JPS6130545A - Hydrogenation of unsaturated carbonyl compound - Google Patents
Hydrogenation of unsaturated carbonyl compoundInfo
- Publication number
- JPS6130545A JPS6130545A JP59150216A JP15021684A JPS6130545A JP S6130545 A JPS6130545 A JP S6130545A JP 59150216 A JP59150216 A JP 59150216A JP 15021684 A JP15021684 A JP 15021684A JP S6130545 A JPS6130545 A JP S6130545A
- Authority
- JP
- Japan
- Prior art keywords
- palladium
- catalyst
- alkali metal
- carbonyl compound
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001728 carbonyl compounds Chemical class 0.000 title claims abstract description 27
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000003054 catalyst Substances 0.000 claims abstract description 54
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 35
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 21
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 18
- 239000007791 liquid phase Substances 0.000 claims abstract description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 20
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- SHOJXDKTYKFBRD-UHFFFAOYSA-N 4-Methyl-3-penten-2-one, 9CI Chemical compound CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 abstract description 9
- -1 unsaturated carboxyl compound Chemical class 0.000 abstract description 9
- 239000012071 phase Substances 0.000 abstract description 4
- 150000002940 palladium Chemical class 0.000 abstract description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 abstract description 2
- 150000002941 palladium compounds Chemical class 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 239000003513 alkali Substances 0.000 description 12
- 239000011734 sodium Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 6
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- JYVLIDXNZAXMDK-UHFFFAOYSA-N 2-pentanol Substances CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001420 photoelectron spectroscopy Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102220486157 Alkaline ceramidase 1_K80A_mutation Human genes 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000283986 Lepus Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohex-2-enone Chemical compound O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- RYPKRALMXUUNKS-UHFFFAOYSA-N hex-2-ene Chemical compound CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は不飽和カルボニル化合物を水素化して選択的に
飽和カルボニル化合物を得る方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for selectively obtaining a saturated carbonyl compound by hydrogenating an unsaturated carbonyl compound.
オレフィン、アセチレン化合物等の炭素−炭素多重結合
を水素化して不飽和度の低い化合物に変換する反応紘工
業的にも重要な反応であシ、これまでにも数多くの研究
がなされてきた。これ等一群の反応に有効な触媒として
多くの金属、酸化物、硫化物等が提案されており、白金
、ロジウム、パラジウム、ルテニウム、等の貴金属触媒
、ニッケル、コバルト、銅等を主要活性成分として含有
する触媒系が活性も顕著に高く、広汎に利用されている
。そして1分子中に炭素−炭素多重結合以外に戻素−酸
素不飽和結合、特にカルボニル基を有する化合物(アル
デヒド、ケトン類ン中の炭素−炭素不飽和結合のみを選
択的に水素化して飽和カルボニル化合物を製造する場合
には上記した活性成分の中でも%にパラジウムが有効で
あることがよく知られている。This is a reaction that hydrogenates carbon-carbon multiple bonds in olefins, acetylene compounds, etc. and converts them into compounds with a low degree of unsaturation.This reaction is also important from an industrial perspective, and numerous studies have been conducted to date. Many metals, oxides, sulfides, etc. have been proposed as effective catalysts for this group of reactions, and noble metal catalysts such as platinum, rhodium, palladium, ruthenium, nickel, cobalt, copper, etc. are used as main active ingredients. The catalyst system it contains has extremely high activity and is widely used. In addition to carbon-carbon multiple bonds, compounds that have a return element-oxygen unsaturated bond, especially a carbonyl group, in one molecule (aldehydes, ketones, etc., are selectively hydrogenated only on the carbon-carbon unsaturated bonds to form saturated carbonyl groups. It is well known that palladium is particularly effective among the above-mentioned active ingredients when producing compounds.
例えは本発明者らによる常圧反応での各種貴金属触媒(
白金、ルテニウム及びパラジウム)による同量のt−メ
チル−3−ペンテン−!−オンとび一メチルーλ−ペン
タノンとの水素吸収速度の測定結呆は表−/に示すよう
にパラジウムの炭素−炭素不飽和結合の水素化に対する
選択性の特徴を示している。For example, various noble metal catalysts (
platinum, ruthenium and palladium) in equal amounts of t-methyl-3-pentene-! The results of measuring the hydrogen absorption rate with -one and one methyl-λ-pentanone show the selectivity characteristics of palladium for the hydrogenation of carbon-carbon unsaturated bonds, as shown in Table 1.
