Nothing Special   »   [go: up one dir, main page]

JPS61292014A - Position detector - Google Patents

Position detector

Info

Publication number
JPS61292014A
JPS61292014A JP13320085A JP13320085A JPS61292014A JP S61292014 A JPS61292014 A JP S61292014A JP 13320085 A JP13320085 A JP 13320085A JP 13320085 A JP13320085 A JP 13320085A JP S61292014 A JPS61292014 A JP S61292014A
Authority
JP
Japan
Prior art keywords
scale
detection
coils
scale body
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13320085A
Other languages
Japanese (ja)
Inventor
Hiroyuki Wakiwaka
弘之 脇若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP13320085A priority Critical patent/JPS61292014A/en
Publication of JPS61292014A publication Critical patent/JPS61292014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Character Spaces And Line Spaces In Printers (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To simplify to produce the titled detector by constituting the graduations of a scale body using the general unevenness. CONSTITUTION:When the sine-wave type exciting signals with a phase difference by 90 deg. mutually are supplied to the 1st - the 4th detection coils 81-84, the magnetic flux generated by the exciting signal according to an opposing positional relation between the detection coils 81-84 and the uneven graduations of the scale body 70 is decreased and as a result, the impedance of each of the detection coils 81-84 is changed. Then, the output corresponding to the impedance taken out from each of the detection coils 81-84 is added by an adder 86 to obtain positional information from the output (e). In this case, since the graduations of the scale body 70 are constituted by using the general unevenness, the production is made simple.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、直線あるいは回転方向の位置検出器に関し、
例えば電子プリンタの印字ヘッドの位置制御システムに
おける印字ヘッドの位置情報の取り出し、あるいは被測
定体にスピンドル先端を押し付けてその変位を検出する
測寸器のスピンドル位置の検出に利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a linear or rotational position detector;
For example, it is used to extract print head position information in a print head position control system of an electronic printer, or to detect the spindle position of a measuring instrument that presses the spindle tip against a measured object and detects its displacement.

従来の技術 この種の位置制御システムは、ますます高精度化、高速
化、単純化が要求されてとており、それに伴ない位置検
出器にも高い分解能と応答性、構造の単純さが要求され
ている。
Conventional technology This type of position control system is increasingly required to be more accurate, faster, and simpler, and along with this, position detectors are also required to have higher resolution, responsiveness, and simpler structure. has been done.

このような条件をみたすものには、文献「知りたい測定
の自動化」(発行所ジャパンマシニスト社、昭和46年
10月1日)の137〜176真に開示されるインダク
Fシン形や磁気スケール形のいわゆる位相変調方式の位
置検出器がある。
Those that meet these conditions include the inductor F-sin type and magnetic scale type disclosed in the document ``Automation of Measurements You Want to Know'' (Published by Japan Machinist Co., October 1, 1976), 137-176. There is a so-called phase modulation type position detector.

