Nothing Special   »   [go: up one dir, main page]

JPS61295220A - Production of silicon - Google Patents

Production of silicon

Info

Publication number
JPS61295220A
JPS61295220A JP60137503A JP13750385A JPS61295220A JP S61295220 A JPS61295220 A JP S61295220A JP 60137503 A JP60137503 A JP 60137503A JP 13750385 A JP13750385 A JP 13750385A JP S61295220 A JPS61295220 A JP S61295220A
Authority
JP
Japan
Prior art keywords
silicon
reaction
film
reducing agent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60137503A
Other languages
Japanese (ja)
Inventor
Takeshi Tsunohashi
角橋 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP60137503A priority Critical patent/JPS61295220A/en
Publication of JPS61295220A publication Critical patent/JPS61295220A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)
  • Chemically Coating (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To produce an Si film which is uniform and dense inexpensively and easily with an electroless method by adding a reducing agent in a nonqueous solvent contg. an Si compd. CONSTITUTION:An Si film which is uniform and dense is formed on a base plate with an electroless method by adding a reducing agent in a nonaqueous solvent contg. an Si compd. incorporated in a reaction vessel. Still more as the nonqueous solvent, ethyl alcohol and ethylene glycol, etc., are used and as the Si compd., trichlorosilane and tetraethoxysilane, etc., are used and the concn. is nearly regulated to 0.2mol soln. - a saturated soln. Also as the reduc ing agent, alkali metal and alkali earth metal are used and the concn. is regulat ed to about 1-10 times quantities of the theoretical quantity necessary to deposit Si.

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明はシリコン膜、特に太陽電池、電子写真用感光体
、薄膜トラン7スタ及び各種センサ等に用いられるシリ
コンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing silicon films, particularly silicon used for solar cells, electrophotographic photoreceptors, thin film transistors, various sensors, and the like.

(b)従来の技術 これらの用途に用いられるシリコン膜の製法としては、
従来以下に述べるような方法が知られて   □いる。
(b) Conventional technology The methods for manufacturing silicon films used in these applications are as follows:
Conventionally, the following methods are known.

第一の方法は、シリコン源として、モノシラン、ジシラ
ン及び更に高次のシラン(S inH2n+z)から成
る群より選ばれた少なくとも1種とアルゴン及び水素等
を原料としてプラズマCVD法によりシリコンを生成す
るものである。
The first method is to generate silicon by plasma CVD using at least one selected from the group consisting of monosilane, disilane, and higher-order silane (S inH2n+z) as a silicon source, and argon, hydrogen, etc. It is.

第二の方法は、炭酸プロピレン、テトラヒドロ7ラン、
ツメチル7オルムアミド等の極性有機溶剤中にへロデン
化シリコン又はハロゲン化シランを溶解し、更に、必要
により電解質を加え、これを電気分解して導電性陰極本
体に元素状シリコンを電着するものである(特開昭52
−62135号公報)。
The second method uses propylene carbonate, tetrahydro7rane,
This method involves dissolving helodenated silicon or halogenated silane in a polar organic solvent such as trimethyl-7-olumamide, adding an electrolyte if necessary, and electrolyzing this to electrodeposit elemental silicon onto the conductive cathode body. Yes (Unexamined Japanese Patent Publication No. 1973
-62135 publication).

又、第三の方法は、非水系中性溶剤、又は非水系中性溶
剤と芳香族溶剤の混合溶剤中に、シラン、ハロゲン化シ
ラン、ハロゲン化ケイ素又はこれらの混合物から成る群
より選ばれた少なくとも1種を溶解し、これに更に導電
性付与剤である可溶性の電解質を添加し、この非水系電
解組成物溶液を電気分解して陰極体上にシリコンを含有
する薄膜を電着するものである。(特開昭55−555
17号公報)。
A third method is to add a compound selected from the group consisting of silane, halogenated silane, halogenated silicon, or a mixture thereof in a non-aqueous neutral solvent or a mixed solvent of a non-aqueous neutral solvent and an aromatic solvent. At least one type of non-aqueous electrolytic composition is dissolved, a soluble electrolyte as a conductivity imparting agent is further added thereto, and this non-aqueous electrolytic composition solution is electrolyzed to electrodeposit a thin film containing silicon on the cathode body. be. (Unexamined Japanese Patent Publication No. 55-555
Publication No. 17).

(e)発明が解決しようとする問題点 しかしながら、上記第一の方法ではアモルファスシリコ
ン膜のit遺表装置複雑でイニシャルコストが高く、し
かも当該装置を稼動させるためのランニングコストが高
くなる上、7モル77スシリコン膜の大量生産が容易で
なかった。
(e) Problems to be Solved by the Invention However, in the first method, the amorphous silicon film IT display device is complicated and the initial cost is high, and the running cost for operating the device is also high. It has not been easy to mass produce Mole 77 silicon films.