表−/ 貴金属触媒による水素吸IIY、速度(液相懸
濁床、常圧、ざ0℃)
また、パラジウムのカルボニル結合に対する水素化能力
の低さn Choi Oungbom、 Kazunり
)’1Tanakaらによっても報告されている( B
ull。Table: Hydrogen absorption by noble metal catalyst IIY, rate (liquid phase suspended bed, normal pressure, temperature 0°C) Also, the low hydrogenation ability of palladium for carbonyl bonds was also reported by Tanaka et al. It has been reported (B
ull.
Ohem、 Sac、Japan sr 、 、227
j (/ FJj ) )。Ohem, Sac, Japan sr, , 227
j (/FJj)).
更に、[反応別実用触媒」(化学工業社刊、多wI’o
]公雄監修、昭和グj年)/ffグ頁には、5%Pd/
活性炭触媒を用いて亭−メチルーコーペンタノンを常温
、常圧で各種溶媒中で水素化する場合に、水、メタノー
ル、酢酸メチル及び0.3 N He!4中では反応が
進行せず、θ、jN−NaOH中で、徐々に≠−メチル
ー2−ペンタノールへの水添が進行することが記載され
ている。Furthermore, [Practical Catalysts by Reaction] (published by Kagaku Kogyosha, many wI'o
] Supervised by Kimio, Showa Guj)/ffg page contains 5%Pd/
When tei-methyl-copentanone is hydrogenated in various solvents at room temperature and pressure using an activated carbon catalyst, water, methanol, methyl acetate and 0.3 N He! It is described that the reaction does not proceed in 4, but hydrogenation to ≠-methyl-2-pentanol gradually proceeds in θ,jN-NaOH.
即ち、溶液中のアルカリは目的生成物である飽和カルボ
ニル化合物への選択車の低下をもたらす。また、滑相水
素化反応では溶媒により反応性が影響を受ける。That is, the alkali in the solution lowers the selectivity to the desired product, the saturated carbonyl compound. Furthermore, in a smooth-phase hydrogenation reaction, the reactivity is affected by the solvent.
従って炭素−炭素不飽和結合の水素化により不飽和カル
ボニル化合物から飽和カルボニル化合物を製造する場合
にはパラジウムが最も有効な触媒成分であシ、白金、ル
テニウムは更にカルボニル基を水素化し、アルコール(
≠−メチルー2−ペンタノール)にまで水素化を進行さ
せてしまうため好ましくない。Therefore, when producing a saturated carbonyl compound from an unsaturated carbonyl compound by hydrogenating a carbon-carbon unsaturated bond, palladium is the most effective catalyst component, and platinum and ruthenium can further hydrogenate the carbonyl group, and alcohol (
This is not preferable because hydrogenation proceeds to ≠-methyl-2-pentanol).
USP 3,734.コA7は活性炭に担持されたノく
ラジウム触媒の製造法として、粉状活性炭担体スラリー
ヲ含む可溶性パラジウム塩水溶液に塩基性物質を加えて
pHを/、2以上にしてパラジウムを水酸化物の形で沈
着させ次いで幾1元する方法を提案している。この際塩
基性物少としてアルカリ又はアルカリ土類の水酸化物、
好ましくはLl、Na%に、 Ba%Osの水酸化物の
s −s 。USP 3,734. Core A7 is a method for producing a radium catalyst supported on activated carbon, in which a basic substance is added to an aqueous solution of soluble palladium salt containing a powdered activated carbon carrier slurry to adjust the pH to 2 or more and palladium is added in the form of hydroxide. He proposes a method of depositing and then applying several layers. In this case, as a basic substance, an alkali or alkaline earth hydroxide,
Preferably Ll, Na%, Ba%Os hydroxide s-s.
チ水溶液を使用するのが良く、炭酸塩、重炭酸塩の使用
はpHがり〜ioまでしか高くならないので不利である
としている。次いで、水性媒体中で蕪元後、濾過、洗滌
、転線により触媒を単離している。そしてこの繭製法に
より水素化触媒としての活性が増大すると記載されてい
る。It is preferable to use an aqueous solution of water, and the use of carbonates and bicarbonates is disadvantageous because the pH increases only up to io. The catalyst is then boiled in an aqueous medium, and then isolated by filtration, washing, and diversion. It is also stated that this cocoon production method increases the activity as a hydrogenation catalyst.