前者は第4図に示すように、長尺のスケール体10と対
向しながらその技手方向に移動自在にスライダ体20を
支承し、そのスケール体10には矩形波状でジグザグ配
列の目盛用コイル11を形成し、スライダ体20には前
記目盛用フィル11と同じピッチで相互は1/4ピツチ
ずれた第1.第2の励磁用フィル21.22を形成し、
そのコイル21.22に90度位相差の励磁信号sin
ωt、 cosωt(ω:角周波数、を二時間)を供給
して励磁さぜるよう(こしたものである。これにおいて
j土、目盛用コイル11と第1、第2の励磁用コイル2
1.22との対向位置関係に応じて両コイル11と21
.11と22間の電磁結合度が変化することになり、そ
の結合度は両コイルが完全に重合した状態で最も大、非
重合の状態で最も小、その間はサイン波状1こ変化する
。したがって、いま、上記の完全重合状態を基準にして
そこからのコイル111こ対するコイル21.22の移
動量χを、コイルピッチPの移動量を2πとした角度の
次元θ(=2π・χ/P)で表わし、そのθを用いてコ
イル11と21.11と22のそれぞれの開での電磁誘
導によりコイル 11に誘起される電圧を表わすと、係
数なAとおけば、それぞれはA cosθsinωL、
 A sin f9 cosωtとなり、結局、コイル
11からはその和であるA 5in(ωを十θ)の出力
が取り出され、この結果、時間2π/ωごとに位置情報
θが求められること【こなる。
As shown in FIG. 4, the former supports a slider body 20 so as to be movable in the direction of the operator while facing a long scale body 10, and the scale body 10 has a rectangular wave-like zigzag graduation coil. 11, and the slider body 20 has a first. forming a second excitation filter 21.22;
An excitation signal sin with a phase difference of 90 degrees is applied to the coils 21 and 22.
ωt, cosωt (ω: angular frequency) are supplied for two hours to excite the coil.
1. Both coils 11 and 21 according to the opposing positional relationship with 22.
.. The degree of electromagnetic coupling between 11 and 22 changes; the degree of coupling is highest when both coils are completely polymerized, and lowest when both coils are not polymerized, and changes by 1 in a sinusoidal waveform between them. Therefore, now, with the above-mentioned complete polymerization state as a reference, the amount of movement χ of the coil 21 and 22 relative to the coil 111 from there is defined as the angular dimension θ (=2π・χ/ P) and using its θ to represent the voltage induced in the coil 11 by electromagnetic induction when the coils 11 and 22 are open, let A be the coefficient, then A cos θ sin ωL,
A sin f9 cos ωt, and in the end, an output of A 5in (ω is 10 θ), which is the sum thereof, is taken out from the coil 11, and as a result, position information θ is obtained every 2π/ω.

また、後者の磁気スケール形は、第5図に示すように磁
束の強さがサイン波状に変化する磁気目盛を微小ピッチ
ごとに配列した磁気スケール体30と、その磁気目盛の
1/4ピツチだけ相互にずらして第1、第2の磁束応答
形へンド41.42を配置したヘッド群41とを対向さ
せ、その第1、第2の磁束応答形ヘッド41.4.2の
励磁コイルを90度位相差の励磁信号によりそれぞれ励
磁し、その各検出コイルから取り出される出力の和を演
算するようにしたものである。これにおいては、磁気目
盛と各ヘッド4.1.42の位置関係に応じてそれぞれ
の検出コイルから取り出される出力(周波数は前記励磁
信号と同じ)の振幅がサイン波状(ヘッド41と42で
は振幅も90度の位相ずれをもつ)に変化し、したがっ
て、その和は前記インダトシン形と同様に位置に対応し
た位相情報をもつ信号となる。
The latter magnetic scale type includes a magnetic scale body 30 in which magnetic scales in which the strength of magnetic flux changes in a sine wave pattern are arranged at minute pitches, and only 1/4 pitch of the magnetic scales as shown in FIG. A group of heads 41 in which first and second magnetic flux responsive heads 41.42 are arranged offset from each other is opposed to the head group 41, and the excitation coils of the first and second magnetic flux responsive heads 41.4.2 are arranged at 90°. Each detection coil is excited by an excitation signal having a degree phase difference, and the sum of the outputs taken out from each detection coil is calculated. In this case, the amplitude of the output (the frequency is the same as the excitation signal) taken out from each detection coil according to the positional relationship between the magnetic scale and each head 4, 1, 42 is a sine wave (the amplitude is also (with a phase shift of 90 degrees), and the sum thereof becomes a signal having phase information corresponding to the position, similar to the indatocin type.

そして、この種の位置検出器を例えば印字ヘッドの位置
情報の取り出しに用いるに際しては、印字ヘッドの駆動
源であるモータ例えばリニアパルスモークの可動子に前
記位置検出器の対向する一側、例えばスライダ体20を
固着し、それと対向させてスケール体10を静止体上【
こ固着し、続いて所定の原点位置の校正を電気的(ある
いは機械的)に行った後、位置検出に供されることにな
る。
When using this type of position detector, for example, to retrieve position information of a print head, one side of the position detector facing the motor, for example, a linear pulse smoke movable element, which is a drive source of the print head, is connected to one side of the position detector, for example, a slider. The body 20 is fixed, and the scale body 10 is placed on the stationary body [
After this is fixed, the predetermined origin position is electrically (or mechanically) calibrated and then used for position detection.