又、上記第二及び第三の方法は、いずれも電解メッキ法
によりアモルファスシリコン膜を製造するものであり、
設備費及びランニングコストが安価である上、大面積の
アモルファスシリコンの薄膜を得易い等の可能性がある
反面、電流が基板の中央部より周辺部に集中する結果、
下地基板の周辺部に比較して中央部でのシリコンの成長
が着しく遅く膜厚が不均一で、しかむ緻密な膜が形成で
きず、安定な電気的特性が得られない等の欠点があった
In addition, the second and third methods above both produce an amorphous silicon film by electrolytic plating,
Although the equipment cost and running cost are low, and it is possible to easily obtain a large-area amorphous silicon thin film, on the other hand, as the current concentrates on the periphery of the substrate rather than the center,
There are disadvantages such as silicon growth in the central part of the base substrate is slow and slow compared to the peripheral part of the base substrate, the film thickness is uneven, it is impossible to form a dense film, and stable electrical characteristics cannot be obtained. there were.

(d)問題点を解決するための手段 本発明者は、一般に無電解法によってはシリコンを析出
させることができないとの従来の定説に逆らって非水系
溶媒中で無電解法により効率よくシリコンを析出させる
方法について多年に亘って鋭意検討を重ねた結果、驚く
べきことに、適当なシリコン化合物を非水系溶媒中にお
いて、強力な還元剤を用いることにより、アモルファス
シリコンを析出しうろことを見出し、本発明を完成する
に至ったものである。
(d) Means for Solving the Problems The present inventor has devised a method for efficiently depositing silicon in a non-aqueous solvent by an electroless method, contrary to the conventional theory that silicon cannot be deposited by an electroless method. As a result of many years of intensive research into methods of precipitation, we surprisingly discovered that amorphous silicon can be precipitated by placing an appropriate silicon compound in a non-aqueous solvent and using a strong reducing agent. This has led to the completion of the present invention.

即ち、本発明はシリコン化合物を含む非水系溶媒中に、
還元剤を添加して無電解法によりシリコンを生成するこ
とを特徴とするものである。
That is, the present invention provides a non-aqueous solvent containing a silicon compound,
This method is characterized in that silicon is produced by an electroless method by adding a reducing agent.

本発明で用いられるシリコン化合物には、シリコンテト
ラクロライド(SiC4’−)、 シリコンテトラブロ
マイド(S iB r<)、 シリコンテトライオグイ
  ド、(Sir、)、  SiCIBr、、  S 
 i  C12B  r2、 5iCt’+Br、5i
CIIs、S iC12I 2、S i C13I、5
iBr=I 、 S 1Br212及びS 1BrI 
3、ヘキサクロロジシラン(S i2c 1g)、オク
タクロロトリシラン(SiミコC1)、デカクロロテト
ラシラン(Si<CL。)、ドデカクロロペンタシラン
(SisC4’+2)、 テトフデカクo o ヘ14
サンラン(Si、tclz)等の5inXzn+z(n
は1又はそれ以トの整数、Xl、tF、CI、Br又は
I)などのハロゲン化ケイ素、トリクロロシラン(H8
iC1z)、ジクロロシラン(H28iCi2)、モノ
クロロシラン(H3S iC1)、)ジブロモシラン(
HS iB ri)、ジブロモシラン(H23iB r
2)、モノブロモシラン(Hx S i B r)、)
リアイオドシラン(H8iI=)、ノアイオドシラン(
H2SiI2)及びモノアイオドシラン(H=SiI)
などのハロゲン化シラン、更に、オルトケイ酸エステル
l”%が挙げられ、これらは各々単独で用いることも、
或は2以上を併用することもできる。
The silicon compounds used in the present invention include silicon tetrachloride (SiC4'-), silicon tetrabromide (SiBr<), silicon tetrabromide (Sir), SiCIBr, S
i C12B r2, 5iCt'+Br, 5i
CIIs, S iC12I 2, S i C13I, 5
iBr=I, S 1Br212 and S 1BrI
3. Hexachlorodisilane (Si2c 1g), octachlorotrisilane (SimicoC1), decachlorotetrasilane (Si<CL.), dodecachloropentasilane (SisC4'+2), Tetofudekaku o o He14
5inXzn+z(n
is an integer of 1 or more, silicon halides such as Xl, tF, CI, Br or I), trichlorosilane (H8
iC1z), dichlorosilane (H28iCi2), monochlorosilane (H3S iC1),) dibromosilane (
HS iB ri), dibromosilane (H23iB r
2), Monobromosilane (Hx SiBr),)
riaiodosilane (H8iI=), noiodosilane (
H2SiI2) and monoiodosilane (H=SiI)
halogenated silanes such as silanes, and orthosilicate esters 1"%, each of which can be used alone,
Alternatively, two or more can also be used together.

又、上記非水系溶媒としては、上記シリコン化合物を溶
解するものであれば特に限定されるものではなく、具体
的には、例えば、エチルアルコール、エチレングリコー
ル、エーテル、プロピレングリコール、プロピレンカー
ボネイト、エチレンジ7ミン、ジメチルスル7オキシド ヒドラジン、ジメチル7オルムアミド オルムアミド トラヒドロフラン、テトラメチレンスルホン、エチレン
カーボネー)、N,N−ノメチルアセトアミドなどが挙
げられ、これらは各々単独で用いることも、或は2種以
上を併用することもできる。
The non-aqueous solvent is not particularly limited as long as it dissolves the silicon compound, and specific examples include ethyl alcohol, ethylene glycol, ether, propylene glycol, propylene carbonate, and ethylene di7. amine, dimethylsulf7oxidehydrazine, dimethylsulfoamide, oleumamidetrahydrofuran, tetramethylenesulfone, ethylene carbonate), N,N-nomethylacetamide, etc., and these may be used alone or in combination. More than one species can also be used together.