また、USF 3.l’0弘、772れ、USF 3,
736,246と同様に、酸性のパラジウム塊水溶赦中
の炭素担体スラリーをよシ塩基性の条件(pH3,0〜
4.0)で還元し分離、洗滌することによる硫黄に対す
る剛性の大きい担持パラジウム触媒の製造法について報
告している。ここで使用される塩基性化合物はアルカリ
又はアルカリ土類金属の水酸化物、水酸化アンモニウム
及び第四級アンモニウム化合物、アルカリ金属の炭酸塩
、重炭酸塩等であり、炭酸ナトリウムの使用が特に好適
であるとしている。Also, USF 3. l'0hiro, 772re, USF 3,
736,246, the carbon carrier slurry in acidic palladium mass aqueous solution was prepared under very basic conditions (pH 3.0~
4.0), a method for producing a supported palladium catalyst with high rigidity against sulfur by reduction, separation, and washing is reported. The basic compounds used here include alkali or alkaline earth metal hydroxides, ammonium hydroxide and quaternary ammonium compounds, alkali metal carbonates and bicarbonates, and sodium carbonate is particularly preferred. It is said that it is.
これらの触媒において、アルカリは濾過、洗滌の過程で
分離除去されるので触媒中には殆ど残留し會いのが通例
であるが、アルカリ含有水溶液で洗滌する場合、或いは
洗滌が不十分である場合等にはアルカリの一部が残留す
る可能性が考えられる。しかしながら、ξれらの特許明
細喪中にはパラジウム触媒の一般的な水素化活性または
硫黄に対する耐性の向上について記・載されているだけ
であシ、オレフィン性不飽和カルボニル化合物の水素化
における飽和カルボニル化合物への選択性を高めること
については何ら示唆するものではない。In these catalysts, the alkali is separated and removed during the filtration and washing process, so it is normal for most of it to remain in the catalyst, but if the alkali is washed with an aqueous alkali solution, or if the washing is insufficient There is a possibility that some alkali may remain in the materials. However, their patent specifications only describe the general hydrogenation activity of palladium catalysts or the improvement of resistance to sulfur. There is no suggestion of increasing selectivity to the compound.
上記したパラジウム触媒による炭素−炭素不飽和結合に
対する選択的水素化の改良については、従来からいくつ
かの提案があった。しかしながら、いずれも大量の溶媒
全使用したり、アルコールのような過剰水素化物がなお
かなり副生ずるといった欠点があシ満足のいくものでは
なかった。例えば前記「反応別宴用触媒」第2章(第1
// 〜331頁)によると、/、3 % Pd/アル
ミナ触媒を用いたメシチルオキシドの水素化を200℃
で行ないメチルイソブチルケトンを27%の収率で得た
とされているが、このような収率でit、まだ精製にあ
たって不純物除去のための精留塔還流比を高くとる必要
がある等の不都合があった。There have been several proposals for improving the selective hydrogenation of carbon-carbon unsaturated bonds using the palladium catalyst described above. However, none of these methods were satisfactory due to the disadvantages that a large amount of solvent was used and excessive hydrides such as alcohol were produced as by-products. For example, Chapter 2 (Chapter 1) of “Catalysts for Reactions”
//~331 pages), the hydrogenation of mesityl oxide using a 3% Pd/alumina catalyst was carried out at 200 °C.
It is said that methyl isobutyl ketone was obtained with a yield of 27% by this process, but even with such a yield, there are still disadvantages such as the need to increase the reflux ratio of the rectification column to remove impurities during purification. there were.