発明が解決しようとする問題点 上記の位置検出器は、位相変調方式であり、分解能、応
答性はほぼ要求を満たしている。
Problems to be Solved by the Invention The above-mentioned position detector is of a phase modulation type, and its resolution and responsiveness almost meet the requirements.

=4− しかし構造の単純さの面ではまだ要求とは隔たりがある
。すなわち、位置検出器の使用に際しては、前記によう
に移動体にスライダ体あるいはヘッド群を一体的に固着
し、それと対向状態にスケール体を移動体の経路の沿っ
て配置することになるが、これらのスケール体はフィル
や磁気による目盛が形成された特別のものであり、移動
体の駆動源、例えば油圧シリンダのピストン軸やあるい
は リニアパルスモータの二次側(固定側)に直接設け
ることは構造的にも磁気的ノイズ的にも困難である。こ
のため、二次側と間隔を隔てて並列に配置したり、ある
いは二次側と直列に配置する等の方法がとられることに
なり、システム全体の構成が複雑化や大型化してしまう
問題点があった。
=4- However, there is still a gap between requirements in terms of structural simplicity. That is, when using a position detector, the slider body or head group is integrally fixed to the moving body as described above, and the scale body is placed opposite to it along the path of the moving body. These scale bodies are special with fill or magnetic scales, and cannot be installed directly on the drive source of a moving object, such as the piston shaft of a hydraulic cylinder or the secondary side (fixed side) of a linear pulse motor. This is difficult both structurally and in terms of magnetic noise. For this reason, methods such as placing them in parallel with the secondary side with a gap between them, or in series with the secondary side are taken, which leads to the problem that the overall system configuration becomes complicated and large. was there.

また、このようなスケール体のフィルや磁気目盛は、そ
の形成にあたって特別な装置や技術を必要とし、しかも
それによってでも長尺のものを高い精度で形成すること
は難しいという問題がある。
Furthermore, the fill and magnetic graduations of such a scale body require special equipment and techniques to form, and even with that, there is a problem in that it is difficult to form long pieces with high precision.

そこで、本発明は、上記問題点を解決するために、特別
な目盛を必要とせず、それにより製作が簡単であり、ま
た移動経路自体に目盛を形成してそれをスケール体とし
て利用し得る位置検出器を提供しようとするものである
Therefore, in order to solve the above-mentioned problems, the present invention does not require a special scale, which is easy to manufacture, and also provides a position where the scale can be formed on the moving path itself and used as a scale body. The aim is to provide a detector.

問題点を解決するための手段 本発明は、スケール体の目盛として種々のものを検討、
実験した結果、目盛としては一般的な凹凸目盛に対して
それと同一ピッチの矩形状コイルを適宜個ジグザグ状に
結線した検出コイルを対向させ、そのコイルに励磁信号
を供給すると、フィルのインピーダンスが変化し、しか
もその変化は凹凸目盛とコイルとの対向位置に応じて正
弦波状となるとの知見を得て完成したものである。すな
わち、第3図(a)、(b)に示すように凹凸目盛5o
と矩形状コイル60とを対向させ、励磁信号として正弦
波状に変化する交流電流を供給すると、フィル50を形
成する線材の内外に磁束が発生する。その結果、凹凸目
盛にはその磁束により渦電流が発生し、この渦電流は前
記交流電流による磁束の発生を妨げる働きをする。
Means for Solving the Problems The present invention examines various types of graduations for the scale body.
As a result of experiments, we found that when a detection coil made by connecting rectangular coils with the same pitch in a zigzag pattern was placed opposite a general concave-convex scale, and an excitation signal was supplied to the coil, the impedance of the fill changed. However, it was completed based on the knowledge that the change becomes sinusoidal depending on the opposing position of the concavo-convex scale and the coil. That is, as shown in FIGS. 3(a) and 3(b), the uneven scale 5o
When the rectangular coil 60 is made to face each other and an alternating current that changes sinusoidally is supplied as an excitation signal, magnetic flux is generated inside and outside the wire forming the fill 50. As a result, an eddy current is generated in the uneven scale due to the magnetic flux, and this eddy current serves to prevent the generation of magnetic flux due to the alternating current.