そして本発明に用いられる還元剤としては、強力な還元
能力を有するものであれば特に限定されるものではなく
、具体的には、例えばリチウム、ナトリウム、カリウム
及びセシウム等のアルカリ金属やベリラム、マグネシウ
ム、カルシウム、ストロンチウム及びバリウム等のアル
カリ土金属及びこれらの水素化物、水素化リチウムアル
ミニウム、水素化ホウ素ナトリウム(ボロハイ)、次亜
リン酸及びその塩などが苧げられ、これらのうち上記非
水系溶媒に良く溶解する物質が特に好ましい。
The reducing agent used in the present invention is not particularly limited as long as it has a strong reducing ability, and specifically includes alkali metals such as lithium, sodium, potassium, and cesium, berylum, magnesium, etc. , alkaline earth metals such as calcium, strontium, and barium, and their hydrides, lithium aluminum hydride, sodium borohydride (borohydride), hypophosphorous acid and its salts, etc. Among these, the non-aqueous solvents mentioned above Particularly preferred are substances that are well soluble in .

本発明を実施するにあたり、上記非水系溶媒中のシリコ
ン化合物の濃度としては、特に制限がなく広い範囲内か
ら適宜選択することができるが、一般に、0.2モル溶
液ないし飽和溶液の任意の濃度とするのが好ましく、又
、上記還元剤の添加量は、特に制限されるものではない
が(溶液中に還元剤の結晶があってもよい)、使用する
シリコン化合物からシリコンを析出させるに必要なJ!
1!*tの1〜10倍量加えるのが好ましく、又反応温
度としでは室温から上記混合物より成る反応組成液の沸
点まで任意に選択して使用できる。モしてこの反応は、
シリコン化合物が一定量なくなるまで回分式に行っても
よく、又シリコン化合物及び還元剤の濃度が一定に維持
されるように連続的に行ってもよいのである。
In carrying out the present invention, the concentration of the silicon compound in the nonaqueous solvent is not particularly limited and can be appropriately selected within a wide range, but generally any concentration from a 0.2 molar solution to a saturated solution is used. Although the amount of the reducing agent added is not particularly limited (crystals of the reducing agent may be present in the solution), it is necessary to precipitate silicon from the silicon compound used. NaJ!
1! *It is preferable to add 1 to 10 times the amount of t, and the reaction temperature can be arbitrarily selected from room temperature to the boiling point of the reaction composition liquid consisting of the above mixture. This reaction is
It may be carried out batchwise until a certain amount of the silicon compound is used up, or it may be carried out continuously so that the concentrations of the silicon compound and reducing agent are maintained constant.

本発明に用いる反応槽としては、シリコン化合物と水分
との反応及びシリコン化合物の揮発を防止するため、窒
素、ヘリウム又はアルゴン等の不活性〃ス雰囲気下で、
密閉型のものが使用される。
The reaction tank used in the present invention is under an inert gas atmosphere such as nitrogen, helium, or argon in order to prevent the reaction between the silicon compound and moisture and the volatilization of the silicon compound.
A closed type is used.

そして、本発明の好ましい実施様態としては、シリコン
を基板上に生成させて当該基板上にシリコンの薄膜(メ
ッキ)を生成し、これによって太陽電池用の7モル77
スシリコン膜を製造しうる。
In a preferred embodiment of the present invention, silicon is produced on a substrate, and a thin film (plating) of silicon is produced on the substrate, whereby 7 mol 77
can produce silicon films.

上記基板としては、ニッケル、銅、モリブデン、ステン
レス、チタン、金等の金属の板又は箔、表面をニッケル
、銅、パラジウムやパラジウム(1物等及び/又は酸化
錫、酸化インゾウム及びこれらの混合物から成る透明導
電性酸化膜で被覆した    ′ガラス板、グラファイ
ト板或はプラスチック製のフィルム又は板等が用いられ
る。
The above substrate may be a plate or foil of metal such as nickel, copper, molybdenum, stainless steel, titanium, or gold, and the surface may be made of nickel, copper, palladium, palladium (1 substance, etc.) and/or tin oxide, inzoum oxide, or a mixture thereof. A glass plate, a graphite plate, or a plastic film or plate coated with a transparent conductive oxide film is used.

