Nothing Special   »   [go: up one dir, main page]

JPS61271476A - Sonar - Google Patents

Sonar

Info

Publication number
JPS61271476A
JPS61271476A JP11452085A JP11452085A JPS61271476A JP S61271476 A JPS61271476 A JP S61271476A JP 11452085 A JP11452085 A JP 11452085A JP 11452085 A JP11452085 A JP 11452085A JP S61271476 A JPS61271476 A JP S61271476A
Authority
JP
Japan
Prior art keywords
spectrum
sound
distance
frequency
emission source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11452085A
Other languages
Japanese (ja)
Inventor
Hideaki Iwai
岩井 英昭
Nobuaki Okabashi
岡橋 伸彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11452085A priority Critical patent/JPS61271476A/en
Publication of JPS61271476A publication Critical patent/JPS61271476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable efficient and highly measurement of distance, by gauging relative distance between the target and a sonar based on the difference in the dependence on the frequency between a sound emission source spectrum and an audible sound spectrum. CONSTITUTION:An input sound wave 101 emitted from a target sound emission source is received with a receiver 1 and converted into an electrical signal to be fed to a receiver 2, the output of which is fed to a recording display circuit 1000 and an audible spectrum calculator 3. The calculator 3 calculates the difference due to frequency from an audible spectrum computed to be fed to a distance measuring device 4. A sound emission source spectrum generator 5 memorizes a sound emission source spectrum and data pertaining the coefficient of absorption loss over a specified frequency band beforehand and supplies the data to the measuring device 4. Then the measuring device 4 executes computation by a specified formula and outputs the results to the line 401 as measured distance. This facilitates the measurement of distance based on the difference between the sound emission source spectrum and the audible sound spectrum only through a wave receiving function.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はソーナー装置に関し、特に周波数特性が既知の
発音源を有する目標が放射した音波を受信するとともに
目標までの距離も計測しうる機能を備えたソーナー装f
j!tに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a sonar device, and in particular has a function of receiving sound waves emitted by a target having a sound source with known frequency characteristics and also measuring the distance to the target. Equipped with sonar equipment f
j! Regarding t.

〔従来の技術〕[Conventional technology]

ソーナー装置はよく知られておシ、またこれらソーナー
装置に関し目標の放射する音波を受波し目標に対する方
位情報等を得るいわゆるパッシブソーナー機能もしくは
この機能を備えたパッシブソーナー装置もよく知られて
いる。
Sonar devices are well known, and so-called passive sonar functions that receive sound waves emitted by a target and obtain information on the direction of the target, or passive sonar devices equipped with this function, are also well known. .

このような受波機能を備えたソーナー装置を搭載し水中
を航行しつつ目標の発する音波を受波する側の各種搭載
プラットホームにおいては、水上もしくは水中を航行す
る各種船舶の放射する発音源の周波数スペクトルは多く
の資料、実験等にもとづいて既知のものでアシ、受波信
号もこれら既知の周波数スペクトルを参照しつつ目的に
関する方位情報の取得、bるいは目標の識別等の各種運
用目的に利用されている。
On various onboard platforms equipped with sonar devices equipped with such a wave receiving function, which receive sound waves emitted by targets while navigating underwater, the frequency of the sound source emitted by various ships navigating on or in the water is used. The spectrum is known based on many materials and experiments, and the received signal is also used for various operational purposes such as obtaining direction information related to the objective, identifying targets, etc. while referring to these known frequency spectra. has been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来のこの種の受波機能金偏えたソーナー
装置は方位情報を得ることは可能でるるか距離情報を得
ることは本質的に不可能でろる。
However, with conventional sonar devices of this type having a biased reception function, it is possible to obtain azimuth information, but it is essentially impossible to obtain distance information.

従って目標とする船舶と自プラットホームとの距離情報
が必要となる場合にはアクチブソーナー装置もしくはア
クチブソーナー機能を付加して送。
Therefore, if distance information between the target ship and the own platform is required, an active sonar device or an active sonar function is added and sent.

