and mechanical connections and saves on raw materials.
本考案は実施例に説明した如き構造材料に限定
されない。例えば基台上に形成される隆起したス
トライプ状電極の代りに導電体線条を用いても良
く、あるいはまた基台自体が帯状の溝を有する導
電体であつても本考案の主旨が妨げられない。 The invention is not limited to construction materials such as those described in the examples. For example, a conductive wire may be used instead of the raised striped electrode formed on the base, or even if the base itself is a conductor having band-like grooves, the spirit of the present invention will not be hindered. do not have.
第1図は従来構造の太陽電池の断面図、第2図
は本考案の一実施例を示す図である。
1,11……第一導電形半導体、4,14……
合金化電極層、21……太陽電池、22,24…
…ストライプ状電極、16,23……基台。
FIG. 1 is a sectional view of a solar cell having a conventional structure, and FIG. 2 is a diagram showing an embodiment of the present invention. 1, 11...first conductivity type semiconductor, 4, 14...
Alloyed electrode layer, 21... solar cell, 22, 24...
...Striped electrode, 16, 23... Base.
Claims (1)
第二の電極を有する基台とを接続して成る太陽電
池素子において、上記第一および第二の電極を隆
起した線もしくは帯状と成し、かつ上記第一およ
び第二の電極が交叉するごとく配置して接続した
ことを特徴とする太陽電池の構造。 A first electrode formed on the non-light receiving surface of the solar cell;
In a solar cell element connected to a base having a second electrode, the first and second electrodes are formed into a raised line or band shape, and the first and second electrodes are arranged so that they intersect. A structure of a solar cell characterized by being arranged and connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981084975U JPS6130302Y2 (en) | 1981-06-11 | 1981-06-11 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981084975U JPS6130302Y2 (en) | 1981-06-11 | 1981-06-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56172959U JPS56172959U (en) | 1981-12-21 |
JPS6130302Y2 true JPS6130302Y2 (en) | 1986-09-05 |
Family
ID=29666399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981084975U Expired JPS6130302Y2 (en) | 1981-06-11 | 1981-06-11 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6130302Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4832945A (en) * | 1971-09-02 | 1973-05-04 |
-
1981
- 1981-06-11 JP JP1981084975U patent/JPS6130302Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4832945A (en) * | 1971-09-02 | 1973-05-04 |
Also Published As
Publication number | Publication date |
---|---|
JPS56172959U (en) | 1981-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2729239B2 (en) | Integrated photovoltaic device | |
US3411952A (en) | Photovoltaic cell and solar cell panel | |
TWI643351B (en) | Solar cell metallisation and interconnection method | |
US4542258A (en) | Bus bar interconnect for a solar cell | |
US20120097245A1 (en) | Solar cell with interconnection sheet, solar cell module, and method for producing solar cell with internconnection sheet | |
JP5726303B2 (en) | Solar cell and method for manufacturing the same | |
US20100243059A1 (en) | Solar battery cell | |
WO2017177726A1 (en) | Solar cell module and method for manufacturing same, assembly, and system | |
US20140230878A1 (en) | Method for electrically connecting several solar cells and photovoltaic module | |
JP2009088152A (en) | Solar battery module | |
US9252300B2 (en) | Method for backside-contacting a silicon solar cell, silicon solar cell and silicon solar module | |
JPH02181475A (en) | Solar battery cell and manufacture thereof | |
JPH0799334A (en) | Photovoltaic element and module | |
JP4344560B2 (en) | Semiconductor chip and semiconductor device using the same | |
TW201340361A (en) | Solar cell and method of manufacturing a solar cell | |
JP4854105B2 (en) | Thin film solar cell module and manufacturing method thereof | |
US9590126B2 (en) | Solar cell assembly II | |
JP2855299B2 (en) | Solar cell module | |
JP2012099565A (en) | Backside contact solar battery cell having wiring board, solar cell module, and manufacturing method of backside contact solar battery cell having wiring board | |
JP2999867B2 (en) | Solar cell and method of manufacturing the same | |
JPS6130302Y2 (en) | ||
JP3006711B2 (en) | Solar cell module | |
JP2011193007A (en) | Semiconductor chip and semiconductor device using the same | |
US20050040212A1 (en) | Method for manufacturing nitride light-emitting device | |
JP2002134766A (en) | Solar cell and method for producing the same |