上記反応(メッキ)は、上記基板の表面を予めパラジウ
ム及び/又はパラジウム化合物等の触媒で表面処理を行
い、この処理基板を上述の反応組成液中に浸漬して温度
を調節したのち開始してもよいが、上述の反応組成液中
において、上記基板を陰極、白金板等の不溶性陽極を対
極とし、直流電源を用いて短時間(1〜5秒)の通電に
より上記基板を活性化し、これによって、還元反応を円
滑に進付させるのが経済的である (以下、電解活性化
法という)。
The above reaction (plating) is started after the surface of the above substrate is treated in advance with a catalyst such as palladium and/or a palladium compound, the treated substrate is immersed in the above reaction composition solution, and the temperature is adjusted. However, in the reaction composition solution described above, the substrate is used as a cathode and an insoluble anode such as a platinum plate is used as a counter electrode, and the substrate is activated by applying electricity for a short time (1 to 5 seconds) using a DC power source. It is economical to allow the reduction reaction to proceed smoothly (hereinafter referred to as electrolytic activation method).

電解活性化法の場合には、導電性を高めるために反応系
内に電解質を存在させるのが好ましい。
In the case of the electrolytic activation method, it is preferable to have an electrolyte present in the reaction system in order to improve conductivity.

電解質としては、リチウム、ナトリウム又はカリウム等
の過塩素酸塩、テトラブチルアンモニウム過塩素酸塩、
テトラブチルアンモニウム臭化物等が単独又は2以上使
用される。
As an electrolyte, perchlorate such as lithium, sodium or potassium, tetrabutylammonium perchlorate,
Tetrabutylammonium bromide or the like may be used alone or in combination.

上記電解質の添加量としては、用いる電解質や溶媒の種
類によっても異なるが、反応系の電気抵抗が最小になる
ように設定するのが好ましく、一般に、電解質も含めた
全反応組成物に対して0.5〜10重1%とするのが良
い。
The amount of the electrolyte added varies depending on the type of electrolyte and solvent used, but it is preferably set so that the electrical resistance of the reaction system is minimized. .5 to 10% by weight is preferable.

又、電解時の条件は、通常0.1−3mA/ca+”、
好ましくは0.2〜0.5mA/cm”で行なわれ、電
解温度は上述の範囲から任意に選択しうる。
In addition, the conditions during electrolysis are usually 0.1-3mA/ca+",
Electrolysis is preferably carried out at 0.2 to 0.5 mA/cm'', and the electrolysis temperature can be arbitrarily selected from the above-mentioned range.

電解槽としては、上記反応液に対して安定で、しかも窒
素、アルゴン等の不活性〃スを封入した密閉型の構造の
ものであれば、特に限定されるものではなく、例えば箱
型やビーカ型の電解槽でもよい。
The electrolytic cell is not particularly limited as long as it is stable with respect to the above reaction solution and has a sealed structure filled with an inert gas such as nitrogen or argon. For example, it may be box-shaped or beaker. A type electrolytic cell may also be used.

(e)作用 本発明ではシリコン化合物を還元剤で還元してシリコン
を生成するようにしたものであり、用いるシリコン化合
物や還元剤、更に反応温度によってシリコンの特性を変
化させたり或は反応速度を極めて簡単に調整しうる。
(e) Effect In the present invention, silicon is produced by reducing a silicon compound with a reducing agent, and the characteristics of silicon can be changed or the reaction rate can be changed depending on the silicon compound and reducing agent used, as well as the reaction temperature. Very easy to adjust.

特に本発明の実施様態においては、基板上にシリコン膜
を形成するにあたり、シリコン化合物を還元剤で還元し
てシリコンを生成するものであり、電解還元方法による
ものではないから、基板の中央部と周辺部のシリコン膜
にばらつきのない均−且つIIk密なシリコン膜を形成
しうる。
In particular, in the embodiment of the present invention, when forming a silicon film on a substrate, silicon is produced by reducing a silicon compound with a reducing agent, and is not performed by an electrolytic reduction method. It is possible to form a uniform and IIk dense silicon film without variations in the silicon film in the peripheral area.

(f)*施例 以下、本発明を実施例によりさらに詳細に説明するが、
本発明はこれに限定されるものではない。
(f) *Examples The present invention will be explained in more detail by examples below.
The present invention is not limited to this.

実施例1 容31130mlの蓋付きのテフロンライニングステン
レス製密閉型反応槽に、陽極として白金メッキしたチタ
ニウムネット、陰極として厚?!−0,11のチタン板
(3cmX 3 am)を約0.5cm、の間隔をおい
て取付け、更に温度計及び還流冷却器を取り付ける。
Example 1 A Teflon-lined stainless steel sealed reaction tank with a lid having a capacity of 31,130 ml was equipped with a platinum-plated titanium net as an anode and a thick titanium net as a cathode. ! -0.11 titanium plates (3 cm x 3 am) are attached at intervals of about 0.5 cm, and a thermometer and a reflux condenser are also attached.