また、特公昭≠7−15.ざOり号には、メシチルオキ
シドを水添してメチルインブチルケトンを選択的に合成
する方法としてアルカリ金属酢酸塩を付着させたパラジ
ウム−炭素触媒の使用が開示されている。この触媒は予
め調製したパラジウム−炭素触媒に可溶性のアルカリ金
属酢酸塩を溶液として含浸付着させる方法で製造されて
いる。反応は気相で行なわれ、転化率タタチ、メチルイ
ソブチルケトン選択率タタ、r%(実施例−l)、又は
選択率り7.7チ(実施例−2)が得られているうしか
しながらこれでも、まだ転化率及び迷枦】ソ(工業的に
は原料及び不純物の濃度がともに/ 000 ppm以
下であることが望ましい)の点で不足であり、工業的に
満足できる性能であるとは言えなかった。本発明者らの
検討によれば、かかる性能不足の原因としては1反応な
気相で実施していることと、使用しているアルカリの量
が不適切であったこととの双方が考えられるが、アルカ
リ金属酢酸塩が有機溶媒に可溶であることを考えると、
アルカリを高濃度で含有する触媒を液相反応で使用する
ことはそもそも不可能であったものと思われる。Also, Tokko Sho≠7-15. In the Ori, the use of palladium -carbon catalysts with alkaline metal acetate adhered as a method of selectively synthesizing methylinbutyl ketone by adding meshyloxide. This catalyst is produced by impregnating and depositing a soluble alkali metal acetate as a solution onto a palladium-carbon catalyst prepared in advance. The reaction was carried out in the gas phase, and a conversion ratio of 1, methyl isobutyl ketone selectivity, r% (Example-1), or a selectivity of 7.7% (Example-2) was obtained. However, it is still insufficient in terms of conversion rate and (industrially, it is desirable that the concentration of both raw materials and impurities be less than 1,000 ppm), and although the performance is industrially satisfactory, it is still insufficient. There wasn't. According to the studies conducted by the present inventors, the causes of this lack of performance are thought to be both the fact that the process was carried out in a single-reaction gas phase and the amount of alkali used was inappropriate. However, considering that alkali metal acetates are soluble in organic solvents,
It seems that it would have been impossible to use a catalyst containing a high concentration of alkali in a liquid phase reaction.
また、従来の上記したような一般的なパラジウム担持触
媒を用いた場合、不飽和カルボニル化合物の水素化によ
りネ鈍物、即ち、未反応の原料不飽和カルボニル化合物
及び過剰水素化物である飽和アルコールがそれぞれ20
0〜/ 0.000 ppm及び/、000〜jO,0
00ppm程度生成してし壕うため選択性の点で依然と
して問題があった。In addition, when conventional palladium-supported catalysts such as those mentioned above are used, hydrogenation of unsaturated carbonyl compounds produces neutral compounds, that is, unreacted raw material unsaturated carbonyl compounds and saturated alcohols as excess hydrides. 20 each
0~/0.000 ppm and/,000~jO,0
There was still a problem in terms of selectivity because about 1,000 ppm of nitrate was produced.
例えば前述の特公昭グアー/3,1107号に記載の実
施例−7による反応成績はタタチ転化率(未反応メンチ
ルオキシド/ 0.000 ppm )、メチルイソブ
チルケトンの選択率タタ、3%、低沸点分解物およびメ
チルインブチルカルビノール(飽和アルコール)の合計
は0.2チ以下であったとされている。44公昭4’7
−/3102号の第−表によるとアセトンの沸点以下の
低沸点化合物の副生成量は0102%以下であるので、
メチルインブチルカルビノールの量はQ、l〜00.2
%(/、000−2,000 ppm )と評価される
。For example, the reaction results according to Example 7 described in the above-mentioned Japanese Patent Publication Sho Guar No. 3,1107 are as follows: conversion rate (unreacted menthyl oxide/0.000 ppm), selectivity of methyl isobutyl ketone, 3%, and low boiling point. The total amount of decomposition products and methylinbutylcarbinol (saturated alcohol) is said to have been less than 0.2%. 44 Kimiaki 4'7
According to table No.-/3102, the amount of by-products of low-boiling compounds below the boiling point of acetone is 0.102% or less, so
The amount of methylimbutylcarbinol is Q, l ~ 00.2
% (/,000-2,000 ppm).
本発明者らは、パラジウムが(媒を使用して不飽和カル
ボニル化合物を選択的に水素化する方飽和カルボニル化
合物へ水素化する触媒′ff:鋭意探索した結果、活性
成分としてパラジウム及びアルカリ金属を担持した触媒
が顕著に有効であシ、転化率をタタ、タチ以上の非常に
高い水準に設定して使用しても、高い選択性が維持され
ることを見出して本発明を完成した。The present inventors discovered that palladium is a catalyst for selectively hydrogenating unsaturated carbonyl compounds to saturated carbonyl compounds using a medium. The present invention was completed based on the discovery that the supported catalyst is extremely effective and that high selectivity can be maintained even when the conversion rate is set to a very high level of Tata or Tati or higher.