受波間の時間と音波伝搬速度から計測するか、あるいは
発音源の移動速度ベクトルつま多目標とする船舶の移動
速度ベクトルを仮定し自船もこの移動速度ベクトルに対
応して移動することによって推定する方法等が利用され
ているが、いずれにせよ構成が複雑化しかつ被探知性の
高いアクチブソーナー機納の利用を前提とするかもしく
は誤差の大きく非効率的な推定計測にならざるを得ない
という欠点がめる。
It can be measured from the time between receiving waves and the sound wave propagation speed, or it can be estimated by assuming the moving speed vector of the sound source and the moving speed vector of the target ship, and then moving the own ship in accordance with this moving speed vector. Several methods are being used, but either method requires the use of active sonar equipment with a complicated configuration and high detection ability, or results in inefficient estimation measurements with large errors. Blame the flaws.

本発明の目的も上述した欠点を除去し、効率的かつ高精
度の距離計測が可能な受波機能を備えたソーナー装置を
提供することにろる。
It is also an object of the present invention to eliminate the above-mentioned drawbacks and provide a sonar device equipped with a wave receiving function capable of efficiently and highly accurate distance measurement.

〔問題点を解決する友めの手段〕[Friendly means of solving problems]

本発明の装置は、周波数スペクトルが既知の発音源を有
する船舶等の目標の放射音涙金受波するソーナー装置に
おいて、前記発音源の周波数スペクトルと受波信号の周
波数スペクトルとの周波数依存性の差異にもとづいて前
記目標とソーナー装置との相対距離を計測する相対距離
計測手段を備えて構成される。
The device of the present invention is a sonar device that receives radiated sound waves from a target such as a ship having a sound source with a known frequency spectrum, and is capable of determining the frequency dependence between the frequency spectrum of the sound source and the frequency spectrum of a received signal. The sonar device is configured to include relative distance measuring means for measuring the relative distance between the target and the sonar device based on the difference.

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明によるソーナー装置の一実施例の構成を
示すブロック図でおシ受波器1.受信器2、聴音スペク
トル算出器3.距離計測器4および発音源スペクトル発
生器5を備えて構成され、また通常のパッシブソーナー
機能と同様な受信信号の記録1表示を行なう記録表示回
路1000を併記して示す。
FIG. 1 is a block diagram showing the configuration of an embodiment of a sonar device according to the present invention. Receiver 2, auditory spectrum calculator 3. Also shown is a recording/displaying circuit 1000 which is configured to include a distance measuring device 4 and a sound source spectrum generator 5, and which records and displays a received signal similar to a normal passive sonar function.

目標の発音源の放射した入力音波101は受波器1によ
って受波され音響電気変換を行なって電気信号に変換さ
れ受信信号として受信器2に供給される。
An input sound wave 101 emitted by a target sound source is received by a receiver 1, subjected to acousto-electrical conversion, converted into an electrical signal, and supplied to a receiver 2 as a received signal.

受信器2は受信信号に所定の帯域制限、増幅処理等全施
したのち記録表示回路1000に供給しこれにより通常
のパッシブソーナー機能における処理と同様な内容の信
号処理を介して記録9表示が行なわれる。
The receiver 2 performs all predetermined band limiting, amplification processing, etc. on the received signal and then supplies it to the recording/displaying circuit 1000, whereupon the recording 9 display is performed through signal processing similar to that in a normal passive sonar function. It will be done.

受信器2の出力はまた聴音スペクトル算出器3にも供給
されこれによって聴音スペクトルが算出される。
The output of the receiver 2 is also supplied to an audible spectrum calculator 3, which calculates an audible spectrum.

聴音スペクトルは受信信号の周波数スペクトルでラシ、
予め設定する周波数範囲にわたっての周波数と受信レベ
ルとの特性を示すものである。この場合、受信レベルは
受信信号に対して所定の時間性なった統計処理を介して
求める時間平均値で表現し受信信号の短時間変動をほぼ
除去したものとしている。このような統計処理を行なう
所定の時間はソーナー装置の運用目的等を勘案し任意に
設定される。
The hearing spectrum is the frequency spectrum of the received signal,
It shows the characteristics of frequency and reception level over a preset frequency range. In this case, the received level is expressed as a time average value obtained through predetermined temporal statistical processing of the received signal, and short-term fluctuations in the received signal are almost eliminated. The predetermined time for performing such statistical processing is arbitrarily set in consideration of the purpose of operation of the sonar device, etc.

さて、こうして得られる聴音スペクトルは目標の発音源
の周波数スペクトルとは基本的に次の点が異っている。
Now, the auditory spectrum obtained in this manner basically differs from the frequency spectrum of the target sound source in the following points.

すなわち、目標とする船舶等の発音源、たとえはスクリ
ューノイズもしくは主機、補機の発する雑音等の周波数
スペクトルは多くの資料、実験等によってほぼ明確にそ
の特徴が把握されているが、これが水中を伝搬してソー
ナー装置に捕捉された状態では伝搬損失を受け、しかも
この伝搬損失のうちの吸収損失には周波数とともに損失
が急激に増大していくという周波数依存性があるためそ
の周波数スペクトルは当然もとの発音源の周波数スペク
トルと差異を生じてしまうこととなる。
In other words, the characteristics of the frequency spectrum of the sound source of the target ship, such as screw noise or noise emitted by the main engine or auxiliary equipment, have been almost clearly understood through many materials and experiments, but this is not the case when underwater. When it propagates and is captured by a sonar device, it suffers propagation loss, and absorption loss of this propagation loss has frequency dependence, meaning that the loss increases rapidly with frequency, so its frequency spectrum naturally changes. This results in a difference from the frequency spectrum of the sound source.

第2図は発音源スペクトルと聴音スペクトルの特徴を説
明するためのスペクトル特徴説明図でおる。
FIG. 2 is a spectral feature explanatory diagram for explaining the characteristics of the sound source spectrum and the auditory sound spectrum.

このスペクトル特徴説明図では周波数(力は約10KH
z以上から数10 KHz程度までのいわゆる高域周波
数帯を対象としておシ、このような周波数帯での発音源
スペクトルは公知の如くほぼ6dB/オクターブのレベ
ル下降を示し、これを実線の発音源スペクトルS L 
(7)で示す。
In this spectral feature explanatory diagram, the frequency (force is approximately 10KH)
The target is the so-called high frequency band from above Zz to several tens of KHz, and as is well known, the sound source spectrum in such a frequency band shows a level drop of approximately 6 dB/octave, which is represented by the solid line sound source. Spectrum S L
This is shown in (7).

また聴音スペクトルKLV1は点線で示しているが、こ
れら2つのスペクトル特性の差異でるる斜線部分が後述
する伝搬損失中の吸収損失によってもたらされるもので
ある。第2図ではこれら2つのスペクトルはP点でスペ
クトルレベルを正規化したものを示しており、従ってレ
ベルとしては相対スペクトルレベルドナっている。
Also, the hearing spectrum KLV1 is shown by a dotted line, and the diagonally shaded portion representing the difference between these two spectral characteristics is caused by absorption loss in the propagation loss, which will be described later. In FIG. 2, these two spectra are shown with the spectral level normalized at point P, and therefore the relative spectral levels are the same.

さて、水中における声涙伝搬における伝搬損失は特殊な
伝搬モードには着目せず、球面拡散に従う近似式として
通常次のfi1式が多用されている。
Now, for the propagation loss in the propagation of vocal tears in water, the following fi1 formula is often used as an approximation formula according to spherical diffusion without paying attention to any special propagation mode.

TL =20]ogR+(!R・−=fll(11式に
おいてTLは伝搬損失、Rは発音源からソーナー装置ま
での距離で201ogRは音波が水中を伝搬していくに
つれて拡散しつつエネルギーが減少していくための拡散
損失、またαRは伝搬媒質としての水による減衰にもと
づく吸収損失である。
TL = 20]ogR+(!R・-=fll (In equation 11, TL is the propagation loss, R is the distance from the sound source to the sonar device, and 201ogR is the energy decrease as the sound wave diffuses as it propagates through the water. αR is an absorption loss due to attenuation due to water as a propagation medium.

吸収損失α几の係数αは吸収損失係数と呼ばれ周波数の
関数かつdB/Kyd  (キロヤード)で表わされる
。このαによる周波数依存性が第2図に示す如く発音源
スペクトルに対する聴音スペクトルのスペクトル差異と
なって現われるのでろる。
The coefficient α of the absorption loss α is called an absorption loss coefficient and is a function of frequency and expressed in dB/Kyd (kiloyards). This frequency dependence due to α appears as a spectral difference between the audible sound spectrum and the sound source spectrum, as shown in FIG.

ふたたび第1図の実施例に戻って説明する。The explanation will be given again by returning to the embodiment shown in FIG.

