Nothing Special   »   [go: up one dir, main page]

JPS6130815B2 - - Google Patents

Info

Publication number
JPS6130815B2
JPS6130815B2 JP54078069A JP7806979A JPS6130815B2 JP S6130815 B2 JPS6130815 B2 JP S6130815B2 JP 54078069 A JP54078069 A JP 54078069A JP 7806979 A JP7806979 A JP 7806979A JP S6130815 B2 JPS6130815 B2 JP S6130815B2
Authority
JP
Japan
Prior art keywords
solution
ions
uranium
ion
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54078069A
Other languages
Japanese (ja)
Other versions
JPS562834A (en
Inventor
Tetsuya Myake
Kunihiko Takeda
Hatsuki Onizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7806979A priority Critical patent/JPS562834A/en
Priority to CA000353377A priority patent/CA1141169A/en
Priority to US06/156,727 priority patent/US4368175A/en
Priority to DE3022237A priority patent/DE3022237C2/en
Priority to NL8003506A priority patent/NL8003506A/en
Priority to BE0/201118A priority patent/BE883936A/en
Priority to FR8013758A priority patent/FR2459676A1/en
Priority to AU59457/80A priority patent/AU534784B2/en
Priority to GB8020225A priority patent/GB2053175B/en
Publication of JPS562834A publication Critical patent/JPS562834A/en
Publication of JPS6130815B2 publication Critical patent/JPS6130815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/28Separation by chemical exchange
    • B01D59/30Separation by chemical exchange by ion exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は、陰イオン交換体を用いて酸化還元ク
ロマトグラフイーによりウラン同位体を、化学的
に分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for chemically separating uranium isotopes by redox chromatography using an anion exchanger.

陰イオン交換体を吸着剤とし、前方で酸化、後
方で還元しつつ置換状態でウラン吸着帯を展開す
ることによりウラン同位体を分離する方法は既に
知られている(例えば、特開昭49―57297号)。こ
れらの方法においては、かなり高いウラン同位体
分離効率が得られているが、本発明者等は、ウラ
ン同位体分離効率を高める方法を検討した結果、
ウラン吸着帯を1.0cm/分以上の速度で移動させ
ることにより、分離効率の改善が著しいというこ
とを見出した。
A method of separating uranium isotopes by using an anion exchanger as an adsorbent and developing a uranium adsorption zone in a substituted state with oxidation in the front and reduction in the rear is already known (for example, in JP-A-49-1989-1). No. 57297). Although these methods have achieved fairly high uranium isotope separation efficiency, the present inventors investigated methods to increase uranium isotope separation efficiency, and found that
It was found that the separation efficiency was significantly improved by moving the uranium adsorption zone at a speed of 1.0 cm/min or higher.

更に、塩酸と臭化水素酸、塩酸と硫酸、塩酸と
臭化水素酸及び硫酸の混合酸溶液を吸着液用媒体
及び/又は展開液用媒体として使用することによ
り、ウラン同位体分離効率を向上させることがで
きることを見出した。
Furthermore, by using a mixed acid solution of hydrochloric acid and hydrobromic acid, hydrochloric acid and sulfuric acid, hydrochloric acid, hydrobromic acid, and sulfuric acid as the adsorption liquid medium and/or the developing liquid medium, the uranium isotope separation efficiency is improved. I discovered that it is possible to

これ等の混合酸溶液を使用することにより、ウ
ラン吸着帯中のウラン濃度を一定に保つことがよ
り容易になり、ウラン同位体分離効率が向上する
ものと思われる。
By using these mixed acid solutions, it is easier to maintain a constant uranium concentration in the uranium adsorption zone, and it is believed that the uranium isotope separation efficiency will be improved.

以上において、塩酸、臭化水素酸、硫酸と記し
たのは、混合する前の態様のみを示すものではな
く、混合溶液中において、平衡に達した状態で生
じている無機酸をも表わしている。例えば、HCl
とNaBrを混合した溶液中では、HCl及びHBrが生
じており、この様な溶液をここでは、塩酸と臭化
水素酸の混合溶液と呼ぶ。
In the above, the terms hydrochloric acid, hydrobromic acid, and sulfuric acid do not only refer to the state before mixing, but also indicate the inorganic acids that have reached equilibrium in the mixed solution. . For example, HCl
In a mixed solution of NaBr and NaBr, HCl and HBr are generated, and such a solution is referred to here as a mixed solution of hydrochloric acid and hydrobromic acid.

同位体分離に使用する溶液中の金属イオンをよ
り安定に保ち、ウラン吸着帯中のウラン濃度を定
常状態に保つために、その溶液中の水素イオン濃
度は0.1M/以上、10M/以下の条件を使用
し、又、無機酸のイオンの添加量は以下の様に設
定することが好ましい。すなわち、溶液中の全塩
素イオン濃度は0.1M/〜12M/、全臭素イ
オン濃度は0.01M/〜10M/、全硫酸イオン
濃度は0.01M/〜10M/である。ここで、全
塩素イオンと称するのは、溶液中のCl-イオン及
び、その溶液中における水素又は金属イオンに配
位しているCl-イオンの合計を示しており、他の
臭素イオン、硫酸イオンについても同様である。
In order to keep the metal ions in the solution used for isotope separation more stable and to keep the uranium concentration in the uranium adsorption zone in a steady state, the hydrogen ion concentration in the solution is set to 0.1M/ or more and 10M/ or less. It is preferable to use ions and set the amount of inorganic acid ions added as follows. That is, the total chlorine ion concentration in the solution is 0.1M/~12M/, the total bromine ion concentration is 0.01M/~10M/, and the total sulfate ion concentration is 0.01M/~10M/. Here, the term "total chlorine ions" refers to the total of Cl - ions in the solution and Cl - ions coordinated to hydrogen or metal ions in the solution, and includes other bromine ions and sulfate ions. The same applies to

溶液中の水素イオン濃度は、塩酸、臭化水素
酸、硫酸のうちのいずれを用いて調整してもよ
く、必要に応じて2種以上の酸を使用することも
できる。又、塩素、臭素、硫酸イオンの濃度を水
素イオンと独立に調整するためには、上記無機酸
の塩、例えば、ナトリウムイオン、カリウムイオ
ン、カルシウムイオン、アンモニウムイオン、リ
チウムイオン、ベリウムイオン、2価のニツケル
イオン、3価のクロムイオン、2価のコバルトイ
オン等、陰イオン交換樹脂に対する吸着力の弱い
金属イオンの塩、又は、酸化剤、還元剤として使
用する金属イオンの塩等を用いることができる。
The hydrogen ion concentration in the solution may be adjusted using any of hydrochloric acid, hydrobromic acid, and sulfuric acid, and two or more types of acids may be used as necessary. In addition, in order to adjust the concentration of chlorine, bromine, and sulfate ions independently of hydrogen ions, salts of the above-mentioned inorganic acids, such as sodium ions, potassium ions, calcium ions, ammonium ions, lithium ions, beryum ions, and divalent It is possible to use salts of metal ions that have weak adsorption power to anion exchange resins, such as nickel ions, trivalent chromium ions, and divalent cobalt ions, or salts of metal ions used as oxidizing agents and reducing agents. can.

上記混合酸溶液と組合せて、還元剤として、
Cr()イオン、Cu()イオン、V()イ
オン、V()イオン、Mo()イオン、Sn
()イオン、及びTi()イオンよりなる群か
ら選ばれた少なくとも一種以上を使用し、酸化剤
としては、V()イオン、Fe()イオン、
Ce()イオン、Tl()イオン、Mo()イ
オン及びMn()イオンよりなる群から選ばれ
た少なくとも一種以上を使用することにより、よ
り安定した分離を行なうことができた。上記溶液
条件及び上記還元剤、酸化剤を使用した場合、ウ
ラン吸着帯の移動速度によらず定常濃度を保つこ
とができた。
In combination with the above mixed acid solution, as a reducing agent,
Cr() ion, Cu() ion, V() ion, V() ion, Mo() ion, Sn
() ion, and Ti() ion, and as the oxidizing agent, V() ion, Fe() ion, Fe() ion,
By using at least one selected from the group consisting of Ce() ions, Tl() ions, Mo() ions, and Mn() ions, more stable separation could be performed. When the above solution conditions and the above reducing agent and oxidizing agent were used, a steady concentration could be maintained regardless of the movement speed of the uranium adsorption zone.

本発明に直接関与する、ウラン同位体を分離す
る為の代表的態様は3種類あり、還元プレイクス
ルー法、酸化プレイクスルー法、バンド法がそれ
である。
There are three typical methods for separating uranium isotopes that are directly related to the present invention, and these are the reduction pre-knock-through method, the oxidation pre-knock-through method, and the band method.

還元プレイクスルー法は、交換体を充填した展
開塔に酸溶液を流して交換体を調整し、引続きウ
ラニル溶液(ウラナス、ウラニル混合溶液でも
可)を供給して、ウランを交換体に吸着させた
後、還元剤溶液を供給してウランを還元しつつウ
ラン吸着帯を移動させ、ウラン吸着帯の還元界面
に近い部分にU235の同位体比の高い部分が得ら
れる。
In the reduction play-through method, an acid solution is poured into a developing column filled with an exchanger to prepare the exchanger, and then a uranyl solution (uranium or uranyl mixed solution is also acceptable) is supplied to adsorb uranium onto the exchanger. After that, a reducing agent solution is supplied to reduce the uranium while moving the uranium adsorption zone, and a portion of the uranium adsorption zone near the reduction interface is obtained with a high isotope ratio of U235.

酸化プレイクスルー法は、交換体を充填した展
開塔に酸溶液を流して交換体を調整した後、酸化
剤溶液を流して酸化剤を交換体に吸着させた後、
ウラナス溶液(ウラナス、ウラニル混合溶液でも
可)を供給して酸化反応を行なわせつつ酸化界面
を形成、移動させ、ウラン吸着帯の酸化面に近い
部分にU238の同位体比のより高い部分が得られ
る。
In the oxidation play-through method, an acid solution is poured into a developing column filled with an exchanger to prepare the exchanger, and then an oxidizing agent solution is poured to adsorb the oxidizing agent on the exchanger.
By supplying a uranium solution (a mixed solution of uranium and uranyl is also possible) and causing an oxidation reaction, an oxidation interface is formed and moved, and a portion with a higher isotope ratio of U238 is obtained in the portion of the uranium adsorption zone near the oxidation surface. It will be done.

バンド法は、交換体を充填した展開塔に酸溶液
を流して交換体を調整し、引続き酸化剤溶液を供
給し、酸化剤を交換体に吸着させた後、ウラナス
溶液(ウラナス、ウラニル混合液でも可)を供給
して酸化反応を行なわせつつウラン吸着帯を形成
し、更に、還元剤を供給して流れ方向に対して、
前方で酸化、後方で還元を行なわせつつ置換的に
展開する。ウラン吸着帯の酸化界面に近い部分に
U238の同位体存在比の高い部分が得られ、還元
界面に近い部分にU235の同位体存在比の高い部
分が得られる。
In the band method, an acid solution is poured into a developing column filled with an exchanger to prepare the exchanger, an oxidizing agent solution is subsequently supplied, the oxidizing agent is adsorbed on the exchanger, and then a uranas solution (a mixture of uranas and uranyl A uranium adsorption zone is formed while the oxidation reaction is carried out by supplying a
It expands in a substitutional manner, oxidizing at the front and reducing at the rear. In the part near the oxidation interface of the uranium adsorption zone
A portion with a high isotopic abundance ratio of U238 is obtained, and a portion with a high isotopic abundance ratio of U235 is obtained near the reduction interface.

還元プレイクスルー法又は、酸化プレイクスル
ー法、バンド法において、ウラン吸着液又は、酸
化剤溶液として使用する溶液の酸又は、塩素イオ
ン、臭素イオン、硫酸イオンの濃度は、展開剤と
して使用する溶液の濃度と異なつていても構わな
いが、バンド界面の乱れ等を減少させる為に、好
ましくは同一の濃度を使用した方が良い。
In the reduction play-through method, the oxidation play-through method, or the band method, the concentration of acid, chlorine ions, bromide ions, and sulfate ions in the solution used as the uranium adsorption solution or oxidizing agent solution is determined by the concentration of the solution used as the developing agent. Although the concentrations may be different, it is preferable to use the same concentration in order to reduce disturbances at the band interface.

本発明に使用される好ましい陰イオン交換体の
構成は、スチレン、ビニルトルエン、エチルビニ
ルベンゼンとジビニルベンゼンを主要成分として
附加共重合で合成した高分子架橋物を、クロロメ
チル化し、アミノ化したもの;クロロメチルスチ
レン、メチルエチルケトン、エポキシブタジエ
ン、アクリルアミド等の活性基を有する単量体
と、ジビニルベンゼン、トリアリルイソシアヌレ
ート等の架橋単量体を主成分とする附加共重合物
をアミノ化したもの;N―ビニルコハク酸イミ
ド、N―ビニルフタルイミド、ビニルカルバゾー
ル、ビニルイミダゾール、ビニルピリジン、ビニ
ルテトラゾール、ビニルキノリン、ジビニルピリ
ジン等の交換基になり得る窒素を有する単量体を
主成分とし、必要に応じ架橋単量体と共重合した
もの及びそれらの反応物;ポリエチレンイミン、
ヘキサメチレンジアミン等のアミンと多官能性化
合物との縮重合体、等の陰イオン交換樹脂、及
び、シリカゲル、ゼオライト等の固体表面に、ト
リブチルフオスヘイト、トリオクチルアミン等の
イオン交換可能な液体を担持させたもの等があ
る。
The composition of the preferred anion exchanger used in the present invention is one obtained by chloromethylating and aminating a crosslinked polymer synthesized by addition copolymerization using styrene, vinyltoluene, ethylvinylbenzene, and divinylbenzene as main components. Aminated addition copolymers whose main components are monomers with active groups such as chloromethylstyrene, methylethylketone, epoxybutadiene, acrylamide, and crosslinking monomers such as divinylbenzene and triallylisocyanurate; The main component is a nitrogen-containing monomer that can be used as an exchange group such as N-vinylsuccinimide, N-vinylphthalimide, vinylcarbazole, vinylimidazole, vinylpyridine, vinyltetrazole, vinylquinoline, divinylpyridine, etc., and can be crosslinked if necessary. Copolymerized with monomers and their reactants; polyethyleneimine,
Anion exchange resins such as condensation polymers of amines such as hexamethylene diamine and polyfunctional compounds, and ion exchangeable liquids such as tributyl phosphite and trioctylamine are applied to solid surfaces such as silica gel and zeolite. There are things that are supported.

本発明の実施温度としては、酸化剤、還元剤及
び無機酸の濃度によつて決まる樹脂に対する選択
性と、ウランの酸化還元速度等の条件により、10
℃から250℃の間で決定され、好ましくは80℃か
ら170℃の温度である。
The temperature at which the present invention is carried out depends on conditions such as the selectivity for the resin determined by the concentrations of the oxidizing agent, reducing agent, and inorganic acid, and the redox rate of uranium.
The temperature is determined between 250°C and 80°C, preferably 80°C and 170°C.

実施例 1 内径20mmφ、長さ1000mmの展開塔を5本、長さ
500mm及び300mmの展開塔を各々1本用意し、3方
切換バルブにより、必要に応じて、異なる展開塔
の下部と上部を接続することにより、2本以上の
展開塔を直列につなぐことができる様にした。各
展開塔にはジヤケツト及びフイルターが備わつて
おり、スチレン―ジビニルベンゼン共重合物をク
ロロメチル化後、トリメチルアミンで4級アンモ
ニウム化した陰イオン交換樹脂を、展開塔に充填
した。
Example 1 Five deployment towers with an inner diameter of 20 mmφ and a length of 1000 mm
Two or more deployment towers can be connected in series by preparing one each of 500mm and 300mm deployment towers and connecting the lower and upper parts of different deployment towers as necessary using a 3-way switching valve. I did it like that. Each developing column was equipped with a jacket and a filter, and the developing column was filled with an anion exchange resin in which a styrene-divinylbenzene copolymer was chloromethylated and then converted into quaternary ammonium with trimethylamine.

長さ1000mmの展開塔に塩酸4.0M/、塩化リ
チウム0.8M/、臭化ニツケル1.0M/、臭化
リチウム1.2M/を含む水溶液(溶液A)10
を定量ポンプで供給することにより、充填層をコ
ンデイシヨニングした。つづいて、溶液Aと同じ
液組成で0.03M/のMn()イオンを含む酸
化剤溶液を展開塔上部より供給して、下部よりの
流出液組成が、供給液組成と等しくなる迄、Mn
()イオンを陰イオン交換樹脂に吸着させた。
ひき続き、溶液Aと等しい液組成で、0.15M/
のU()イオンを含む溶液80mlを供給してウラ
ン吸着帯を形成した。その後、溶液Aと等しい液
組成で、0.3M/のCr()イオンを含む還元
剤溶液を供給して、吸着帯を置換的に展開した
(移動速度=1.5cm/分)。本実施例及び以下の実
施例で吸着に使用したウラン235(以下U235と記
す)のウラン238(以下U238と記す)に対する同
位体比は0.007252であつた。
An aqueous solution (solution A) containing 4.0 M of hydrochloric acid, 0.8 M of lithium chloride, 1.0 M of nickel bromide, and 1.2 M of lithium bromide in a developing tower with a length of 1000 mm (solution A) 10
The packed bed was conditioned by supplying it with a metering pump. Next, an oxidizing agent solution having the same liquid composition as solution A and containing 0.03M/Mn() ions was supplied from the upper part of the developing tower, and the Mn
() Ions were adsorbed onto an anion exchange resin.
Continuously, with the same liquid composition as solution A, 0.15M/
A uranium adsorption zone was formed by supplying 80 ml of a solution containing U() ions. Thereafter, a reducing agent solution having the same liquid composition as solution A and containing 0.3M/Cr() ions was supplied to develop the adsorption zone in a displacement manner (moving speed = 1.5 cm/min). The isotopic ratio of uranium-235 (hereinafter referred to as U235) to uranium-238 (hereinafter referred to as U238) used for adsorption in this example and the following examples was 0.007252.

展開に従つて流出する溶液を2.0mlずつ、分割
して採取し、酸化界面及び還元界面近傍のウラン
濃度を分光光度計により測定するとともに、各界
面近傍におけるウラン溶液を取り出し、精製した
後、質量分析機を使用して、U235のU238に対す
る同位体比を測定した。
The solution that flows out as it develops is collected in 2.0ml portions, and the uranium concentration near the oxidation and reduction interfaces is measured using a spectrophotometer.The uranium solution near each interface is taken out, purified, and the mass The isotope ratio of U235 to U238 was measured using an analyzer.

測定した同位体比は、酸化界面近傍及び還元界
面近傍で、各々、0.006941及び0.007577であつ
た。
The measured isotope ratios near the oxidation interface and near the reduction interface were 0.006941 and 0.007577, respectively.

実施例 2 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液C(塩酸4.7M/、臭
化水素酸1.7M/、塩化第1鉄1.3M/及び臭
化リチウム2.0M/を含む水溶液)を用いてコ
ンデイシヨニングを行ない、溶液Cと同じ液組成
に更に0.10M/のFe()イオンを含む酸化剤
溶液、溶液Cと等しい液組成に更に0.5M/の
U()イオンを含むウラン溶液70ml、及び溶液
Cと等しい液組成で0.5M/のMo()イオン
を含む還元剤溶液をそれぞれ使用してウラン吸着
帯を置換的に展開した(移動速度=15.3cm/
分)。
Example 2 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, conditioning was performed using solution C (an aqueous solution containing 4.7M hydrochloric acid, 1.7M hydrobromic acid, 1.3M ferrous chloride, and 2.0M lithium bromide) instead of solution A. , an oxidizing agent solution containing the same liquid composition as solution C and an additional 0.10M/Fe() ions, 70 ml of a uranium solution containing an additional 0.5M/U() ions in the same liquid composition as solution C, and an oxidizer solution equal to solution C. The uranium adsorption zone was developed in a substitutional manner using each reducing agent solution containing Mo() ions with a liquid composition of 0.5M/(movement speed = 15.3cm/
minutes).

実施例1と同様の方法で測定した同位体比は酸
化界面近傍及び還元界面近傍で、各々、0.006858
及び0.007666であつた。
The isotope ratio measured in the same manner as in Example 1 was 0.006858 near the oxidation interface and near the reduction interface, respectively.
and 0.007666.

実施例 3 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液D(塩酸4.0M/、臭
化水素酸1.9M/、塩化リチウム1.1M/、及
び臭化第1鉄1.1M/を含む水溶液)を用いて
コンデイシヨニングを行ない、溶液Dと同じ液組
成に更に0.04M/のMo()イオンを含む酸
化剤溶液、溶液Dと等しい液組成に更に0.2M/
のU()イオンを含むウラン溶液80ml、及び
溶液Dと等しい液組成で0.4M/のV()イ
オンを含む還元剤溶液をそれぞれ使用して吸着帯
を置換的に展開した(移動速度=10.4cm/分)。
Example 3 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, in place of solution A, solution D (an aqueous solution containing 4.0 M of hydrochloric acid, 1.9 M of hydrobromic acid, 1.1 M of lithium chloride, and 1.1 M of ferrous bromide) was used for conditioning. An oxidizing agent solution having the same liquid composition as solution D but containing an additional 0.04M/Mo() ions, and an oxidizing agent solution having the same liquid composition as solution D and an additional 0.2M/
The adsorption zone was developed in a displacement manner using 80 ml of a uranium solution containing U() ions of cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006822及び0.007710であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006822 and 0.007710.

実施例 4 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液E(塩酸2.1M/、臭
化水素酸0.4M/、及び臭化リチウム0.1M/
を含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Eと同じ液組成に更に0.005M/の
V()イオンを含む酸化剤溶液、溶液Eと等し
い液組成に更に0.05M/のU()イオンを含
むウラン溶液80ml、及び溶液Eと等しい液組成
で、0.1M/のCu()イオンを含む還元剤溶
液をそれぞれ用いてウラン吸着帯を置換的に展開
した(移動速度=5.7cm/分)。
Example 4 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, instead of solution A, solution E (hydrochloric acid 2.1M/, hydrobromic acid 0.4M/, and lithium bromide 0.1M/
Conditioning was carried out using an oxidizing agent solution containing the same liquid composition as solution E but additionally containing 0.005M/V() ions, and an oxidizing agent solution containing an additional 0.05M/U( ) ions and a reducing agent solution containing 0.1 M/Cu() ions with the same liquid composition as solution E, the uranium adsorption zone was developed in a displacement manner (moving speed = 5.7 cm/ minutes).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006897及び0.007622であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006897 and 0.007622.

実施例 5 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液F(塩酸2.5M/、臭
化水素酸3.0M/、及び臭化コバルト0.5M/
を含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Fと同じ液組成に更に0.03M/のTl
()イオンを含む酸化剤溶液、溶液Fと等しい
液組成に更に0.2M/のU()イオンを含む
ウラン溶液60ml、及び溶液Fと等しい液組成で、
0.2M/のSn()イオンを含む還元剤溶液を
それぞれ用いてウラン吸着帯を置換的に展開した
(移動速度=25.8cm/分)。
Example 5 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, instead of solution A, solution F (hydrochloric acid 2.5M/, hydrobromic acid 3.0M/, and cobalt bromide 0.5M/
Conditioning was carried out using an aqueous solution (containing
An oxidizing agent solution containing () ions, 60 ml of a uranium solution containing 0.2 M/U() ions in the same liquid composition as solution F, and a liquid composition equal to that of solution F.
The uranium adsorption zone was developed in a displacement manner using each reducing agent solution containing 0.2 M/Sn() ions (travel speed = 25.8 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006807及び0.007726であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006807 and 0.007726.

実施例 6 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液G(塩酸0.8M/、塩
化第1鉄1.1M/、及び臭化リチウム2.1M/
を含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Gと同じ液組成に更に0.05M/のCe
()イオンを含む酸化剤溶液、溶液Gと等しい
液組成に更に0.15M/のU()イオンを含む
ウラン溶液80ml及び溶液Gと等しい液組成で
0.3M/のCr()イオンを含む溶液をそれぞ
れ用いてウラン吸着帯を置換的に展開した(移動
速度=41.5cm/分)。
Example 6 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, instead of solution A, solution G (hydrochloric acid 0.8M/, ferrous chloride 1.1M/, and lithium bromide 2.1M/
Conditioning was performed using an aqueous solution containing 0.05 M/C of Ce to the same liquid composition as Solution G.
An oxidizing agent solution containing () ions, a liquid composition equal to that of solution G, and an additional 80 ml of a uranium solution containing 0.15M/U() ions, and a liquid composition equal to that of solution G.
The uranium adsorption zone was developed in a displacement manner using each solution containing 0.3 M/Cr() ions (travel speed = 41.5 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006780及び0.007755であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006780 and 0.007755.

実施例 7 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液H(塩酸1.2M/、塩
化リチウム2.9M/、臭化ニツケル0.8M/、
及び臭化リチウム1.8M/を含む水溶液)を用
いてコンデイシヨニングを行ない、溶液Hと同じ
液組成に更に0.07M/のFe()イオンを含む
酸化剤溶液、溶液Hと等しい液組成に更に
0.3M/のU()イオンを含むウラン溶液80
ml及び溶液Hと等しい液組成で、0.4M/のV
()イオンを含む還元剤溶液をそれぞれ用いて
ウラン吸着帯を置換的に展開した(移動速度=
34.1cm/分)。
Example 7 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, instead of solution A, use solution H (hydrochloric acid 1.2M/, lithium chloride 2.9M/, nickel bromide 0.8M/,
Conditioning was performed using an oxidizing agent solution containing the same liquid composition as solution H and an additional 0.07 M/ of Fe() ions, and a liquid composition equal to that of solution H. Furthermore
Uranium solution containing 0.3M/U() ions 80
ml and liquid composition equal to solution H, V of 0.4M/
The uranium adsorption zone was developed in a displacement manner using reducing agent solutions containing () ions (transfer rate =
34.1cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006835及び0.007696であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006835 and 0.007696.

実施例 8 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 8 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液I(塩酸1.4M/
、硫酸0.8M/、及び硫酸ニツケル0.8M/
を含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Iと同じ液組成に更に0.1M/のMn
()イオンを含む酸化剤溶液、溶液Iと等しい
液組成に更に0.2M/のU()イオンを含む
ウラン溶液80ml及び溶液Iと等しい液組成で
0.4M/のV()イオンを含む還元剤溶液を
それぞれ用いて吸着帯を置換的に展開した(移動
速度=13.4cm/分)。
However, instead of solution A, use solution I (hydrochloric acid 1.4M/
, sulfuric acid 0.8M/, and nickel sulfate 0.8M/
Conditioning was performed using an aqueous solution containing 0.1M/Mn to the same liquid composition as Solution I.
An oxidizing agent solution containing ( ) ions, a liquid composition equal to that of solution I, an additional 80 ml of a uranium solution containing 0.2 M/U () ions, and a liquid composition equal to that of solution I.
The adsorption bands were developed displacementally using each reducing agent solution containing 0.4 M/V() ions (travel speed = 13.4 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006893及び0.007626であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006893 and 0.007626.

実施例 9 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 9 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液J(塩酸4.1M/
、硫酸1.3M/、塩化リチウム2.3M/、及
び硫酸アンモニウム1.0M/を含む水溶液)を
用いてコンデイシヨニングを行ない、溶液Jと同
じ液組成に更に0.03M/のV()イオンを含
む酸化剤溶液、溶液Jと等しい液組成に更に
0.04M/のU()イオンを含むウラン溶液80
ml、及び溶液Jと等しい液組成で0.3M/のMo
()イオンを含む還元剤溶液をそれぞれ用い
て、ウラン吸着帯を置換的に展開した(移動速度
=22.3cm/分)。
However, instead of solution A, use solution J (hydrochloric acid 4.1M/
Conditioning was performed using an aqueous solution containing sulfuric acid 1.3M/, lithium chloride 2.3M/, and ammonium sulfate 1.0M/), and an oxidized solution containing the same liquid composition as solution J but further containing 0.03M/V() ions. Further, the solution has a liquid composition equal to that of solution J.
Uranium solution containing 0.04M/U() ions 80
ml, and 0.3M/Mo with liquid composition equal to solution J.
The uranium adsorption zone was developed in a displacement manner using reducing agent solutions containing ( ) ions (travel speed = 22.3 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006873及び0.007651であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006873 and 0.007651.

実施例 10 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 10 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液K(塩酸2.0M/
、硫酸0.2M/、塩化リチウム2.3M/、及
び硫酸第1鉄1.0M/を含む水溶液)を用いて
コンデイシヨニングを行ない、溶液Kと同じ液組
成に更に0.10M/のFe()イオンを含む酸化
剤溶液、溶液Kと等しい液組成で0.3M/のU
()イオンを含むウラン溶液80ml、及び溶液K
と等しい液組成に更に0.7M/のV()イオ
ンを含む還元剤溶液をそれぞれ用いて、ウラン吸
着帯を置換的に展開した(移動速度=10.7cm/
分)。
However, instead of solution A, use solution K (hydrochloric acid 2.0M/
Conditioning was carried out using an aqueous solution containing sulfuric acid (0.2M), lithium chloride (2.3M), and ferrous sulfate (1.0M), and an additional 0.10M/Fe() ions were added to the same liquid composition as solution K. An oxidizing agent solution containing 0.3 M/U at a liquid composition equal to solution K
() 80ml of uranium solution containing ions and solution K
Using a reducing agent solution containing 0.7 M/V() ions with a liquid composition equal to
minutes).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006842及び0.007689であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006842 and 0.007689.

実施例 11 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 11 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液L(塩酸1.5M/
、硫酸2.0M/、硫酸コバルト0.6M/、及
び硫酸リチウム0.3M/を含む水溶液)を用い
てコンデイシヨニングを行ない、溶液Lと同じ液
組成に更に0.02M/のTl()イオンを含む酸
化剤溶液、溶液Lと等しい液組成で、0.3M/
のU()イオンを含むウラン溶液80ml、及び溶
液Lと等しい液組成に更に0.7M/のCu()
イオンを含む還元剤溶液をそれぞれ用いて、ウラ
ン吸着帯を置換的に展開した(移動速度=8.1
cm/分)。
However, instead of solution A, use solution L (hydrochloric acid 1.5M/
Conditioning was performed using an aqueous solution containing sulfuric acid 2.0M/, cobalt sulfate 0.6M/, and lithium sulfate 0.3M/), and the solution had the same composition as solution L, but also contained 0.02M/Tl() ions. Oxidizing agent solution, liquid composition equal to solution L, 0.3M/
80 ml of uranium solution containing U() ions, and an additional 0.7 M/Cu() to the liquid composition equal to solution L.
Using each reducing agent solution containing ions, the uranium adsorption zone was developed in a displacement manner (transfer rate = 8.1
cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006925及び0.007592であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006925 and 0.007592.

実施例 12 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 12 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液M(塩酸0.8M/
、硫酸0.8M/、塩化リチウム2.2M/、及
び硫酸第1鉄0.3M/を含む水溶液)を用いて
コンデイシヨニングを行ない、溶液Mと同じ液組
成に更に0.04M/のCe()イオンを含む酸化
剤溶液、溶液Mと等しい液組成に更に0.3M/
のU()イオンを含むウラン溶液80ml、及び溶
液Mと等しい液組成で、0.5M/のCr()イ
オンを含む還元剤溶液をそれぞれ用いて、ウラン
吸着帯を置換的に展開した(移動速度=45.5cm/
分)。
However, instead of solution A, solution M (hydrochloric acid 0.8M/
Conditioning was performed using an aqueous solution containing sulfuric acid 0.8M/, lithium chloride 2.2M/, and ferrous sulfate 0.3M/, and an additional 0.04M/Ce() ion was added to the same liquid composition as solution M. An oxidizing agent solution containing 0.3M/
The uranium adsorption zone was developed in a displacement manner using 80 ml of a uranium solution containing U() ions of =45.5cm/
minutes).

実施例1と同様の方法で測定した同位体比は、酸
化界面近傍及び還元界面近傍で、各々、0.006784
及び0.007748であつた。
The isotope ratio measured in the same manner as in Example 1 was 0.006784 near the oxidation interface and near the reduction interface, respectively.
and 0.007748.

実施例 13 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 13 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液N(塩酸2.3M/
、硫酸0.8M/、及び塩化ニツケル1.2M/
を含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Nと同じ液組成に更に0.02M/の
Mo()イオンを含む酸化剤溶液、溶液Nと等
しい液組成に更に0.1M/のU()イオンを
含むウラン溶液70ml、及び溶液Nと等しい液組成
で、0.2M/のTi()イオンを含む還元剤溶
液を供給して、ウラン吸着帯を置換的に展開した
(移動速度=31.0cm/分)。
However, instead of solution A, solution N (hydrochloric acid 2.3M/
, sulfuric acid 0.8M/, and nickel chloride 1.2M/
Conditioning was performed using an aqueous solution containing
An oxidizing agent solution containing Mo() ions, 70 ml of a uranium solution containing 0.1M/U() ions with a liquid composition equal to that of solution N, and 0.2M/U() ions with a liquid composition equal to solution N. The uranium adsorption zone was developed in a displacement manner by supplying a reducing agent solution containing the uranium (travel speed = 31.0 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006829及び0.007700であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006829 and 0.007700.

実施例 14 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 14 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液P(塩酸3.6M/
、硫酸1.8M/、及び硫酸リチウム0.3M/
も含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Pと同じ液組成に更に0.01M/の
Mo()イオンを含む酸化剤溶液、溶液Pと等
しい液組成に更に0.1M/のU()イオンを
含むウラン溶液80ml及び溶液Pと等しい液組成
で、0.15M/のSn()イオンを含む還元剤溶
液をそれぞれ用いて、ウラン吸着帯を置換的に展
開した(移動速度=5.8cm/分)。
However, instead of solution A, solution P (hydrochloric acid 3.6M/
, sulfuric acid 1.8M/, and lithium sulfate 0.3M/
Conditioning was performed using an aqueous solution containing
Oxidizing agent solution containing Mo() ions, 80 ml of uranium solution containing 0.1M/U() ions with the same liquid composition as solution P, and 80ml of uranium solution containing 0.15M/Sn() ions with the same liquid composition as solution P. Using each reducing agent solution, the uranium adsorption zone was developed in a displacement manner (travel speed = 5.8 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006888及び0.007637であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006888 and 0.007637.

実施例 15 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 15 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液Q(塩酸1.0M/
、臭化水素酸0.5M/、塩化リチウム1.8M/
、及び硫酸第1鉄0.7M/を含む水溶液)を
用いてコンデイシヨニングを行ない、溶液Qと同
じ液組成に更に0.15M/のMn()イオンを
含む酸化剤溶液、溶液Qと等しい液組成に更に
0.3M/のU()イオンを含むウラン溶液80
ml、及び溶液Qと等しい液組成に更に0.7M/
のV()イオンを含む還元剤溶液をそれぞれ用
いてウラン吸着帯を置換的に展開した(移動速度
=31.0cm/分)。
However, instead of solution A, solution Q (hydrochloric acid 1.0M/
, hydrobromic acid 0.5M/, lithium chloride 1.8M/
, and an aqueous solution containing ferrous sulfate (0.7 M/), and an oxidizing agent solution containing the same liquid composition as Solution Q and an additional 0.15 M/Mn () ion, and a solution equivalent to Solution Q. Further to the composition
Uranium solution containing 0.3M/U() ions 80
ml, and a liquid composition equal to solution Q with an additional 0.7M/
The uranium adsorption zone was developed in a displacement manner using each reducing agent solution containing V() ions (travel speed = 31.0 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006760及び0.007776であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006760 and 0.007776.

実施例 16 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 16 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液R((塩酸1.0M/
、臭化水素酸2.0M/、硫酸1.3M/、臭化
ニツケル1.0M/、及び硫酸リチウム1.0M/
を含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Rと同じ液組成に更に0.05M/のFe
()イオンを含む酸化剤溶液、溶液Rと等しい
液組成に更に0.2M/のU()イオンを含む
ウラン溶液80ml、及び溶液Rと等しい液組成に更
に0.5M/のCr()イオンを含む還元剤溶液
をそれぞれ用いて、ウラン吸着帯を置換的に展開
した(移動速度=4.1cm/分)。
However, instead of solution A, solution R ((hydrochloric acid 1.0M/
, hydrobromic acid 2.0M/, sulfuric acid 1.3M/, nickel bromide 1.0M/, and lithium sulfate 1.0M/
Conditioning was carried out using an aqueous solution containing Fe (containing
An oxidizing agent solution containing () ions, 80 ml of a uranium solution containing an additional 0.2M/U() ions in a liquid composition equal to that of solution R, and an additional 0.5M/Cr() ions in a liquid composition equal to that of solution R. Using each reducing agent solution, the uranium adsorption zone was developed in a displacement manner (travel speed = 4.1 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006932及び0.007585であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006932 and 0.007585.

実施例 17 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離試験を行なつた。
Example 17 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation test was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液S(塩酸4.3M/
、臭化水素酸2.0M/、硫酸コバルト0.9M/
及び硫酸リチウム0.9M/を含む水溶液)を
用いてコンデイシヨニングを行ない、溶液Sと同
じ液組成に更に0.01M/のMo()イオンを
含む酸化剤溶液、溶液Sと等しい液組成に更に
0.2M/のU()イオンを含むウラン溶液70
ml、及び溶液Sと等しい液組成に更に0.3M/
のMo()イオンを含む還元剤溶液をそれぞれ
用いてウラン吸着帯を置換的に展開した(移動速
度=12.2cm/分)。
However, instead of solution A, solution S (hydrochloric acid 4.3M/
, hydrobromic acid 2.0M/, cobalt sulfate 0.9M/
Conditioning was performed using an oxidizing agent solution containing the same liquid composition as solution S and further containing 0.01 M/mol of Mo() ions, and an oxidizing agent solution containing the same liquid composition as solution S.
Uranium solution containing 0.2M/U() ions70
ml, and a liquid composition equal to solution S with an additional 0.3M/
The uranium adsorption zone was developed in a displacement manner using each reducing agent solution containing Mo() ions (travel speed = 12.2 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006893及び0.007629であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006893 and 0.007629.

実施例 18 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 18 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液T(塩酸0.5M/
、臭化水素酸0.4M/、硫酸1.5M/、塩化
第1鉄0.4M/、及び硫酸リチウム0.8M/を
含む水溶液)を用いてコンデイシヨニングを行な
い、溶液Tと同じ液組成に更に0.04M/のCe
()イオンを含む酸化剤溶液、溶液Tと等しい
液組成に更に0.2M/のU()イオンを含む
ウラン溶液80ml、及び溶液Tと等しく液組成に更
に0.4M/のCu()イオンを含む還元剤溶液
をそれぞれ用いて、ウラン吸着帯を置換的に展開
した(移動速度=17.1cm/分)。
However, instead of solution A, solution T (hydrochloric acid 0.5M/
, hydrobromic acid 0.4M/, sulfuric acid 1.5M/, ferrous chloride 0.4M/, and lithium sulfate 0.8M/). Ce of 0.04M/
An oxidizing agent solution containing () ions, 80 ml of a uranium solution containing an additional 0.2M/U() ions in a liquid composition equal to that of solution T, and an additional 0.4M/Cu() ions in a liquid composition equal to that of solution T. Using each reducing agent solution, the uranium adsorption zone was developed in a displacement manner (travel speed = 17.1 cm/min).

実施例1と同様の方法により測定した同位体比
は、酸化界面近傍及び還元界面近傍で、各々、
0.006924及び0.007599であつた。
The isotope ratios measured by the same method as in Example 1 were as follows near the oxidation interface and near the reduction interface, respectively:
They were 0.006924 and 0.007599.

実施例 19 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 19 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液X(塩酸0.9M/
、塩化ニツケル0.8M/、臭化リチウム
0.1M/、及び硫酸第1鉄1.3M/を含む水溶
液)を用いてコンデイシヨニングを行ない、溶液
Xと同じ液組成に更に0.01M/のTl()イオ
ンを含む酸化剤溶液、溶液Xと等しい液組成に更
に0.3M/のU()イオンを含むウラン溶液
70ml、及び溶液Xと等しい液組成に更に0.3M/
のV()イオンを含む還元剤溶液をそれぞれ
用いて、ウラン吸着帯を置換的に展開した(移動
速度=25.2cm/分)。
However, instead of solution A, solution X (hydrochloric acid 0.9M/
, nickel chloride 0.8M/, lithium bromide
Conditioning was performed using an oxidizing agent solution containing the same liquid composition as solution X and an additional 0.01 M/ of Tl( A uranium solution containing an additional 0.3M/U() ions with a liquid composition equal to
70 ml, and an additional 0.3 M/ml to the same liquid composition as solution
Using reducing agent solutions containing V() ions, the uranium adsorption zone was developed in a displacement manner (travel speed = 25.2 cm/min).

実施例1と同様の方法により測定した同位体比
は、酸化界面近傍及び還元界面近傍で、各々、
0.006784及び0.007748であつた。
The isotope ratios measured by the same method as in Example 1 were as follows near the oxidation interface and near the reduction interface, respectively:
They were 0.006784 and 0.007748.

実施例 20 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 20 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液Y(塩酸1.5M/
、臭化水素酸1.5M/、硫酸0.3M/、塩化
リチウム1.5M/、及び硫酸ニツケル1.5M/
を含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Yと同じ液組成に更に0.01M/のFe
()イオンを含む酸化剤溶液、溶液Yと等しい
液組成に更に0.05M/のU()イオンを含む
ウラン溶液80ml、及び溶液Yと等しい液組成に更
に0.1M/のTi()イオンを含む還元剤溶液
をそれぞれ用いて、ウラン吸着帯を置換的に展開
した(移動速度=52.5cm/分)。
However, instead of solution A, solution Y (hydrochloric acid 1.5M/
, hydrobromic acid 1.5M/, sulfuric acid 0.3M/, lithium chloride 1.5M/, and nickel sulfate 1.5M/
Conditioning was performed using an aqueous solution containing
An oxidizing agent solution containing () ions, 80 ml of a uranium solution containing an additional 0.05M/U() ions in a liquid composition equal to that of solution Y, and an additional 0.1M/U() ions in a liquid composition equal to that of solution Y. Using each reducing agent solution, the uranium adsorption zone was developed in a displacement manner (travel speed = 52.5 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006741及び0.007800であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006741 and 0.007800.

実施例 21 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Example 21 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに溶液Z(塩酸3.6M/
、臭化水素酸1.0M/、硫酸2.0M/、臭化
コバルト0.5M/、及び硫酸リチウム0.3M/
を含む水溶液)を用いてコンデイシヨニングを行
ない、溶液Zと同じ液組成に更に0.08M/のV
()イオンを含む酸化剤溶液、溶液Zと等しい
液組成に更に0.1M/のU()イオンを含む
ウラン溶液70ml、及び溶液Zと等しい液組成に更
に0.2M/のSn()イオンを含む還元剤溶液
をそれぞれ用いて、ウラン吸着帯を置換的に展開
した(移動速度=8.8cm/分)。
However, instead of solution A, solution Z (hydrochloric acid 3.6M/
, hydrobromic acid 1.0M/, sulfuric acid 2.0M/, cobalt bromide 0.5M/, and lithium sulfate 0.3M/
Conditioning was performed using an aqueous solution containing
() ion, 70 ml of uranium solution containing an additional 0.1M/U() ion in a liquid composition equal to that of solution Z, and an additional 0.2M/Sn() ion in a liquid composition equal to that of solution Z. Using each reducing agent solution, the uranium adsorption zone was developed in a displacement manner (travel speed = 8.8 cm/min).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006950及び0.007563であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006950 and 0.007563.

比較例 1 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Comparative Example 1 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

塩酸4.0M/、及び塩化リチウム0.8M/を
含む水溶液(溶液B1)10を定量ポンプにより
供給することにより、充填層をコンデイシヨニン
グした。つづいて、溶液B1と同じ液組成で
0.03M/のFe()イオンを含む酸化剤溶液を
展開塔上部より供給して、下部よりの流出液組成
が、供給液組成と等しくなる迄、Fe()イオ
ンを陰イオン交換樹脂に吸着させた。ひきつづ
き、溶液B1と等しい液組成で、0.15M/のU
()イオンを含むウラン溶液80mlを供給して、
ウラン吸着帯を形成した。その後、溶液B1と等
しい液組成で、0.3M/のCr()イオンを含
む還元剤溶液を供給して、ウラン吸着帯を置換的
に展開した(移動速度=0.3cm/分)。
The packed bed was conditioned by supplying 10 times of an aqueous solution (solution B 1 ) containing 4.0 M of hydrochloric acid and 0.8 M of lithium chloride using a metering pump. Next, with the same liquid composition as solution B 1 ,
An oxidizing agent solution containing 0.03 M/Fe() ions is supplied from the top of the developing column, and Fe() ions are adsorbed onto the anion exchange resin until the composition of the effluent from the bottom becomes equal to the composition of the feed solution. Ta. Continuing, solution B with a liquid composition equal to 1 and 0.15M/U
() Supply 80ml of uranium solution containing ions,
A uranium adsorption zone was formed. Thereafter, a reducing agent solution containing 0.3 M/Cr() ions with the same liquid composition as Solution B 1 was supplied to expand the uranium adsorption zone in a displacement manner (moving speed = 0.3 cm/min).

実施例1と同一の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.007032及び0.007474であつた。
The isotope ratio measured by the same method as Example 1 is:
Near the oxidation interface and near the reduction interface, respectively,
They were 0.007032 and 0.007474.

比較例 2 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液B2(塩酸2.5M/、塩
化リチウム2.8M/過塩素酸1.0M/を含む水
溶液)を用いてコンデイシヨニングを行ない、溶
液B2と同じ液組成に更に0.03M/のMn()
イオンを含む酸化剤溶液、溶液B2と等しい液組
成に更に0.15M/のU()イオンを含むウラ
ン溶液80ml、及び溶液B2と等しい液組成に更に
0.3M/のCr()イオンを含む還元剤溶液を
それぞれ用いて、ウラン吸着帯を置換的に展開し
た(移動速度=1.5cm/分)。
Comparative Example 2 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, instead of solution A, conditioning was performed using solution B 2 (an aqueous solution containing 2.5M of hydrochloric acid/2.8M of lithium chloride/1.0M of perchloric acid) to obtain the same liquid composition as solution B 2 . 0.03M/Mn()
An oxidizing agent solution containing ions, a solution B with a liquid composition equal to 2 , and an additional 80 ml of a uranium solution containing 0.15M/U() ions, and a solution B with a liquid composition equal to 2 .
Using each reducing agent solution containing 0.3 M/Cr() ions, the uranium adsorption zone was developed in a displacement manner (travel speed = 1.5 cm/min).

実施例1と同一の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.007001及び0.007511であつた。
The isotope ratio measured by the same method as Example 1 is:
Near the oxidation interface and near the reduction interface, respectively,
They were 0.007001 and 0.007511.

比較例 3 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液B3(塩酸2.5M/、塩
化リチウム2.8M/、硝酸1.3M/を含む水溶
液)を用いてコンデイシヨニングを行ない、溶液
B2と同じ液組成に更に0.05M/のFe()イオ
ンを含む酸化剤溶液、溶液B3と等しい液組成に
更に0.15M/のU()イオンを含むウラン溶
液80ml、及び溶液B3と等しい液組成に更に
0.5M/のCr()イオンを含む還元剤溶液を
それぞれ用いて、ウラン吸着帯を置換的に展開し
た(移動速度=4.2cm/分)。
Comparative Example 3 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, instead of solution A, conditioning was performed using solution B 3 (an aqueous solution containing hydrochloric acid 2.5M/, lithium chloride 2.8M/, and nitric acid 1.3M/).
An oxidizing agent solution with the same liquid composition as B 2 and additionally containing 0.05 M/Fe() ions, 80 ml of a uranium solution containing an additional 0.15 M// U() ions in the same liquid composition as Solution B 3 , and Solution B 3 . Further to equal liquid composition
Using each reducing agent solution containing 0.5 M/Cr() ions, the uranium adsorption zone was developed in a displacement manner (travel speed = 4.2 cm/min).

実施例1と同一の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006989及び0.007531であつた。
The isotope ratio measured by the same method as Example 1 is:
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006989 and 0.007531.

比較例 4 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。但
し、溶液Aの代りに溶液B4(過塩素酸2.1M/
、臭化水素酸0.4M/、臭化リチウム1.8M/
を含む水溶液)を用いてコンデイシヨニングを
行ない、溶液B2と同じ液組成に更に0.05M/の
Ce()イオンを含む酸化剤溶液、溶液B4と等
しい液組成に更に0.15M/のU()イオンを
含むウラン溶液80ml、及び溶液B4と等しい液組
成に更に0.3M/のCr()イオンを含む還元
剤溶液をそれぞれ用いて、ウラン吸着帯を置換的
に展開した(移動速度41.0cm/分)。
Comparative Example 4 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time. However, instead of solution A, solution B 4 (perchloric acid 2.1M/
, hydrobromic acid 0.4M/, lithium bromide 1.8M/
Conditioning was carried out using an aqueous solution containing
Oxidizing agent solution containing Ce() ions, solution B 80 ml of uranium solution containing an additional 0.15 M/U() ions in a liquid composition equal to 4 , and solution B 80 ml of a uranium solution containing an additional 0.3 M/Cr() ions in a liquid composition equal to 4 . Using each reducing agent solution containing ions, the uranium adsorption zone was expanded in a displacement manner (travel speed 41.0 cm/min).

実施例1と同一の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.006951及び0.007571であつた。
The isotope ratio measured by the same method as Example 1 is:
Near the oxidation interface and near the reduction interface, respectively,
They were 0.006951 and 0.007571.

比較例 5 実施例1で述べた装置及び実施例1と同一の陰
イオン交換樹脂を使用し、実施例1と同様な操作
により、同一展開時間の分離実験を行なつた。
Comparative Example 5 Using the apparatus described in Example 1 and the same anion exchange resin as in Example 1, a separation experiment was conducted in the same manner as in Example 1 and for the same development time.

但し、溶液Aの代りに実施例16と同一の溶液R
(塩酸1.0M/、臭化水素酸2.0M/、硫酸
1.3M/、臭化ニツケル1.0M/、及び硫酸リ
チウム1.0M/を含む水溶液)を用いてコンデ
イシヨニングを行ない、溶液Rと同じ液組成に更
に0.05M/のFe()イオンを含む酸化剤溶
液、溶液Rと等しい液組成に更に0.2M/のU
()イオンを含むウラン溶液80ml、及び溶液R
と等しい液組成に更に0.5M/のCr()イオ
ンを含む還元剤溶液をそれぞれ用いて、ウラン吸
着帯の置換的に展開した(移動速度=0.7cm/
分)。
However, instead of solution A, the same solution R as in Example 16 was used.
(Hydrochloric acid 1.0M/, hydrobromic acid 2.0M/, sulfuric acid
Conditioning was performed using an aqueous solution containing 1.3M/, nickel bromide 1.0M/, and lithium sulfate 1.0M/), and an oxidized solution containing 0.05M/Fe() ions with the same liquid composition as solution R. agent solution, liquid composition equal to solution R and additionally 0.2M/U
() 80ml of uranium solution containing ions and solution R
Using a reducing agent solution containing 0.5M/Cr() ions with a liquid composition equal to
minutes).

実施例1と同様の方法で測定した同位体比は、
酸化界面近傍及び還元界面近傍で、各々、
0.007007及び0.007502であつた。
The isotope ratio measured in the same manner as in Example 1 is
Near the oxidation interface and near the reduction interface, respectively,
They were 0.007007 and 0.007502.

Claims (1)

【特許請求の範囲】 1 陰イオン交換体の存する系内に、 (A) ウラン吸着帯域とこれに隣接した還元剤帯域
との間:及び/又は、 (B) ウラン吸着帯域とこれに隣接した酸化剤帯域
との間: に界面を形成し、(A)の界面における還元及び/又
は(B)の界面における酸化を行ないつつ同位体を分
離するウラン同位体分離方法において、1.0cm/
分以上の速度で、ウラン吸着帯を移動させ、か
つ、ウラン同位体分離に使用する溶液として、塩
酸と、臭化水素酸及び/又は硫酸との混合酸を含
む溶液を使用することを特徴とするウラン同位体
分離方法。 2 ウラン同位体分離に使用する溶液中の水素イ
オン濃度が、0.1M/〜10M/、全塩素イオ
ン濃度が、0.1M/〜12M/、全臭素イオン
濃度が0.01M/〜10M/、全硫酸イオン濃度
が0.01〜10M/の条件下においてウラン同位体
を分離する特許請求の範囲第1項記載の方法。 3 使用する還元剤がCr()イオン、Cu
()イオン、V()イオン、V()イオ
ン、Mo()イオン、Sn()イオン及びT
()イオンよりなる群から選ばれた少なくとも
一種以上であり、及び/又は使用する酸化剤が、
V()イオン、Fe()イオン、Ce()イ
オン、Tl()イオン、Mo()イオン、及び
Mn()イオンよりなる群から選ばれた少なく
とも一種以上である特許請求の範囲第1項又は第
2項に記載の方法。
[Claims] 1. In a system in which an anion exchanger exists, (A) between a uranium adsorption zone and an adjacent reducing agent zone; and/or (B) between a uranium adsorption zone and an adjacent reducing agent zone; In a uranium isotope separation method that forms an interface between the oxidizing agent zone and performs reduction at the interface (A) and/or oxidation at the interface (B), the isotope is separated.
The uranium adsorption zone is moved at a speed of 1 minute or more, and a solution containing a mixed acid of hydrochloric acid, hydrobromic acid and/or sulfuric acid is used as the solution used for uranium isotope separation. A method for separating uranium isotopes. 2 Hydrogen ion concentration in the solution used for uranium isotope separation is 0.1M/~10M/, total chlorine ion concentration is 0.1M/~12M/, total bromide ion concentration is 0.01M/~10M/, total sulfuric acid The method according to claim 1, wherein uranium isotopes are separated under conditions where the ion concentration is 0.01 to 10M/. 3 The reducing agent used is Cr() ion, Cu
() ion, V () ion, V () ion, Mo () ion, Sn () ion and T
() is at least one selected from the group consisting of ions, and/or the oxidizing agent used is
V() ion, Fe() ion, Ce() ion, Tl() ion, Mo() ion, and
The method according to claim 1 or 2, wherein the ion is at least one selected from the group consisting of Mn() ions.
JP7806979A 1979-06-22 1979-06-22 New separation of isotope Granted JPS562834A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP7806979A JPS562834A (en) 1979-06-22 1979-06-22 New separation of isotope
CA000353377A CA1141169A (en) 1979-06-22 1980-06-04 Erichment of uranium isotopes
US06/156,727 US4368175A (en) 1979-06-22 1980-06-05 Ion exchange enrichment of uranium isotopes
DE3022237A DE3022237C2 (en) 1979-06-22 1980-06-13 Process for the enrichment of uranium isotopes
NL8003506A NL8003506A (en) 1979-06-22 1980-06-17 METHOD FOR ENRICHING A URANIUM ISOTOPE IN A MIXTURE OF URANIUM ISOTOPES.
BE0/201118A BE883936A (en) 1979-06-22 1980-06-20 METHOD FOR ENRICHING AN ISOTOPE IN A MIXTURE OF URANIUM ISOTOPES
FR8013758A FR2459676A1 (en) 1979-06-22 1980-06-20 PROCESS FOR ENRICHING AN ISOTOPE IN A MIXTURE OF URANIUM ISOTOPES
AU59457/80A AU534784B2 (en) 1979-06-22 1980-06-20 Enrichment of uranium isotopes
GB8020225A GB2053175B (en) 1979-06-22 1980-06-20 Enrichment of uranium isotopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7806979A JPS562834A (en) 1979-06-22 1979-06-22 New separation of isotope

Publications (2)

Publication Number Publication Date
JPS562834A JPS562834A (en) 1981-01-13
JPS6130815B2 true JPS6130815B2 (en) 1986-07-16

Family

ID=13651550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7806979A Granted JPS562834A (en) 1979-06-22 1979-06-22 New separation of isotope

Country Status (9)

Country Link
US (1) US4368175A (en)
JP (1) JPS562834A (en)
AU (1) AU534784B2 (en)
BE (1) BE883936A (en)
CA (1) CA1141169A (en)
DE (1) DE3022237C2 (en)
FR (1) FR2459676A1 (en)
GB (1) GB2053175B (en)
NL (1) NL8003506A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160903U (en) * 1981-04-03 1982-10-08
AU547079B2 (en) * 1981-08-28 1985-10-03 Ceske Vysoke Uceni Technicke Isotope separation process
JPS60118224A (en) * 1983-11-30 1985-06-25 Asahi Chem Ind Co Ltd New chromatography recirculating method
US5024749A (en) * 1990-04-20 1991-06-18 Westinghouse Electric Corp. System and method for continuous separation of isotopes
US5098678A (en) * 1990-04-27 1992-03-24 Westinghouse Electric Corp. Chromatographic separation of zirconium isotopes
US5130001A (en) * 1990-12-03 1992-07-14 Westinghouse Electric Corp. Uranium isotope separation by continuous anion exchange chromatography
KR101039595B1 (en) * 2010-11-26 2011-06-09 한국지질자원연구원 Uranium ion exchange asortion method using ultrasonic wave

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953569A (en) * 1971-07-22 1976-04-27 Maomi Seko Concentration of uranium 235 in mixtures with uranium 238 using ion exchange resins
US4112045A (en) * 1972-10-05 1978-09-05 Asahi Kasei Kogyo Kabushiki Kaisha Separation of uranium isotopes using anion exchangers
JPS5122596B2 (en) * 1972-10-05 1976-07-10
JPS51143198A (en) * 1975-06-03 1976-12-09 Asahi Chem Ind Co Ltd New separation method
JPS51144896A (en) * 1975-06-06 1976-12-13 Asahi Chem Ind Co Ltd New separation process
JPS5232498A (en) * 1975-09-06 1977-03-11 Asahi Chem Ind Co Ltd Uranium isotope separating method making use of anion exchanger
CA1091034A (en) * 1976-05-28 1980-12-09 Norito Ogawa Continuous separation of uranium isotopes
US4049769A (en) * 1976-08-04 1977-09-20 Asahi Kasei Kogyo Kabushiki Kaisha Separation of uranium isotopes by accelerated isotope exchange reactions

Also Published As

Publication number Publication date
AU5945780A (en) 1981-01-08
BE883936A (en) 1980-10-16
DE3022237A1 (en) 1981-01-08
DE3022237C2 (en) 1985-08-01
FR2459676A1 (en) 1981-01-16
AU534784B2 (en) 1984-02-16
NL8003506A (en) 1980-12-24
US4368175A (en) 1983-01-11
JPS562834A (en) 1981-01-13
CA1141169A (en) 1983-02-15
GB2053175A (en) 1981-02-04
GB2053175B (en) 1983-01-19
FR2459676B1 (en) 1983-01-28

Similar Documents

Publication Publication Date Title
Ramana et al. Removing selenium (IV) and arsenic (V) oxyanions with tailored chelating polymers
Hatch et al. Preparation and use of snake-cage polyelectrolytes
Egawa et al. Preparation of macroreticular chelating resins containing dihydroxyphosphino and/or phosphono groups and their adsorption ability for uranium
Gjerde et al. Effect of capacity on the behaviour of anion-exchange resins
JPS6130815B2 (en)
US4112045A (en) Separation of uranium isotopes using anion exchangers
Gorshkov et al. Selectivity of phenol–formaldehyde resins and separation of rare alkali metals
Kressman Ion exchange separations based upon ionic size
US5624567A (en) Process for removing iodine/iodide from aqueous solutions
EP0117315A1 (en) Method for removing cesium from an aqueous liquid, method for purifying the reactor coolant in boiling water and pressurized water reactors and a mixed ion exchanged resin bed, useful in said purification
JPH0550329B2 (en)
US4150205A (en) Composite ion exchange resins having low residual amounts of quaternary ammonium cation
US4803057A (en) Continuous chromatographic separation of uranium isotopes
JPS60153940A (en) Adsorbent of dissolved fluorine ion
US3101250A (en) Process for sorption of bromide ion on anion exchange resins
US4154801A (en) Process for purifying alkali metal hydroxide or carbonate solutions
Kawabata et al. Removal and recovery of organic pollutants from aquatic environment. V. Crosslinked poly (hydroxystyrene) as a polymeric adsorbent for removal and recovery of. EPSILON.-caprolactam from aqueous solution.
JPS6032488B2 (en) Isotope separation method under new conditions
JPS5818133B2 (en) Antei Shitadoui Taibun Rihouhou
Matsusaki et al. Selectivity of anion exchange resin modified with anionic polyelectrolyte
JP2800043B2 (en) Purification of impure aqueous hydrogen peroxide solution
JP3155299B2 (en) Anion exchanger
EP1064230B1 (en) Use of tetraphenylborate for extraction of ammonium ions and amines from water
Reynolds et al. Cation exchange contribution to the retention of specific quaternary ammonium compounds in reversed-phase high-performance liquid chromatography
Ooi et al. ION-EXCHANGE EQUILIBRIA OF ALKALINE EARTH METALIONS/HYDROGEN IONS ON TIN (IV) ANTIMONATE