即ち本発明の目的は不飽和カルボニル化合物を水素化し
て飽和カルボニル化合物を製造する際の反応の選択性を
一層向上し、飽和アルコールの副次的生成を極限的に抑
制することにあり、その吸上は、不飽和カルボニル化合
物を触媒の存在下に液相で水素化して飽和カルボニル化
合物を得る方法において、該触媒が、活性成分として担
体に担持されたパラジウム及びアルカリ金属を含有する
ものであり、かつ、X線光電子分光法により決定される
表面のアルカリ金属/パラジウム原子比が0.7〜3.
6の範囲内にあるものであることヲI#徴とする不飽和
カルボニル化合物の水素化方法、に存する。That is, the purpose of the present invention is to further improve the selectivity of the reaction when hydrogenating an unsaturated carbonyl compound to produce a saturated carbonyl compound, and to suppress to the utmost the by-product production of saturated alcohol. The above is a method for hydrogenating an unsaturated carbonyl compound in a liquid phase in the presence of a catalyst to obtain a saturated carbonyl compound, wherein the catalyst contains palladium and an alkali metal supported on a carrier as active components, and the surface alkali metal/palladium atomic ratio determined by X-ray photoelectron spectroscopy is 0.7 to 3.
6. A method for hydrogenating an unsaturated carbonyl compound, characterized in that the compound is within the range of 6.
以下に本発明につき更に許細に説明する。The present invention will be explained in more detail below.
本発明の不飽和カルボニル化合物の水素化方法において
は活性成分として担体に担持されたパラジウム及びアル
カリ金属を含有する触媒を使用する。In the method for hydrogenating unsaturated carbonyl compounds of the present invention, a catalyst containing palladium and an alkali metal supported on a carrier is used as an active component.
該担体としては活性炭、アルミナ、シリ、力、更には他
の酸化物、炭酸塩、硫酸塩等が使用される。これら祉粉
体、小塊状、粒状等の成型体等いずれでも良いが、粉体
状の活性炭が最も一般的である。As the carrier, activated carbon, alumina, silica, carbon dioxide, other oxides, carbonates, sulfates, etc. are used. Any of these powders, small lumps, granules, etc. may be used, but powdered activated carbon is the most common.
上記触媒は、例えばパラジウム成分として可担体に担持
し、還元してパラジウム担持゛触媒を製造した後、アル
カリ金R成分としてアルカリに担体に担持させても良い
。The above catalyst may be supported on a carrier as a palladium component, reduced to produce a palladium-supported catalyst, and then supported on an alkali support as an alkali metal R component.
本発明方法で使用される触媒は、パラジウム及びアルカ
リ金属を担持された活性成分として含有するものである
が、特に−1担持パラジウム触媒中にアルカリ金属を一
足の範囲内の量で共存させることが効果的である。The catalyst used in the method of the present invention contains palladium and an alkali metal as supported active ingredients, and in particular, the alkali metal may be present in an amount within the range of one foot in the -1 supported palladium catalyst. Effective.
例えけアルカリ金属としてナトリウムまたはリチウムが
用いられる場合のアルカリ金属/パラジウムの好適な原
子比の範囲鉱、バルク組成で0./!S−≠、よシ好適
には0.2〜3.5である。For example, when sodium or lithium is used as the alkali metal, the preferred alkali metal/palladium atomic ratio range is 0. /! S-≠, preferably 0.2 to 3.5.
また、その他のカリウム、セシウム等ではバルク組成で
O,コ〜i、sの範囲が好適である。アルカリ金属のう
ちではナトリウムが最も効果的である。Further, for other potassium, cesium, etc., the bulk composition is preferably in the range of O, Co to i, S. Among the alkali metals, sodium is the most effective.
上記のパラジウム及びアルカリ金属は触媒粒子の表面に
担持されているのがよい。上記のバルク組成では、担体
自体に少量のアルカリ金属が含有されている場合もあり
、必ずしも表面担持餉が明確に表現されるものではない
。表面担持貴杜例えばX線光電子分光法(IEIOA
) &Cよる表面組成分析によって見積ることができる
。The above-mentioned palladium and alkali metal are preferably supported on the surface of the catalyst particles. In the above-mentioned bulk composition, the carrier itself may contain a small amount of alkali metal, and surface-supported particles are not necessarily clearly expressed. For example, X-ray photoelectron spectroscopy (IEIOA)
) It can be estimated by surface composition analysis by &C.
本発明者らの検討によれば、K80Aによる表面組成分
析においてアルカリ金F4/パラジウムの原子比が0.
7〜J、jである場合、特に/、0〜2.0である場合
に有効であり、高活性、高選択性を安定的に達成するこ
とができる。According to the studies conducted by the present inventors, the atomic ratio of alkali gold F4/palladium was 0.00 in surface composition analysis using K80A.