聴音スペクトル算出器3は算出した聴音スペクトルから
次の(21式で示すΔ凡を算出しこれを距離計測器4に
供給する。
The auditory spectrum calculator 3 calculates the following ΔB expressed by Equation 21 from the calculated auditory spectrum, and supplies this to the distance measuring device 4.

Δ R= )LL  (fi )−KL(fj)   
   ・・・・・・・・・(2)(2)式に示すfiお
よびfjは任意の2周波数である。
ΔR=)LL(fi)−KL(fj)
(2) fi and fj shown in equation (2) are two arbitrary frequencies.

また、発生源スペクトル発生器5は予め発音源スペクト
ル8L(,4に関するデータを所定の周波数帯域にわた
って記憶し、また吸収損失係数αに関するデータも所定
の周波数のものについて記憶しておく。吸収損失係数α
は公知の実験式にもとづき運用上予め設定する周波数に
ついて求めたものを利用する。
Further, the source spectrum generator 5 stores in advance data regarding the sound source spectra 8L (, 4) over a predetermined frequency band, and also stores data regarding the absorption loss coefficient α for a predetermined frequency. α
uses a frequency determined in advance for operational purposes based on a known experimental formula.

発生源スペクトル発生器5はソーナー装備運用、  の
都度指定されるfiおよびfjに対応する次の(31゜
(41式で示すΔSおよびΔαを求めて距離計測器4に
供給する。
The source spectrum generator 5 calculates the next ΔS and Δα shown by equation 41 (31°) corresponding to fi and fj specified each time the sonar equipment is operated, and supplies them to the distance measuring device 4.

ΔS =SL(fi)  8LCfj)  ・・・叫・
・(3)Δα=α(fi )−α(fj)    ・・
・・・・・・・(41距w&凡は次の(6)式による演
算を介して求めることができる。
ΔS = SL (fi) 8LCfj) ・・・Scream・
・(3) Δα=α(fi)−α(fj)...
(41) The distance w & can be obtained through calculation using the following equation (6).

B、= −(ΔS−ΔR)      ・・・・・・・
・・15)Δα 距離計測器4は(5)式による演算を実行し出方ライン
401に計測距離として出力し、かくして発音源スペク
トルと聴音スペクトルとの差異にもとづく距離計測が受
波機能のみを介して容易に実施できる。
B, = −(ΔS−ΔR) ・・・・・・・・・
...15) Δα The distance measuring device 4 executes the calculation according to equation (5) and outputs it as the measured distance to the output line 401, and thus the distance measurement based on the difference between the sound source spectrum and the hearing spectrum can only function as a wave receiving function. It can be easily implemented through

なお、本実施例では使用周波数帯域の下限を10KHz
程度、上限は数10KHz程度のいわゆる高域周波数帯
を対象としているが、この周波数帯域は運用目的等を勘
案し任意に設定しつることは明らかでおる。
In addition, in this example, the lower limit of the frequency band used is 10KHz.
The frequency range and upper limit are intended for a so-called high frequency band of about several tens of kilohertz, but it is clear that this frequency band can be arbitrarily set in consideration of the operational purpose and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、周波数スペクトルが
既知の発音源を有する船舶等の目標の放射音v金受敵す
るソーナー装置において、耐記発音源の周波数スペクト
ルと受波信号の周波数スペクトルの周波数依存性の差異
にもとづいて目標とソーナー装置との相対圧111it
−計測する手段を備えることにより、アクチブソーナー
機能の付加を必要とせず、また推定等による精度の低下
を基本的に排除した距離計測が可能なソーナー装置が実
現できるという効果がるる。
As explained above, according to the present invention, in a sonar device that detects the radiated sound of a target such as a ship having a sound source whose frequency spectrum is known, the frequency spectrum of the memorized sound source and the frequency spectrum of the received signal can be Relative pressure between target and sonar device 111it based on dependence difference
- By providing a measuring means, it is possible to realize a sonar device that does not require the addition of an active sonar function and is capable of distance measurement that basically eliminates a decrease in accuracy due to estimation or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるソーナー装置の一実施例の構成を
示すブロック図、第2図は発音源スペクトルと聴音スペ
クトルの特徴を説明するためのスペクトル特徴説明図で
るる。 1・・・・・・受波器、2・・・・・・受信器、3・・
・・・・聴音スペクトル算出器、4・・・・・・距離計
測器、5・・・・・・発音源スペクトル発生器。 代理人 弁理士  内 原   晋  −1/ :、、
 ” ” パ、で・ # 1 面 第 2 図
FIG. 1 is a block diagram showing the configuration of an embodiment of a sonar device according to the present invention, and FIG. 2 is a spectral feature explanatory diagram for explaining the characteristics of a sound source spectrum and an audible sound spectrum. 1...Receiver, 2...Receiver, 3...
... Auditory spectrum calculator, 4 ... Distance measuring device, 5 ... Sound source spectrum generator. Agent Patent Attorney Susumu Uchihara -1/ :,,
” Pa, de # 1 side 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 周波数スペクトルが既知の発音源を有する船舶等の目標
の放射音波を受波するソーナー装置において、前記発音
源の周波数スペクトルと受波信号の周波数スペクトルと
の周波数特性の差異にもとづいて前記目標とソーナー装
置との相対距離を計測する相対距離計測手段を備えて成
ることを特徴とするソーナー装置。
In a sonar device that receives sound waves radiated from a target such as a ship having a sound source with a known frequency spectrum, the frequency spectrum is determined based on the difference in frequency characteristics between the frequency spectrum of the sound source and the frequency spectrum of the received signal. A sonar device comprising a relative distance measuring means for measuring a relative distance to the sonar device.
JP11452085A 1985-05-28 1985-05-28 Sonar Pending JPS61271476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11452085A JPS61271476A (en) 1985-05-28 1985-05-28 Sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11452085A JPS61271476A (en) 1985-05-28 1985-05-28 Sonar

Publications (1)

Publication Number Publication Date
JPS61271476A true JPS61271476A (en) 1986-12-01

Family

ID=14639805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11452085A Pending JPS61271476A (en) 1985-05-28 1985-05-28 Sonar

Country Status (1)

Country Link
JP (1) JPS61271476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025264A1 (en) * 1994-03-15 1995-09-21 Energy And Environmental Technologies Corp. Apparatus and method for detecting ultrasonic waves propagated from within a selected distance
JP2012198091A (en) * 2011-03-22 2012-10-18 Nec Corp Object detection supporting system, control method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025264A1 (en) * 1994-03-15 1995-09-21 Energy And Environmental Technologies Corp. Apparatus and method for detecting ultrasonic waves propagated from within a selected distance
JP2012198091A (en) * 2011-03-22 2012-10-18 Nec Corp Object detection supporting system, control method and program
US9075133B2 (en) 2011-03-22 2015-07-07 Nec Corporation Object detection and tracking support system, control method, and program

Similar Documents

Publication Publication Date Title
US7308105B2 (en) Environmental noise monitoring
US20070058488A1 (en) Sonar system and process
US5317543A (en) Method and sensor for determining the distance of sound generating targets
US20170270775A1 (en) PASS-Tracker: Apparatus and Method for Identifying and Locating Distressed Firefighters
JPS61271476A (en) Sonar
Jacobsen Random errors in sound power determination based on intensity measurement
JP3402711B2 (en) Sound intensity measurement device
RU2130597C1 (en) Device and method for determination of pressure and velocity of motion of waves, of velocity of sound in their propagation medium and direction to sound source
JP2001159559A (en) Noise measuring method
KR20200030807A (en) Apparatus and method for evaluating sound power for multiple noise source
JP2779563B2 (en) Transmitter and receiver for Doppler acoustic radar
US3234502A (en) Echo ranging apparatus
JPH0228116B2 (en)
US3531764A (en) Wind compensated acoustic direction finder
JP3506604B2 (en) Distance detecting device and distance detecting method for navigating object
JPH06273198A (en) Wave characteristic extractor
RU2748934C1 (en) Method for measuring speech intelligibility
JP2000241545A (en) Device and method for detecting distance to navigation object
JPH10160615A (en) Acoustic device for specifying leakage position
JPH0850172A (en) Sound wave direction finding device
RU98254U1 (en) MULTI-FREQUENCY CORRELATION HYDROACOUSTIC LAG
JPH05157835A (en) Distance detecting method and device utilizing propagation characteristics of foghorn sound
JPH02262082A (en) Fish-finder
JP3506605B2 (en) Apparatus and method for detecting speed of navigation object
Song et al. Implementation of a One-Channel Acoustic Distance Measurement Method Using the Cross-Spectrum of Actual and Pseudo Observations