渦電流の天外さば、線材と凹凸目盛の凸部との位置に応
じて変わり、凸部と対向した状態(a)で最も大ぎく、
凹部と対向した状態(b)で最も小さい。この結果、線
材と凸部の対向位置関係が(b)の状態から(、)の状
態に変わるに従って磁束の発生を妨げる度合が大となり
、それに応じて磁束が小になる。このように磁束が変わ
ると、それに対応してコイルのインダクタンスも変わり
、結局、コイルのインピーダンスが変わる。そして、こ
のインピーダンスの変化は、凹凸目盛ピッチごとに一定
値を中心に正弦波状変化するものとなる。
The height of the eddy current varies depending on the position of the wire and the convex part of the uneven scale, and is greatest in the state (a) facing the convex part,
It is smallest in the state (b) facing the recess. As a result, as the opposing positional relationship between the wire and the convex portion changes from the state (b) to the state (,), the degree to which generation of magnetic flux is obstructed increases, and the magnetic flux decreases accordingly. When the magnetic flux changes in this way, the inductance of the coil changes accordingly, and eventually the impedance of the coil changes. This change in impedance changes sinusoidally around a constant value for each uneven scale pitch.

本発明は、上記知見に基づいて創案したものであり、ス
ケール体と検出ヘッドを対向させ、両者の相対位置を検
出する位置検出器において、スケール体には等ピッチP
で凹凸目盛を形成し、検出ヘッドには前期凹凸目盛と同
一ピッチPの矩形状コイルを適宜個ジグザグ状に結合し
た第1〜第4の検出フィルを相互に(n+1/4)P[
但し、nはOll、・・・整数]づつずらして配列し、
第1〜第4の検出コイルには相互に90度位置差の正弦
波状励磁信号を発振部から供給し、第1〜第4の検出コ
イルからインピーダンスに対応して変化する電気信号を
取り出し、その和を演算部により算出させるようにした
ものである。
The present invention has been devised based on the above knowledge, and includes a position detector in which a scale body and a detection head face each other and detect the relative position of the two.
A concavo-convex scale is formed in the detection head, and the first to fourth detection filters, which are rectangular coils having the same pitch P as the previous concave-convex scale, are connected in a zigzag pattern to each other (n+1/4)P[
However, n is Oll, ... integer] and arranged,
A sinusoidal excitation signal with a position difference of 90 degrees is supplied to the first to fourth detection coils from the oscillator, and an electric signal that changes in accordance with the impedance is extracted from the first to fourth detection coils. The sum is calculated by an arithmetic unit.

艷肥 以上のものにおいて、第1〜第4の検出フィルに相互に
90度位相差の励磁信号sinωt、cosωt、 −
sinωt、 −cosωtが供給されると、その検出
コイルと凹凸目盛の対向位置関係に応じてその励磁信号
により発生させられる磁束が減少させられ、その結果、
各検出コイルのインピーダンスが変化する。いま、前記
第3図(b)の状態に第1の検出コイルが位置する状態
、すなわち、検出コイルを形成する線材が凹凸目盛の凹
部と対向した状態を基準位置(尚、′第2〜第4の検出
コイルはその位置から左方に凹凸ピッチの1/4〜3/
4ずらして配置される)とし、その位置から凹凸目盛の
左方への移動量をχとおき、そのχを凹凸目盛ピッチP
を2πとした角度の次元によりθ(=2π・χ/P)で
表わすと、各検出コイルのインピーダンスはi係数をB
、Cとおくと、それぞれB (C+ cosθ)sir
+ωt、 B (C+sinθ)eO3ωt、B(C−
cosθ)(−sinωt)、B(C−sinθ)(−
cosωt)となる。したがって、演算器より算出され
る各検出コイルから取り出されるインピーダンスに対応
した出力の和eは、インピーダンスとそれに対応した出
力との変換係数なKとおくと、 e= 2 K B 5in(ωを十θ)      (
1)となり、凹凸目盛と検出ヘッドの検出コイルとの相
対移動位置χは、それに比例した位相情報θとして励磁
信号の周期ごとに算出される。
In the case of more than 100% fertilization, excitation signals sinωt, cosωt, - with a phase difference of 90 degrees are applied to the first to fourth detection filters.
When sinωt and -cosωt are supplied, the magnetic flux generated by the excitation signal is reduced according to the opposing positional relationship between the detection coil and the uneven scale, and as a result,
The impedance of each detection coil changes. Now, the state in which the first detection coil is located in the state shown in FIG. Detection coil 4 moves leftward from that position to 1/4 to 3/3 of the unevenness pitch.
4), and let the amount of movement of the concavo-convex scale to the left from that position be χ, and that χ is the concave-convex scale pitch P.
Expressed as θ (=2π・χ/P) using the angular dimension with 2π, the impedance of each detection coil is
, C, respectively, B (C+ cosθ)sir
+ωt, B (C+sinθ)eO3ωt, B(C-
cos θ) (-sin ωt), B(C-sin θ) (-
cosωt). Therefore, the sum e of the outputs corresponding to the impedances taken out from each detection coil calculated by the arithmetic unit is given by K, which is the conversion coefficient between the impedance and the output corresponding to the impedance. θ) (
1), and the relative movement position χ between the concavo-convex scale and the detection coil of the detection head is calculated for each period of the excitation signal as phase information θ proportional to the relative movement position χ.

しかして、凹凸目盛の形成は、一般的な工作機械と技術
だけで行なうことができ、またこの凹凸目盛りは位置を
検出しようとする移動体の経路に沿って形成可能であ1
)、さらにはリニアパルスモークのようにその二次側(
固定側)に凹凸目盛を有する(これは駆動機構の一部で
ある)ものでは、その凹凸目盛をそのままスケール体と
して利用でとることになる。
Therefore, the uneven scale can be formed using only general machine tools and techniques, and the uneven scale can be formed along the path of the moving object whose position is to be detected.
), and even its secondary side like linear pulse smoke (
If the scale has a concavo-convex scale on the fixed side (this is part of the drive mechanism), the concave-convex scale can be used as it is as a scale body.

実施例 以下、本発明を実施例に基づぎ説明する。Example Hereinafter, the present invention will be explained based on examples.

第1図において、70は長尺のスケール体であり、等ピ
ッチPで矩形の凹凸目盛が長手方向に形成されている。
In FIG. 1, 70 is a long scale body, on which rectangular concave and convex scales are formed at equal pitches P in the longitudinal direction.

その凹凸目盛と微少間隔を隔てて対向する検出ヘッド8
0には、凹凸目盛と同一ピッチPの矩形状コイルを3個
ジグザグ状に結線した形の第1〜第4の検出コイル81
=84か相互1こ(1+1/4)Pづつずらして配列さ
れている。
Detection head 8 facing the concavo-convex scale with a minute interval
0, there are first to fourth detection coils 81 in the form of three rectangular coils connected in a zigzag pattern with the same pitch P as the concavo-convex scale.
=84 or they are arranged so as to be shifted from each other by 1 (1+1/4)P.

第2図は、その第1〜第4の検出コイル81〜84に励
磁信号を供給する発振部85とそれによる検出コイル8
1〜84のインピーダンス変化に対応して変わるコイル
出力を加算する演算部の実施例である。発振部85の励
磁信号sinωt、 −sinωt、 C03ω15、
− QO3ωしの出力端は、それぞれ各対応する第1、
第3、第2、第4の検出フィル81.83.82.84
の入力端と結線され、それぞれのコイル81.83.8
2.84にインピーダンス変化B(C+cosθ)si
nωt、B(C−cosθ)(−sinωI)、B (
C+sinθ)cosωt、B (Csinθ)(−c
osωt)を生じさせる。その第1と第3のコイル81
.82、第2と第4のコイル82.84の対はそれぞれ
加算結線され、各月のインピーダンス変化の和に対応し
た出力が取り出され、その各相の出力はさらに加算器8
6により加算され、前記式(1)に示す出力eが算出さ
れる。
FIG. 2 shows an oscillator 85 that supplies excitation signals to the first to fourth detection coils 81 to 84 and the detection coil 8 caused by the oscillation unit 85.
This is an example of an arithmetic unit that adds coil outputs that change in response to impedance changes of 1 to 84. Excitation signal sinωt of the oscillator 85, −sinωt, C03ω15,
- The output terminals of QO3ω are connected to each corresponding first,
Third, second and fourth detection filters 81.83.82.84
are connected to the input terminals of the respective coils 81.83.8.
2.84 shows impedance change B(C+cosθ)si
nωt, B(C-cosθ)(-sinωI), B(
C + sin θ) cos ωt, B (C sin θ) (-c
osωt). The first and third coils 81
.. 82, the pairs of second and fourth coils 82 and 84 are connected to add each other, and an output corresponding to the sum of impedance changes for each month is taken out, and the output of each phase is further connected to an adder 8.
6, and the output e shown in equation (1) above is calculated.

そしてこの種の位置検出器を例えば文献[リニアモータ
とその応用」(電気学会、昭和59年3月30日発行)
の第98〜lot頁に開示されたようなリニアパルスモ
ータの実装された電子プリンタの印字ヘッドの位置情報
の取り出しに用いるに際しては、第6図に示すように印
字ヘッドの駆動源であるリニアパルスモータ90の可動
子91から可動方向に突出させた取付部材92に前記位
置検出器の検出ヘッド80を固着し、それとリニアパル
スモータ90の固定子と兼用のスケール体70と対向さ
せる。
This type of position detector is described, for example, in the literature [Linear Motor and Its Applications] (IEE of Japan, published March 30, 1980).
When used to extract positional information of a print head of an electronic printer equipped with a linear pulse motor as disclosed in pages 98 to lot of The detection head 80 of the position detector is fixed to a mounting member 92 that protrudes in the movable direction from the movable element 91 of the motor 90, and is opposed to the scale body 70 which also serves as the stator of the linear pulse motor 90.

そして所定の原点位置の校正を電気的(あるいは機械的
)に行なった後、位置検出に供される。
After electrically (or mechanically) calibrating the predetermined origin position, the position is used for position detection.

尚、リニアパルスモータの二次側(固定側)とは別にス
ケール体70を配置し、それと検出ヘッド80を対向さ
せても同様である。
The same effect can be obtained even if the scale body 70 is arranged separately from the secondary side (fixed side) of the linear pulse motor and the detection head 80 is opposed to it.

また、測寸器に利用するに際しては、スピン−12= ドルに凹凸目盛を形成してスピンドル自体をスケール体
70とし、検出ヘッドはスピンドルを支承する筐体に固
着して両者を対向させることになる。
In addition, when used as a size measuring instrument, a concavo-convex scale is formed on the spindle to make the spindle itself the scale body 70, and the detection head is fixed to the casing that supports the spindle so that they face each other. Become.

一例として、スケール体70の凹凸目盛ピッチ8mm5
高さ4mn+、材料低炭素鋼、検出ヘッド80の検出フ
ィルのピッチ数24、線径0.3+nm、前記凹凸目盛
とフィルとの間隙0.5mm、励磁信号の電圧20■p
−p(直列抵抗1にΩ)、周波数10MHzのときの一
つのコイルのインピーダンス変化による出力の変化量は
22.5m V p −pあり、十分な大とさを有して
いる。
As an example, the unevenness scale pitch of the scale body 70 is 8 mm5.
Height 4mm+, material low carbon steel, number of pitches of the detection fill of the detection head 80 is 24, wire diameter 0.3+nm, gap between the uneven scale and the fill 0.5mm, voltage of excitation signal 20p
-p (series resistance 1 to Ω) and the frequency is 10 MHz, the amount of change in output due to change in impedance of one coil is 22.5 m V p -p, which is sufficiently large.

尚、上記実施例においては、凹凸目盛に矩形状のものを
用いた場合を例示したが、台形あるいは三角形状の場合
でも略正弦波状のインピーダンス変化が得られるので、
この形状を採用してもよい。また、」1記実施例におい
ては、第1〜第4のコイルを3個の矩形状フィルのジグ
ザグ結線により形成した場合を例示したが、適宜の数を
選定してよく、また、第1〜第4の検出コイルは、直列
に配列する代わりに積層構成にして検出ヘッドの長さを
小にしてもよい。
In the above embodiment, a rectangular concavo-convex scale is used, but a substantially sinusoidal impedance change can be obtained even when the concavo-convex scale is trapezoidal or triangular.
This shape may also be adopted. Further, in the embodiment 1, the case where the first to fourth coils are formed by zigzag connection of three rectangular fills is illustrated, but an appropriate number may be selected; Instead of being arranged in series, the fourth detection coil may be arranged in a stacked configuration to reduce the length of the detection head.

また、上記実施例は直線位置検出用のものにつき例示し
たが、スケール体を円板としてその端面あるいは周面に
等ピッチ角の凹凸目盛を形成し、それと検出ヘッドとを
対向させ、回動位置検出用のものを構成してもよい。
In addition, although the above embodiment is for linear position detection, the scale body is a disk, and concave and convex graduations with equal pitch angles are formed on the end face or circumferential surface of the scale body, and the detection head is opposed to the concave and convex graduations, and the rotating position is It may also be configured for detection.

発明の効果 以上のとおりであり、本発明は、スケール体の目盛に一
般的な凹凸を用いて構成するので、その製作は簡単であ
り、しかも設置に対する制約がなく、直接被検出対象の
移動経路に設置することができ、構成が単純化でき、か
つ全体に小型化できる。
The effects of the invention are as described above, and since the present invention uses general unevenness for the graduations of the scale body, it is easy to manufacture, there are no restrictions on installation, and the movement path of the object to be detected can be directly monitored. The structure can be simplified, and the overall size can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の機構部分の実施例を示す斜視図、第2
図は本発明の励磁信号の供給と信号の処理部分を示すブ
ロック線図、第3図は本発明の原理説明のためのモデル
図、第4゜5図は従来技術を示すそれぞれ斜視図、正面
図である。 70ニスケ一ル体     80:検出ヘッド81〜8
4:検出コイル  85:発振部86:加算機
Fig. 1 is a perspective view showing an embodiment of the mechanical part of the present invention;
The figure is a block diagram showing the excitation signal supply and signal processing portion of the present invention, Figure 3 is a model diagram for explaining the principle of the present invention, and Figures 4 and 5 are perspective and front views showing the prior art, respectively. It is a diagram. 70 Niskel integrated body 80: Detection head 81-8
4: Detection coil 85: Oscillator 86: Adder

Claims (1)

【特許請求の範囲】[Claims] 1、スケール体と検出ヘッドを対向させ、両者の相対位
置を検出する位置検出器において、スケール体には等ピ
ッチPで凹凸目盛を形成し、検出ヘッドには前記凹凸目
盛と同一ピッチPの矩形状コイルを適宜個ジグザグ状に
結合した第1〜第4の検出コイルを相互に(n+1/4
)P[但し、nは0、1、・・・整数]づつずらして配
列、固着し、第1〜第4の検出コイルには相互に90度
位相差の正弦波状励磁信号を発振部から供給し、第1〜
第4の検出コイルのインピーダンスに対応した出力の和
を演算部により算出させるところの位置検出器。
1. In a position detector in which a scale body and a detection head face each other and detect the relative position of the two, a concave-convex scale is formed on the scale body at an equal pitch P, and a rectangular scale with the same pitch P as the concave-convex scale is formed on the detection head. The first to fourth detection coils, which are formed by connecting suitably shaped coils in a zigzag pattern, are connected to each other (n+1/4
) P [where n is 0, 1, ... integer] are arranged and fixed in a staggered manner, and the first to fourth detection coils are supplied with sinusoidal excitation signals with a phase difference of 90 degrees from the oscillator. 1st~
A position detector in which a calculation unit calculates the sum of outputs corresponding to the impedance of a fourth detection coil.
JP13320085A 1985-06-19 1985-06-19 Position detector Pending JPS61292014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13320085A JPS61292014A (en) 1985-06-19 1985-06-19 Position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13320085A JPS61292014A (en) 1985-06-19 1985-06-19 Position detector

Publications (1)

Publication Number Publication Date
JPS61292014A true JPS61292014A (en) 1986-12-22

Family

ID=15099065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13320085A Pending JPS61292014A (en) 1985-06-19 1985-06-19 Position detector

Country Status (1)

Country Link
JP (1) JPS61292014A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516870Y2 (en) * 1987-10-16 1993-05-06
JP2006227005A (en) * 2005-02-17 2006-08-31 Agilent Technol Inc Position encoding using impedance comparison
JP2007093287A (en) * 2005-09-27 2007-04-12 Tietech Co Ltd Linear motor
JP2013092414A (en) * 2011-10-25 2013-05-16 Mitsutoyo Corp Displacement detecting device, method of calibrating scale, and scale calibrating program
JP2013174521A (en) * 2012-02-27 2013-09-05 Mitsubishi Heavy Ind Ltd Electromagnetic induction type position detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821209A (en) * 1981-07-31 1983-02-08 Sumitomo Electric Ind Ltd Image transmission line

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821209A (en) * 1981-07-31 1983-02-08 Sumitomo Electric Ind Ltd Image transmission line

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516870Y2 (en) * 1987-10-16 1993-05-06
JP2006227005A (en) * 2005-02-17 2006-08-31 Agilent Technol Inc Position encoding using impedance comparison
JP2007093287A (en) * 2005-09-27 2007-04-12 Tietech Co Ltd Linear motor
JP2013092414A (en) * 2011-10-25 2013-05-16 Mitsutoyo Corp Displacement detecting device, method of calibrating scale, and scale calibrating program
US9134144B2 (en) 2011-10-25 2015-09-15 Mitutoyo Corporation Displacement detecting device, scale calibrating method and scale calibrating program
JP2013174521A (en) * 2012-02-27 2013-09-05 Mitsubishi Heavy Ind Ltd Electromagnetic induction type position detector
US9291480B2 (en) 2012-02-27 2016-03-22 Mitsubishi Heavy Industries, Ltd. Electromagnetic induction type position detector

Similar Documents

Publication Publication Date Title
US7049924B2 (en) Electromagnetic induction type position sensor
US4612502A (en) Magnetic length or angle measuring system having improved magnetic sensor arrangement
US6259249B1 (en) Induction-type position measuring apparatus
EP0182085B1 (en) Position and speed sensors
JP7300324B2 (en) Scale configuration for inductive encoders
US6661220B1 (en) Antenna transponder configuration for angle measurement and data transmission
EP0743508A2 (en) Induced current position transducer
JPH0626884A (en) Position detection device
JP2529960B2 (en) Magnetic position detector
Brasseur A robust capacitive angular position sensor
EP1847800A1 (en) Rotation sensor
JP4063402B2 (en) Cylinder position detector
US20150061650A1 (en) Method and arrangement and sensor for determing the postion of a component
JP2001174206A (en) Detecting apparatus for cylinder position
US20070229064A1 (en) Motion transducer for motion related to the direction of the axis of an eddy-current displacement sensor
JPS61292014A (en) Position detector
JPH0654242B2 (en) Position detector
JPH0236313A (en) Gap adjusting method for magnetic encoder
JP4048207B2 (en) Position detection device
JP3920896B2 (en) Linear position detector
JP4211278B2 (en) Encoder
JP4441593B2 (en) load cell
JP3592835B2 (en) Linear position detector
US6469501B1 (en) Conductive system for measuring the linear and angular positions of one object relative to another
JP4688268B2 (en) Pressure gauge