7 to J, j is particularly effective when it is /, 0 to 2.0, and high activity and high selectivity can be stably achieved.
一方、パラジウムの好ましい担持率は担体に対して(7
,J 〜/ Owt%、更に好ましくは/−7wt%で
ある。アルカリ金属の相持率は上記し念とおりパラジウ
ム担持量見合いで決定される。On the other hand, the preferred supporting ratio of palladium is (7
, J ~/Owt%, more preferably /-7wt%. As mentioned above, the proportion of alkali metals is determined based on the amount of palladium supported.
本発明方法により神々の不飽和カルボニル化合物全選択
的に水素化して飽>0力ルボニル化合物を得ることがで
きる。例えにクロトンアルデヒドからブチルアルデヒド
を、シクロヘキセノンからシクロヘキサノンを、またグ
ーメチル−3−ペンテン°−コーオンがう+−メナルー
2−ペンタノンが得られる。By the method of the present invention, unsaturated carbonyl compounds can be totally selectively hydrogenated to obtain carbonyl compounds with saturation>0. For example, butyraldehyde can be obtained from crotonaldehyde, cyclohexanone can be obtained from cyclohexenone, and methyl-3-penten°-coion can yield +-menal-2-pentanone.
本発明方法は液相で実施される。アルコール、エステル
、エーテル、芳香族化合vIJ等の適当な反応溶媒を使
用することもできるが、好ましくは無溶媒で反応を実施
する。反応温度は通常、aO〜−i!00℃の岬、囲で
ある。圧力条件としては常圧〜j Oky/dlが抹用
される。The method of the invention is carried out in the liquid phase. Although a suitable reaction solvent such as alcohol, ester, ether, or aromatic compound vIJ may be used, the reaction is preferably carried out without a solvent. The reaction temperature is usually aO~-i! It is a cape of 00 degrees Celsius. As the pressure condition, normal pressure to jOky/dl is used.
更に、本発明方法に従って不飽和カルボニル化合物を水
素化して得られる生H,液中には目的とする飽和カルボ
ニル化合物が極めて高純度で得られるので、簡単な蒸留
等により、目的生成物を取り出すことができる。Furthermore, since the target saturated carbonyl compound can be obtained with extremely high purity in the raw H obtained by hydrogenating an unsaturated carbonyl compound according to the method of the present invention, the target product can be extracted by simple distillation or the like. I can do it.
次に、本発明を実施例により更に具体的に説明するが、
本発明は、その要旨を越えない限シ。Next, the present invention will be explained in more detail with reference to Examples.
The present invention does not exceed its gist.
以下の実施例によって限定されるものではない。The following examples are not intended to be limiting.
なお、X!先光電子分光法 ICEIOA )による表
面組成分析による本発明における触媒の表面のアルカリ
金R/パラジウム原子比の決定は以下の方法に従って行
なった。In addition, X! The alkali gold R/palladium atomic ratio on the surface of the catalyst in the present invention was determined by surface composition analysis using photoelectron spectroscopy (ICEIOA) according to the following method.
被測定試料のPi411! 触媒粉末をそのまま室温にて減圧乾燥する。Pi411 of the sample to be measured! The catalyst powder is directly dried under reduced pressure at room temperature.
乾燥後両面接着テープを用いて触媒粉末を試料ホルダー
に固定し、以下の測定に供する。After drying, the catalyst powder was fixed on a sample holder using double-sided adhesive tape and used for the following measurements.
測定及び解析法
装 @ : KRATO8g XBAM 100
励起源: AtKα1ip(/4LKVX20mA )
測定モード:減速比固定(1Fixad RetlLr
dingRatio )
C珈、pa、d * ”1B、4p各準位を走査巾コO
eVで計算機制御により?I411ンtする。得られた
スペクトルのピーク面ItJt f:rh’、 #)i
ベースライン差し引きを行なって求める。得られたピー
ク面&を元素熱度比で補正してモル比(原子数比)を求
める。Measurement and analysis method @: KRATO8g XBAM 100
Excitation source: AtKα1ip (/4LKVX20mA)
Measurement mode: Fixed reduction ratio (1Fixad RetlLr
dingRatio) C, pa, d * ” Scanning width for each level of 1B, 4p O
By computer control in eV? I411. The peak plane of the obtained spectrum ItJt f:rh', #)i
Calculate by subtracting the baseline. The obtained peak plane & is corrected by the elemental heat ratio to obtain the molar ratio (atomic ratio).