上記反応槽に、モレキュラシーブスで乾燥後、減圧蒸留
により予め精製した炭酸プロピレン100tallに、
トリクロロシラン2.7g、次亜リン酸アンモニウム5
.4g及び塩化テトラ−n−ブチルアンモニウム2.0
gを各々加える。次いで蓋をして外部より加熱して78
〜80℃にてマグネチックスクーラーで攪拌しながら上
記両極間に定電流条件下(陰極の電流密度0.5+aA
 / 0m2)で、1秒間通電し反応を開始した。その
後電源を切り、78〜80℃に120分間保ったのちチ
タン板を取り出したところ当該チタン板上に黒カッ色の
シリコン膜が得られた。
Into the reaction tank, 100 tall of propylene carbonate, which had been dried with molecular sieves and purified in advance by vacuum distillation, was added.
2.7 g of trichlorosilane, 5 ammonium hypophosphite
.. 4g and tetra-n-butylammonium chloride 2.0
Add each g. Next, cover the lid and heat it from the outside.78
A constant current condition (cathode current density 0.5+aA) was applied between the above two electrodes at ~80°C while stirring with a magnetic cooler.
/ 0 m2), and electricity was applied for 1 second to start the reaction. After that, the power was turned off and the titanium plate was taken out after being kept at 78 to 80°C for 120 minutes, and a dark brown silicon film was obtained on the titanium plate.

なお、上記反応は市販のグローブボックスを用いて窒素
雰囲気中で水分の侵入を極力防止した環境で行った。
The above reaction was carried out in a nitrogen atmosphere using a commercially available glove box in an environment where the intrusion of moisture was prevented as much as possible.

上記シリコン膜を蛍光X線分析及びマススペクトル分析
により調べたところ、主成分はケイ素で、痕跡の塩素、
リンを含み、又厚さはチタン板の全面にわたり3μ−の
均一な膜であることがわかった。
When the above silicon film was examined by X-ray fluorescence analysis and mass spectrometry, it was found that the main component was silicon, with traces of chlorine.
It was found that the film contained phosphorus and had a uniform thickness of 3 μm over the entire surface of the titanium plate.

又このシリコン膜はX線回折の結果、非晶質であること
、更に熱分析により約20原子%の水素を含むことが認
められた。
Furthermore, as a result of X-ray diffraction, this silicon film was found to be amorphous, and thermal analysis revealed that it contained about 20 atomic percent hydrogen.

実施例2 実施例1と同様にして下記反応組成物及び基板を用いて
厚さ約2μ論のシリコン膜を得た。
Example 2 A silicon film having a thickness of approximately 2 μm was obtained in the same manner as in Example 1 using the following reaction composition and substrate.

ヘキサフルオロケイ酸アンモニウム  3.6g次亜リ
ン酸アンモニウム       5.4g過塩素酸テト
ラブチルアンモニウム  3.4g7オルムアミド  
         50醜!イソプロピルアルコール 
      50m1基板       モリブデン板
(厚み0 、1 mm)反応開始(電解活性化法) (陰極電流密度0.5mA / am2.5秒゛間)メ
ッキ温度         78〜80℃メッキ時間 
           60分このシリコン膜につき実
施例1と同様の分析をしたところ、該シリコン膜は、痕
跡のフッ素及びリンを含み、更に、約10原子%の水素
を含む非晶質シリコン膜で゛あることが認められた。
Ammonium hexafluorosilicate 3.6g Ammonium hypophosphite 5.4g Tetrabutylammonium perchlorate 3.4g 7 Orumamide
50 Ugly! Isopropyl alcohol
50m1 substrate Molybdenum plate (thickness 0, 1 mm) Reaction start (electrolytic activation method) (Cathode current density 0.5 mA / am 2.5 seconds) Plating temperature 78-80℃ Plating time
When this silicon film was analyzed for 60 minutes in the same manner as in Example 1, it was found that the silicon film was an amorphous silicon film containing traces of fluorine and phosphorus, and further containing about 10 atomic percent hydrogen. Admitted.

実施例3 実施例1と同様にして下記の反応組成物及び反応条件下
で厚さ約1μ曽のシリコン膜を得た。
Example 3 A silicon film having a thickness of about 1 μm was obtained in the same manner as in Example 1 using the following reaction composition and reaction conditions.

テトラエトキシシラン        4.2g次亜リ
ン酸アンモニウム       5.4g酢酸    
            5oIl11エチルアルコー
ル          50I111基板(パラジウム
処理したもの(注1))銅箔(厚み0.035+a+a
) 反応温度           78〜80 ’C反応
時間              40分間このシリコ
ン膜につき同様の分析をしたところ、該シリコン膜は、
痕跡のパラジウム及びリンを含み、更に約20原子%の
水素を含む非晶質シリコン膜であることが認められた。
Tetraethoxysilane 4.2g Ammonium hypophosphite 5.4g Acetic acid
5oIl11 Ethyl alcohol 50I111 Substrate (palladium treated (Note 1)) Copper foil (thickness 0.035+a+a
) Reaction temperature: 78 to 80'C Reaction time: 40 minutes When similar analysis was performed on this silicon film, the silicon film had the following properties.
It was found that the film was an amorphous silicon film containing traces of palladium and phosphorus, and also about 20 atomic percent hydrogen.

(注1)パラジウム処理 塩化パラジウム(P dC12・2 H20) 2 g
とエチルアルコール100mj!からなる液に、銅M(
基板)を1分間浸漬した後、熱風乾燥したものを用いた
(Note 1) Palladium-treated palladium chloride (P dC12.2 H20) 2 g
and 100mj of ethyl alcohol! Copper M (
The substrate was immersed for 1 minute and then dried with hot air.

実施例4 実施例1と同様にして下記の反応組成物及び反応条件下
で厚さ約3μlのシリコン膜を得た。
Example 4 A silicon film with a thickness of about 3 μl was obtained in the same manner as in Example 1 using the following reaction composition and reaction conditions.

シリコンテトラクロライド      3.4g次亜リ
ン酸ナトリウム        2.7Fl塩化テトラ
−n−ブチルアンモニウム 2.8gテトラヒドロ7う
°ン         100mZ基板       
   白金M(厚み0.05mm)反応温度     
      78〜80℃反応開始(電解活性化法) (Fii極電流密度0.2mA/c論2.3秒間)反応
時間              40分間このシリコ
ン膜につ!実施例1と同様の分析をしたところ、該シリ
コン膜は、痕跡の塩素、ナトリウム及びリンと約15原
子%の水素を含むシリコン非晶質膜であることが認めら
れた。
Silicon tetrachloride 3.4g Sodium hypophosphite 2.7Fl Tetra-n-butylammonium chloride 2.8g Tetrahydro7um 100mZ substrate
Platinum M (thickness 0.05mm) reaction temperature
Reaction started at 78-80°C (electrolytic activation method) (Fii electrode current density 0.2 mA/c theory 2.3 seconds) Reaction time 40 minutes This silicon film! When the same analysis as in Example 1 was performed, it was found that the silicon film was an amorphous silicon film containing traces of chlorine, sodium, and phosphorus, and about 15 atomic percent of hydrogen.

実施例5 実施例1と同様にして下記の反応組成物及び反応条件下
で厚さ約1μ鋤のシリコン膜を得た。
Example 5 A silicon film having a thickness of about 1 μm was obtained in the same manner as in Example 1 using the following reaction composition and reaction conditions.

テトラエトキシシラン        4.2g金属リ
すュウム           o、sg塩化テトラ−
n−ブチルアンモニウム 2,0゜0−へブタン   
          50m1エチルアルコール   
       50m1基板          チタ
ン板(厚み0.111−)反応温度         
  50〜60℃反応開始(電解活性化法) (陰極電流密度0.2mA/cs+”、3秒間)反応時
間              60分間このシリコン
膜につき実施例1と同様の分析をしたところ、痕跡のり
チュウムと約10原子%の水素を含むシリコン非晶質膜
であることが認められた。
Tetraethoxysilane 4.2g Lithium metal o, sg Tetra-chloride
n-butylammonium 2,0°0-hebutane
50ml ethyl alcohol
50m1 substrate titanium plate (thickness 0.111-) reaction temperature
Reaction started at 50-60°C (electrolytic activation method) (Cathode current density 0.2mA/cs+'', 3 seconds) Reaction time 60 minutes When this silicon film was analyzed in the same manner as in Example 1, traces of glue and approx. It was confirmed that the film was a silicon amorphous film containing 10 atomic % of hydrogen.

実施例6 実施例1と同様にして下記の反応組成物及び反応条件下
で厚さ約1μ−のシリコン膜を得た。
Example 6 A silicon film having a thickness of approximately 1 μm was obtained in the same manner as in Example 1 using the following reaction composition and reaction conditions.

テトラエトキシシラン        4.2gマグネ
シウム            1.2g臭化テトラ−
n−ブチルアンモニウム 3.2g炭酸プロピレン  
         50曽lエチルアルコール 基板          チタン板(厚み0.1mm)
反応温度           50〜60℃反応開始
(電解活性化法) (陰極電流密度0.2鴫A / c輸2、3秒間)反応
時間             110分間このシリコ
ン膜につ!&実施例1と同様の分析をしたところ、約1
0原子%の水素を含むシリコン非晶質膜であることが認
められた。
Tetraethoxysilane 4.2g Magnesium 1.2g Tetra-bromide
n-butylammonium 3.2g propylene carbonate
50ml ethyl alcohol substrate Titanium plate (thickness 0.1mm)
Reaction temperature: 50-60°C Reaction start (electrolytic activation method) (Cathode current density: 0.2 A/c for 2 to 3 seconds) Reaction time: 110 minutes on this silicon film! & When the same analysis as in Example 1 was conducted, approximately 1
It was confirmed that the film was a silicon amorphous film containing 0 atomic % of hydrogen.

実施例7 実施例1と同様にして下記の反応組成物及び反応条件下
で厚さ約0.5μ鴎のシリコン膜を得た。
Example 7 A silicon film having a thickness of about 0.5 μm was obtained in the same manner as in Example 1 using the reaction composition and reaction conditions described below.

シリコンテトラクロライド      3.4g水素化
ナトリウム          2.4g炭酸プロピレ
ン           100輪l基板(パラジウム
処理したもの(上記注1参照))銅箔(厚み0.035
−一) 反応温度           80〜90℃反応時間
              20分間このシリコン膜
につき実施例1と同様の分析をしたところ、痕跡のナト
リウム、塩素と約10原子%の水素を含むシリコン非晶
質膜であることが認められた。
Silicon tetrachloride 3.4 g Sodium hydride 2.4 g Propylene carbonate 100 wheels (palladium treated (see note 1 above)) Copper foil (thickness 0.035
-1) Reaction temperature: 80-90°C Reaction time: 20 minutes When this silicon film was analyzed in the same manner as in Example 1, it was found to be an amorphous silicon film containing traces of sodium and chlorine and about 10 atomic percent hydrogen. was recognized.

実施例8 実施例1と同様にして下記の反応組成物及び反応条件下
で厚さ約1μ−のシリコン膜を得た。
Example 8 A silicon film with a thickness of about 1 μm was obtained in the same manner as in Example 1 using the following reaction composition and reaction conditions.

テトラエトキシシラン        4.2g水素化
リチウムアルミニウム     3.8gテトラハイド
ロ7ラン       100醜l基板  約0.05
μ−の酸化インジウム膜を付した厚み0.5Iの〃ラス
板を、更にパラジウム処理(上記注1参照)したもの。
Tetraethoxysilane 4.2g Lithium aluminum hydride 3.8g Tetrahydro 7 run 100 Ugly substrate Approx. 0.05
A lath plate with a thickness of 0.5I coated with a μ- indium oxide film, further treated with palladium (see Note 1 above).

反応温度              65℃反応時間
            100分間このシリコン膜に
つき実施例1と同様の分析を    ゛したところ、約
15原子%の水素を含むシリコン非晶質膜であることが
認められた。
When this silicon film was analyzed in the same manner as in Example 1 at a reaction temperature of 65° C. and a reaction time of 100 minutes, it was found that it was an amorphous silicon film containing about 15 at. % of hydrogen.

上記実施例で示すように反応組成物及び反応条件を変化
させることにより厚みや水素ドープ比率の異なるシリコ
ン非晶質膜を極めて簡単に製造しうる。
As shown in the above examples, silicon amorphous films having different thicknesses and hydrogen doping ratios can be produced extremely easily by changing the reaction composition and reaction conditions.

(g)発明の効果 本発明はシリコン化合物を還元剤で還元してシリコンを
生成するものであるから、製造装置が簡単で設備費が安
価であると共にランニングコストがプラズマCVD法に
比較して着しく安価であり、しかも反応組成物及び反応
条件を変えることによりシリコン膜の特性を極めて簡単
に変えることができる。
(g) Effects of the invention Since the present invention generates silicon by reducing a silicon compound with a reducing agent, the manufacturing equipment is simple and the equipment cost is low, and the running cost is low compared to the plasma CVD method. It is very inexpensive, and the properties of the silicon film can be changed extremely easily by changing the reaction composition and reaction conditions.

又、本発明はシリコン化合物を還元剤で還元してシリコ
ンを生成するものであるから、電解還元法のように必ず
しも電極を必要とせず、このため、シリコンを反応槽中
に析出させることができる結果、シリコンの回収やその
精製等の後処理が簡便になしうるのである。
Furthermore, since the present invention generates silicon by reducing a silicon compound with a reducing agent, an electrode is not necessarily required unlike the electrolytic reduction method, and therefore silicon can be deposited in a reaction tank. As a result, post-processing such as recovery and purification of silicon can be easily performed.

更に、本発明の実施様態では、基板上にシリコン膜を形
成するにあたり、シリコン化合物を還元剤で還元してシ
リコンを生成するものであるから、基板の表面全体に均
−且つ緻密な膜を形成できる等の特有の効果を奏するの
である。
Furthermore, in the embodiment of the present invention, when forming a silicon film on a substrate, silicon is produced by reducing a silicon compound with a reducing agent, so a uniform and dense film is formed over the entire surface of the substrate. It has unique effects such as:

Claims (6)

【特許請求の範囲】[Claims] (1)シリコン化合物を含む非水系溶媒中に、還元剤を
添加して無電解法によりシリコンを生成することを特徴
とするシリコンの製造方法。
(1) A method for producing silicon, which comprises adding a reducing agent to a non-aqueous solvent containing a silicon compound to produce silicon by an electroless method.
(2)上記シリコンを基板の表面に生成させたことを特
徴とする特許請求の範囲第1項記載のシリコンの製造方
法。
(2) The method for manufacturing silicon according to claim 1, characterized in that the silicon is produced on the surface of a substrate.
(3)上記基板がその表面をパラジウム及び/又はパラ
ジウム化合物で前処理したものであることを特徴とする
特許請求の範囲第2項記載のシリコンの製造方法。
(3) The method for producing silicon according to claim 2, wherein the surface of the substrate is pretreated with palladium and/or a palladium compound.
(4)上記シリコン化合物がトリクロロシラン、ヘキサ
フルオロケイ酸アンモニウム、テトラエトキシシラン、
シリコンテトラクロライドから成る群より選ばれた少な
くとも1種であることを特徴とする特許請求の範囲第1
項ないし第3項のいずれかに記載のシリコンの製造方法
(4) The silicon compound is trichlorosilane, ammonium hexafluorosilicate, tetraethoxysilane,
Claim 1 characterized in that it is at least one member selected from the group consisting of silicon tetrachloride.
3. The method for producing silicon according to any one of items 3 to 3.
(5)上記還元剤が、アルカリ金属、アルカリ土金属及
びこれらの水素化物、水素化リチウムアルミニウム、次
亜リン酸及びその塩から成る群より選ばれた少なくとも
1種である特許請求の範囲第1項ないし第4項のいずれ
かに記載のシリコンの製造方法。
(5) Claim 1, wherein the reducing agent is at least one selected from the group consisting of alkali metals, alkaline earth metals, their hydrides, lithium aluminum hydride, hypophosphorous acid, and salts thereof. The method for producing silicon according to any one of items 1 to 4.
(6)上記シリコンの生成を、短時間の通電により開始
することを特徴とする特許請求の範囲第1項ないし第5
項のいずれかに記載のシリコンの製造方法。
(6) Claims 1 to 5 characterized in that the generation of silicon is started by applying electricity for a short time.
A method for producing silicon according to any one of paragraphs.
JP60137503A 1985-06-24 1985-06-24 Production of silicon Pending JPS61295220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60137503A JPS61295220A (en) 1985-06-24 1985-06-24 Production of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60137503A JPS61295220A (en) 1985-06-24 1985-06-24 Production of silicon

Publications (1)

Publication Number Publication Date
JPS61295220A true JPS61295220A (en) 1986-12-26

Family

ID=15200185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60137503A Pending JPS61295220A (en) 1985-06-24 1985-06-24 Production of silicon

Country Status (1)

Country Link
JP (1) JPS61295220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011194A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Medical & Graphic, Inc. Aggregate of semiconductor nanoparticle phosphors, method for production of the same, and single-molecule observation method using the same
WO2009011195A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle phosphor, method for production of the same, and semiconductor nanoparticle label utilizing the same
JP2012523305A (en) * 2008-04-09 2012-10-04 ピーエスティ・センサーズ・(プロプライエタリー)・リミテッド Method for producing stable oxygen-terminated semiconductor nanoparticles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011194A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Medical & Graphic, Inc. Aggregate of semiconductor nanoparticle phosphors, method for production of the same, and single-molecule observation method using the same
WO2009011195A1 (en) * 2007-07-18 2009-01-22 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle phosphor, method for production of the same, and semiconductor nanoparticle label utilizing the same
JPWO2009011194A1 (en) * 2007-07-18 2010-09-16 コニカミノルタエムジー株式会社 Aggregation of semiconductor nanoparticle phosphor, method for producing the same, and single molecule observation method using the same
JP2012523305A (en) * 2008-04-09 2012-10-04 ピーエスティ・センサーズ・(プロプライエタリー)・リミテッド Method for producing stable oxygen-terminated semiconductor nanoparticles

Similar Documents

Publication Publication Date Title
Park et al. Intrinsic instability of inorganic–organic hybrid halide perovskite materials
Heider et al. Molecular Silicon Clusters
EP0204563B1 (en) Process for depositing zinc oxide
Katayama et al. Electrodeposition of cobalt from an imide-type room-temperature ionic liquid
Tsuda et al. Nucleation and surface morphology of aluminum–lanthanum alloy electrodepsited in a LaCl3-saturated AlCl3–EtMeImCl room temperature molten salt
Faggiani et al. The cadmium (I) ion, Cd 2 2+; X-ray crystal structure of Cd 2 (AlCl 4) 2
TWI285437B (en) Photoelectric conversion element and manufacturing method therefor
US5120406A (en) Processes for preparation of polysilane
Majidzade et al. Electrodeposition of the Sb2Se3 thin films on various substrates from the tartaric electrolyte
JPS61295220A (en) Production of silicon
US4374163A (en) Method of vapor deposition
Tian et al. Recent advances in electrochemical-based silicon production technologies with reduced carbon emission
Suzuki et al. Ta3N5 Photoanodes Fabricated by Providing NaCl–Na2CO3 Evaporants to Tantalum Substrate Surface under NH3 Atmosphere
JPH03264683A (en) Production of disilane
Verde-Gómez et al. Aqueous solution reaction to synthesize ammonium hexachloroplatinate and its crystallographic and thermogravimetric characterization
JP4559642B2 (en) Active metal magnesium and method for producing polysilane using the same
Buchet et al. The effect of barbiturates on the hydrogen bonds of nucleotide base pairs
JPS6350496A (en) Production of polycrystalline silicon coating by electrolytic precipitation of silicon
JPH07316860A (en) Production of compound having silica-germanium bond
Downes et al. Electroreduction of Si (NCO) 4 for Electrodeposition of Si
JP3291564B2 (en) Method for producing network polymer having Si-Si bond as skeleton
JP3620909B2 (en) Process for producing silanes
Banister et al. Electrochemical synthesis of poly (sulphur nitride)
Serizawa et al. The Local Changes in the Physicochemical Properties during Cu Electrodeposition in an Ionic Liquid Composed of [CuCl2]–
Mislow et al. Retention stereochemistry in a Grignard displacement reaction at chiral phosphorus. Absolute configuration of O-menthyl S-methyl phenylphosphonothiolate