(この方法により深さ方向で約jθ久までの表面につい
ての分析値が得られる。)
Pdad /I1./
Na、so、6119
Ktp O、J jり
原子比
実施例/、2及び比較例1〜3
塩化パラジウムを含む水溶液、炭酸ナトリウム水溶液、
活性炭粉末及び還元剤を使用してナトリウムイオン及び
原子状パラジウムを含む活性炭触媒を調製した。この触
媒を脱塩水で洗滌して徐々にナトリウム成分を抽出除去
する方法を反復して種々のナトリウム含有量の触媒を調
製した。得られた触媒のナトリウム成分の担持量(バル
ク組成)、N a / P d原子比(バルク組成)及
びxiPil光電子分光法により決定される触媒表面の
N a / P d原子比社、表−2に示すとおシであ
った。なおパラジウム担持率(乾燥触媒基準)社1wt
チであった。200m1の上下攪拌型オートクレーブに
≠−メチルー3−ペンテ/−2−オフ30f及び調製さ
れた触媒(約jOチ含水率) o、t tを仕込み、/
jtO℃、水素圧O0りMFaで2時間反応させて水素
化を行なった。(This method provides analytical values for the surface up to approximately jθ in the depth direction.) Pdad /I1. / Na, so, 6119 Ktp O, J j atomic ratio Example/, 2 and Comparative Examples 1 to 3 Aqueous solution containing palladium chloride, sodium carbonate aqueous solution,
An activated carbon catalyst containing sodium ions and atomic palladium was prepared using activated carbon powder and a reducing agent. Catalysts with various sodium contents were prepared by repeatedly washing this catalyst with demineralized water and gradually extracting and removing the sodium component. Supported amount of sodium component (bulk composition) of the obtained catalyst, Na / P d atomic ratio (bulk composition), and Na / P d atomic ratio of the catalyst surface determined by xiPil photoelectron spectroscopy, Table 2 It was Oshi as shown in . Furthermore, the palladium loading rate (based on dry catalyst) is 1wt.
It was Chi. A 200 ml autoclave with vertical stirring was charged with ≠-methyl-3-pente/-2-off 30f and the prepared catalyst (approximately JO water content).
Hydrogenation was carried out by reacting for 2 hours at jtO 0 C and hydrogen pressure O 0 MFa.
生成物妓装置により触媒を沈降分離した後、上澄成分に
ついて分析を行なった結果を表−λに実施例、り〜を
炭酸アルカリ水溶液のS類及び使用tt−変化させてア
ルカリ金属/パラジウム原子比を表−3に示すように変
更した以外は実施例1と同様にして触媒をW、XI製し
た。After the catalyst was separated by sedimentation using a product device, the supernatant components were analyzed and the results are shown in Table λ. Catalysts W and XI were prepared in the same manner as in Example 1 except that the ratios were changed as shown in Table 3.
調製された触媒を用いて、実施例−/と同じ条件で反応
を行なった。結果を表−3に示す。Using the prepared catalyst, a reaction was carried out under the same conditions as in Example. The results are shown in Table-3.
本発明方法によって不飽和カルボニル化合物の水素化を
行なえば、得られる反応生成液中のを高純度で取シ出す
ことができる。When an unsaturated carbonyl compound is hydrogenated by the method of the present invention, the resulting reaction product solution can be extracted with high purity.
飽和カルボニル体(目的生成物)中の 特許出願人 三共化成工業株式会社 代 理 人 弁理士 長谷用 −ほか1名in the saturated carbonyl form (target product) Patent applicant: Sankyo Kasei Kogyo Co., Ltd. Representative: Patent Attorney Hase - 1 other person
Claims (2)
水素化して飽和カルボニル化合物を得る方法において、
該触媒が、活性成分として担体に担持されたパラジウム
及びアルカリ金属を含有するものであり、かつ、X線光
電子分光法により決定される表面のアルカリ金属/パラ
ジウム原子比が0.7〜3.5の範囲内にあるものであ
ることを特徴とする不飽和カルボニル化合物の水素化方
法。(1) In a method of hydrogenating an unsaturated carbonyl compound in a liquid phase in the presence of a catalyst to obtain a saturated carbonyl compound,
The catalyst contains palladium and an alkali metal supported on a carrier as active components, and the surface alkali metal/palladium atomic ratio determined by X-ray photoelectron spectroscopy is 0.7 to 3.5. A method for hydrogenating an unsaturated carbonyl compound, characterized in that the hydrogenation method is within the range of
化合物の水素化方法において、該不飽和カルボニル化合
物が4−メチル−3−ペンテン−2−オンであることを
特徴とする方法。(2) A method for hydrogenating an unsaturated carbonyl compound according to claim 1, wherein the unsaturated carbonyl compound is 4-methyl-3-penten-2-one.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59150216A JPH0629207B2 (en) | 1984-07-19 | 1984-07-19 | Method for hydrogenating aliphatic unsaturated ketone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59150216A JPH0629207B2 (en) | 1984-07-19 | 1984-07-19 | Method for hydrogenating aliphatic unsaturated ketone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6130545A true JPS6130545A (en) | 1986-02-12 |
JPH0629207B2 JPH0629207B2 (en) | 1994-04-20 |
Family
ID=15492071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59150216A Expired - Fee Related JPH0629207B2 (en) | 1984-07-19 | 1984-07-19 | Method for hydrogenating aliphatic unsaturated ketone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0629207B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5081310A (en) * | 1989-07-17 | 1992-01-14 | Takasago International Corporation | Process for preparing optically active ketones |
CN110713436A (en) * | 2018-07-12 | 2020-01-21 | 北京工商大学 | A method for photochemical catalysis of α,β-enone compounds for 1,4-conjugated reduction |
-
1984
- 1984-07-19 JP JP59150216A patent/JPH0629207B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5081310A (en) * | 1989-07-17 | 1992-01-14 | Takasago International Corporation | Process for preparing optically active ketones |
CN110713436A (en) * | 2018-07-12 | 2020-01-21 | 北京工商大学 | A method for photochemical catalysis of α,β-enone compounds for 1,4-conjugated reduction |
CN110713436B (en) * | 2018-07-12 | 2022-06-14 | 北京工商大学 | A method for photochemical catalysis of α,β-enone compounds for 1,4-conjugated reduction |
Also Published As
Publication number | Publication date |
---|---|
JPH0629207B2 (en) | 1994-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3738032B2 (en) | Process for selective hydrogenation of butynediol to butenediol | |
US4083809A (en) | Hydrogenation catalyst and method of producing same | |
CN108025292B (en) | Improved copper-containing multi-metal catalyst and method for preparing bio-based 1, 2-propylene glycol using the same | |
JP2716534B2 (en) | Method for producing gluconic acid or its alkali metal salt | |
JPS6045938B2 (en) | Method for producing oxalic acid diester hydrogenation catalyst | |
JPS5827642A (en) | New rutenium/carbon-hydrogenation catalyst | |
US4001344A (en) | Catalyst for partial hydrogenation | |
JPS5915021B2 (en) | Method for producing catalyst containing nickel and/or cobalt and zinc oxide | |
JPS6344134B2 (en) | ||
KR100834963B1 (en) | Metal-doped sulfonated cation exchange resin catalyst and preparation method of methyl isobutyl ketone using the same | |
US4083882A (en) | Production of 1,4-butanediol | |
JPS6130545A (en) | Hydrogenation of unsaturated carbonyl compound | |
JPS6230180B2 (en) | ||
EP0082935A1 (en) | Process for the continuous production of n-butyraldehyde by selective hydrogenation of croton aldehyde in a liquid phase in the presence of a palladium-aluminium oxide catalyst | |
JP3232971B2 (en) | Catalyst for producing acetic acid, method for producing the catalyst, and method for producing acetic acid using the catalyst | |
JPH10502062A (en) | Method for producing 1,4-butanediol | |
EA007065B1 (en) | Method for producing toluol derivatives | |
JP3266332B2 (en) | Method for producing hydroxydiphenyls | |
JP2005515248A6 (en) | Method for producing toluol derivative | |
JPS5949214B2 (en) | Process for producing unsaturated carboxylic acids or their esters | |
US4161616A (en) | Acrolein conversion to butanediol | |
JPH0428250B2 (en) | ||
DE3151086A1 (en) | Process for the continuous preparation of n-butyraldehyde by selective hydrogenation of crotonaldehyde in liquid phase in the presence of a palladium alumina catalyst | |
US4221726A (en) | Process of making tetrahydrofuran | |
US5900513A (en) | Production method of 2-cyclohexene-1-ol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |