Nothing Special   »   [go: up one dir, main page]

JPS61277052A - Eddy current flaw detection test for steel plate - Google Patents

Eddy current flaw detection test for steel plate

Info

Publication number
JPS61277052A
JPS61277052A JP60118711A JP11871185A JPS61277052A JP S61277052 A JPS61277052 A JP S61277052A JP 60118711 A JP60118711 A JP 60118711A JP 11871185 A JP11871185 A JP 11871185A JP S61277052 A JPS61277052 A JP S61277052A
Authority
JP
Japan
Prior art keywords
flaw detection
flaw
detection probe
steel plate
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60118711A
Other languages
Japanese (ja)
Inventor
Takashi Kawahara
河原 孝
Kuniaki Sato
邦章 佐藤
Futoshi Sakamoto
阪本 太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60118711A priority Critical patent/JPS61277052A/en
Publication of JPS61277052A publication Critical patent/JPS61277052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable the eddy current flaw detection of a steel plate at a high S/N ratio, by setting the diameter, test frequency, lift-off and phase difference of a flaw detection probe to specified values. CONSTITUTION:In the diameter of a flaw detection probe, a flaw detection probe with a diameter of 5mm has the highest detection capacity to a hot rolled steel plate S in order to detect the minute flaw of the hot rolled steel plate S and, in this case, said diameter is set to a range of 2.5-6mm. Sensitivity is well as lift-off, that is, the distance between the flaw detection probe 42 and the hot rolled steel plate S becomes small and, in order to stably detect a flaw, lift-off (l) is set to a range of 0.4-1.2mm. In usual, it is desirable that test frequency, that is, the AC frequency imparted to the flaw detection probe 42 is high in order to perform the flaw detection of a minute flaw but, contrarily, noise is also easy to enter said probe 42. Detection capacity is best at frequency of 256kHz with respect to the minute flaw of the hot rolled steel plate and frequency is set to a range of 100-300kHz. The phase difference between the AC applied to the flaw detection probe 42 and the flaw signal from the flaw detection probe 42 is set to 100-160 deg..

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は鋼板の渦流探傷試験方法に関する。[Detailed description of the invention] (Industrial application field) This invention relates to an eddy current testing method for steel plates.

(従来の技術) 一般に熱延鋼板の表面疵検査は、圧延巻取り直後のホッ
トコイルを数10本に1本の割合で抜取り、巻戻し設備
でコイルの一部を巻戻して目視によって検査する方式が
一般的である。
(Prior art) In general, surface flaw inspection of hot-rolled steel sheets involves sampling one out of ten hot coils immediately after rolling and winding, unwinding a portion of the coil using unwinding equipment, and visually inspecting it. This method is common.

しかしながら、ホットコイル表面にはスケールが発生し
ているため、その内部に隠れている微小紙(チルヘゲ疵
、スケール疵等)の検出は人間の目視では対応できない
However, since scale is generated on the surface of the hot coil, it is impossible to detect microscopic paper (chill hege flaws, scale flaws, etc.) hidden inside the hot coil by human visual inspection.

そのため、後工程の酸洗ライン等で表面スケールが除去
されることにより、スケール下の疵が発見されることか
ら工程混乱の原因となっている。
Therefore, when the surface scale is removed in a post-process pickling line or the like, flaws under the scale are discovered, causing process confusion.

このようなことから人間の目視に代わって微小紙を検出
できる表面疵検出装置が望まれている。
For this reason, there is a need for a surface flaw detection device that can detect minute paper defects in place of human visual inspection.

導電体の表面および表層部の疵検出には渦流検出器が優
れており多方面に利用されている。この渦流検出器で疵
検出を行なう場合、探傷プローブの大きさく直径)、−
探傷プローブと被検査物すなわち鋼板との距離、試験周
波数および人力信号と出力信号との位相差が問題であり
、これらを最適にすることが安定した検出を行なうため
に重要である。
Eddy current detectors are excellent for detecting flaws on the surface and surface layer of conductors and are used in a wide variety of applications. When detecting flaws using this eddy current detector, the size of the flaw detection probe (diameter), -
The distance between the flaw detection probe and the object to be inspected, that is, the steel plate, the test frequency, and the phase difference between the human input signal and the output signal are important issues, and optimizing these is important for stable detection.

しかして、熱延鋼板の渦流探傷試験では、熱延鋼板を長
手方向に送りながら相互誘導自己比較型プローブにより
探傷が、搬送による鋼板の振動および鋼板表面状態、疵
の形態等によりノイズが発生する。
However, in eddy current testing of hot rolled steel sheets, the hot rolled steel sheet is transported longitudinally and detected using a mutual induction self-comparison probe, but noise is generated due to the vibration of the steel sheet due to transportation, the surface condition of the steel sheet, the form of flaws, etc. .

したがって、探傷作業に先立ち対比試験片を用い、SN
比が最良となる試験周波数および位相角を設定する。な
お、金属板を送りながら探傷することは、たとえば特開
昭55−103459号公報で公知である。
Therefore, prior to flaw detection work, a comparison test piece is used, and the SN
Set the test frequency and phase angle for the best ratio. Note that detecting flaws while feeding a metal plate is known, for example, in Japanese Patent Application Laid-Open No. 55-103459.

(発明が解決しようとする問題点) ところで、従来、熱延鋼板を渦流探傷試験する方法とし
て、探傷プローブと被検査物すなわち鋼板との距離を一
定に保持する有効な方法がなく実現が難しかった。
(Problems to be Solved by the Invention) Conventionally, as a method for eddy current flaw detection of hot rolled steel plates, there was no effective method for maintaining a constant distance between the flaw detection probe and the object to be inspected, that is, the steel plate, making it difficult to implement. .

そのため、従来の方法では、上記試験周波数および位相
角以外の探傷試験条件は特に考慮せずに・これらを設定
していた。
Therefore, in the conventional method, flaw detection test conditions other than the above-mentioned test frequency and phase angle were set without particular consideration.

このため、探傷試験条件によっては、SN比がばらつき
、疵の見落しが生じて製品の品質を十分に保証すること
ができなかった。
For this reason, depending on the flaw detection test conditions, the signal-to-noise ratio varies, and flaws may be overlooked, making it impossible to fully guarantee the quality of the product.

そこで、この発明は鋼板の表面傷を最良のSN比で検出
することができる渦流探傷試験方法を提供しようとする
ものである。
Therefore, the present invention aims to provide an eddy current flaw detection test method that can detect surface flaws on steel plates with the best signal-to-noise ratio.

(問題点を解決するための手段) この発明の渦流探傷試験方法は、相互誘導自己比較5深
傷プローブを用いて鋼板を送りながら渦流探傷試験する
。そして、SN比が最良となるように、直径が2.5〜
Gl1層の探傷プローブを用い、試験周波数を1011
1〜300kHz、リフトオフを0.4〜1.2 am
および位相差を100〜160度にそれぞれ設定して試
験する。ここで、リフトオフは試験コイルの下面と鋼板
の表面との間の距離を示し、位相差は入力信号(基準と
する電圧あるいは発振器出力電圧)と出力信号(信号電
圧)との位相差を示す。
(Means for Solving the Problems) The eddy current flaw detection testing method of the present invention performs an eddy current flaw detection test while feeding a steel plate using a mutual induction self-comparison 5 deep flaw probe. Then, the diameter should be 2.5~2.5 to give the best S/N ratio
Using a Gl1 layer flaw detection probe, the test frequency was set to 1011.
1-300kHz, lift-off 0.4-1.2 am
and the phase difference is set to 100 to 160 degrees. Here, lift-off indicates the distance between the lower surface of the test coil and the surface of the steel plate, and phase difference indicates the phase difference between the input signal (reference voltage or oscillator output voltage) and the output signal (signal voltage).

(作用) 探傷プローブの直径、試験周波数、リフトオフおよび位
相差の特定された値によって、高いSN比で鋼板の渦流
探傷が行われる。したがって、チルヘゲ傷などの微小な
傷でも検出することができる。
(Operation) Eddy current flaw detection of steel plates is performed with a high signal-to-noise ratio by using specified values of the flaw detection probe diameter, test frequency, lift-off, and phase difference. Therefore, even minute scratches such as Chirhege scratches can be detected.

(実施例) 第1図はおよび第2図は、この発明を実施する渦流探傷
試験装置の一部を示しており、第1図は探傷ヘッド全体
の側面図および第2図はハウジングの詳細を示している
(Example) Fig. 1 and Fig. 2 show a part of an eddy current flaw detection test device that implements the present invention, Fig. 1 is a side view of the entire flaw detection head, and Fig. 2 shows details of the housing. It shows.

探傷ヘッドlのヘッド本体2は、熱延鋼板Sの直上にフ
レーム3によって支持されている。ヘッド本体2は垂直
軸周りに回転する筒軸5を備えており、筒軸5内には信
号配線用コンジットおよび導管(いずれも図示しない)
が取り付けられている。また、筒軸5には流体供給ロー
タリージヨイント6を介して減速機7が、流体供給ロー
タリージヨイント6および固定配管9を介して流体供給
iK(図示しない)がそれぞれ接続されている。回゛転
駆動用ACモータ8は減速機7を介して筒軸5を回転駆
動する。
A head body 2 of the flaw detection head I is supported by a frame 3 directly above the hot rolled steel plate S. The head body 2 includes a cylindrical shaft 5 that rotates around a vertical axis, and within the cylindrical shaft 5 are a signal wiring conduit and a conduit (none of which are shown).
is installed. Further, a reduction gear 7 is connected to the cylinder shaft 5 via a fluid supply rotary joint 6, and a fluid supply iK (not shown) is connected via the fluid supply rotary joint 6 and a fixed pipe 9. The rotational drive AC motor 8 rotationally drives the cylindrical shaft 5 via the reducer 7 .

さらに、上記探傷ヘッド1は信号配線部11および非接
触回転トランス部またはスリップリング12を備えてお
り、これらは筒軸5との間で信号を送受信する。信号配
線12は探傷器の入出力部(図示しない)に接続されて
いる。
Further, the flaw detection head 1 includes a signal wiring section 11 and a non-contact rotating transformer section or slip ring 12, which transmit and receive signals to and from the cylinder shaft 5. The signal wiring 12 is connected to an input/output section (not shown) of the flaw detector.

上記筒軸5の下端には水平に延びるアーム15が取り付
けられており、アーム15の両端にはそれぞれハウジン
グ21が固着されている。アーム15内には流体供給孔
(図示しない)が設けられている。
A horizontally extending arm 15 is attached to the lower end of the cylinder shaft 5, and a housing 21 is fixed to each end of the arm 15. A fluid supply hole (not shown) is provided in the arm 15 .

ハウジング21は円筒状をしており、頂部は塞がれ、下
部は開口している。ハウジング21の頂部から下端近く
まで、ハウジング21と同心に流体供給管27が延びて
いる。流体供給管27は上記供給孔に連通している。ハ
ウジング21の周壁22内には上下に延びる複数の導孔
23が設けられており、周壁22の下端寄りに内方に向
かって開口する複数の小孔24が設けられている。導孔
23の上端は供給孔に、また下端は小孔24に通じてい
る。
The housing 21 has a cylindrical shape, with a closed top and an open bottom. A fluid supply pipe 27 extends concentrically with the housing 21 from the top of the housing 21 to near the bottom end. The fluid supply pipe 27 communicates with the supply hole. A plurality of guide holes 23 extending vertically are provided in the peripheral wall 22 of the housing 21, and a plurality of small holes 24 opening inward are provided near the lower end of the peripheral wall 22. The upper end of the guide hole 23 communicates with the supply hole, and the lower end communicates with the small hole 24.

ケーシング31は二重円筒状をしており、外周面がハウ
ジング21の下部に、また中央の貫通孔32に前記流体
供給管27がそれぞれ遊合してい葛、遊合部の間隙は1
層−程度に設定している。この実施例ではケーシング3
1の外径が52mm 、高さが45mmである。また、
流体供給管27の外径は10wmで、貫通孔32の直径
は12mmである。したがって、ケーシング31はこの
間隙の範囲内で上下、左右に移動自在であり、傾斜可能
である。ケーシング31の貫通孔32において、流体供
給管27の下端から下方の部分は流体溜り33となって
いる。ケーシング31の外壁35と内壁36との間の環
状部に探傷プローブ42が内蔵されている。以下、ケー
シング31と探傷プローブ42およびAGC検出プロー
ブ43とを流体フロート部30という。
The casing 31 has a double cylindrical shape, and the outer peripheral surface is connected to the lower part of the housing 21, and the fluid supply pipe 27 is connected to the through hole 32 in the center, and the gap between the connected parts is 1.
It is set to layer - degree. In this example, the casing 3
1 has an outer diameter of 52 mm and a height of 45 mm. Also,
The outer diameter of the fluid supply pipe 27 is 10 wm, and the diameter of the through hole 32 is 12 mm. Therefore, the casing 31 is movable up and down, left and right, and can be tilted within the range of this gap. In the through hole 32 of the casing 31, a portion below the lower end of the fluid supply pipe 27 is a fluid reservoir 33. A flaw detection probe 42 is built into an annular portion between an outer wall 35 and an inner wall 36 of the casing 31 . Hereinafter, the casing 31, the flaw detection probe 42, and the AGC detection probe 43 will be referred to as the fluid float section 30.

流体フロート部30が最高位置にあるとき、ケージング
31および探傷プローブ42およびAGO検出プローブ
43の下端面が一致するように探傷ヘッドlは取り付け
られている。したがって、流体供給管27の長さはこれ
の下端がハウジング21の下端面より少し上目(約3 
mm)に来るようにしである。
The flaw detection head l is attached so that the lower end surfaces of the casing 31, the flaw detection probe 42, and the AGO detection probe 43 are aligned when the fluid float portion 30 is at the highest position. Therefore, the length of the fluid supply pipe 27 is such that the lower end of the fluid supply pipe 27 is slightly higher than the lower end surface of the housing 21 (approximately 3
mm).

搬送振動や周囲温度の変化などの影響を最小に抑えるた
め、探傷プローブ42は相互誘導自己比較型探傷プロー
ブを使用する。探傷プローブ42は前記信号配線に接続
されており、下端面が熱延鋼板S表面に面している。A
GO検出プローブ43は距離補正用検出器で熱延鋼板S
と探傷プローブ42との距離に短時間内での変動が起っ
た場合、検出信号を補償する。
In order to minimize the effects of transport vibrations, changes in ambient temperature, etc., the flaw detection probe 42 uses a mutual induction self-comparison type flaw detection probe. The flaw detection probe 42 is connected to the signal wiring, and its lower end face faces the surface of the hot rolled steel plate S. A
The GO detection probe 43 is a distance correction detector, and the GO detection probe 43 is a distance correction detector.
If a change occurs in the distance between the flaw detection probe 42 and the flaw detection probe 42 within a short period of time, the detection signal is compensated.

探傷プローブ径は、熱延鋼板Sの微細疵を検出するため
には、大きすぎても小さすぎてもいけない。一般的に探
傷プローブ径内に疵が入る大きさにすべきであって、疵
の中に探傷プローブ42が入るようではいけない、これ
らのことを考慮して種々の直径の探傷プローブ42を製
作し、テストした結果を第3図に示す、第3図から明ら
かなように、直径5■の探傷プローブが熱延鋼板Sに対
しては最も検出能が高く、2.5〜6鵬鳳が適切な範囲
である。
In order to detect minute flaws in the hot rolled steel sheet S, the diameter of the flaw detection probe must not be too large or too small. Generally, the flaw detection probe 42 should be large enough to fit within the diameter of the flaw, and the flaw detection probe 42 should not fit inside the flaw.With these considerations in mind, flaw detection probes 42 of various diameters are manufactured. The test results are shown in Figure 3.As is clear from Figure 3, a flaw detection probe with a diameter of 5cm has the highest detection ability for the hot rolled steel plate S, and a flaw detection probe of 2.5 to 6cm is appropriate. This is a range.

渦流探傷試験は走行している熱延鋼板Sについて行なわ
れる。回転駆動用ACモータ8により筒軸5を回転駆動
すると、アーム15が回転する。アーム15両端の探傷
プローブ42は円弧を描きなから熱延鋼板Sの表面を幅
方向に走査する。
The eddy current flaw detection test is performed on the hot rolled steel sheet S while it is running. When the cylinder shaft 5 is rotationally driven by the rotational drive AC motor 8, the arm 15 rotates. The flaw detection probes 42 at both ends of the arm 15 scan the surface of the hot rolled steel sheet S in the width direction while drawing a circular arc.

流体フロート部30の貫通孔32の流体溜り33に流体
供給管27を通じて流体(圧縮空気)を供給すると、供
給された流体は流体溜り33に一旦貯蔵されつつ熱延鋼
板S表面に噴出する。これによって、流体フロート部3
0は浮力を受は一定の高さに浮上し、熱延鋼板Sの波あ
るいはうねりに応じて上下する。
When fluid (compressed air) is supplied to the fluid reservoir 33 of the through hole 32 of the fluid float section 30 through the fluid supply pipe 27, the supplied fluid is temporarily stored in the fluid reservoir 33 and is ejected onto the surface of the hot rolled steel sheet S. As a result, the fluid float section 3
0 floats to a certain height due to buoyancy and moves up and down according to the waves or undulations of the hot-rolled steel sheet S.

リフトオフすなわち探傷プローブ42と熱延鋼板Sとの
距離は近い方が感度が良い。しかし、近ずけすぎると熱
延鋼板Sと探傷プローブ42が衝突する危険性がある。
The shorter the distance between the lift-off probe 42 and the hot-rolled steel sheet S, the better the sensitivity. However, if they are brought too close, there is a risk that the hot rolled steel plate S and the flaw detection probe 42 will collide.

第4図はリフトオフ見とSN比との関係の一例を示して
ル)る。この図から明らかなように、安定して疵を検出
するためには、リフトオフ見は0.4〜1.2 mmの
範囲にすることが良い、ケーシング31の浮上高さ、す
なわちリフトオフ又は流体溜り33の大きさに関係があ
り、これの直径dおよび深さhを大きくとるほどリフト
オフ文は大きくなる。上記のように、リフトオフ又は最
適値に保持することが重要である。そこで、この実施例
では、流体溜り33の直径dは48■とできるだけ大き
くし、その高さhを5■として供給流体の圧力に無関係
に一定のリフトオフ交、約0.6ffifflを保持す
るようにしている。なお、流体溜り33の寸法を適当に
選ぶことにより、第5図に示すように供給流体の圧力に
無関係にリフトオフ立をほぼ一定に保持できる。− ハウジング21の小孔24から噴出する流体は、フロー
ト部30の周囲に高圧流体層を形成する。これより、ケ
ーシング31はハウジング21とほぼ同心に保持され、
ハウジング21あるいは流体供給管27に接触すること
はない。
FIG. 4 shows an example of the relationship between lift-off observation and S/N ratio. As is clear from this figure, in order to stably detect flaws, the lift-off height is preferably in the range of 0.4 to 1.2 mm. 33, and the larger the diameter d and depth h of this, the larger the lift-off sentence becomes. As mentioned above, lift-off or holding at an optimum value is important. Therefore, in this embodiment, the diameter d of the fluid reservoir 33 is made as large as possible to 48 mm, and the height h is set to 5 mm to maintain a constant lift-off angle of about 0.6 ffiffl regardless of the pressure of the supplied fluid. ing. Note that by appropriately selecting the dimensions of the fluid reservoir 33, the lift-off position can be maintained substantially constant regardless of the pressure of the supplied fluid, as shown in FIG. - The fluid ejected from the small hole 24 of the housing 21 forms a high-pressure fluid layer around the float part 30. As a result, the casing 31 is held substantially concentrically with the housing 21,
It does not come into contact with the housing 21 or the fluid supply pipe 27.

試験周波数すなわち探傷プローブ42に与える交流の周
波数は、微細疵を探傷するために一般的に高い方が望ま
しいが、逆にノイズも入り易くなる。これらのことを考
慮して周波数による疵検山姥の試験を行った結果を第6
図に示す、第6図より熱延鋼板の微細疵に対しては25
8kHzが最も検出能が良いことが分かる。実際の作業
の点から、試験周波数は100〜300kHzの範囲内
にあればよい。
Generally, it is desirable that the test frequency, that is, the frequency of the alternating current applied to the flaw detection probe 42, be higher in order to detect minute flaws, but conversely, noise is more likely to enter. Taking these things into consideration, we conducted a frequency-based flaw inspection test and presented the results in the sixth section.
As shown in Figure 6, for fine defects on hot rolled steel sheets, 25
It can be seen that 8 kHz has the best detectability. From a practical point of view, the test frequency may be in the range of 100-300kHz.

また、疵検比のためには、探傷プローブ42に印加する
交流と探傷プローブ42からの傷信号との位相差を疵の
種類により最適にすることが望ましい0位相差に対する
ヘゲ疵とノイズとの信号の大きさの関係を第7図に示し
ている。第7図から明らかなように熱延鋼板に対しては
100〜180度が最適である。
In addition, for the flaw detection ratio, it is desirable to optimize the phase difference between the AC applied to the flaw detection probe 42 and the flaw signal from the flaw detection probe 42 depending on the type of flaw. FIG. 7 shows the relationship between the magnitudes of the signals. As is clear from FIG. 7, a temperature of 100 to 180 degrees is optimal for hot rolled steel sheets.

(発明の効果) 以上の通り熱延鋼板に適用した例を説明したが1本発明
は熱延鋼板のみに限定されるものではなく、冷延鋼板、
表面処理鋼板に広く適用でき、常に最良のSN比によっ
て鋼板を渦流探傷試験することができる。したがって、
微小な疵でも見落しなく検出可能であり、優れた品質の
製品を提供することができる。
(Effects of the Invention) As described above, an example in which the invention is applied to a hot-rolled steel plate has been described; however, the present invention is not limited to only a hot-rolled steel plate;
It can be widely applied to surface-treated steel sheets, and steel sheets can always be subjected to eddy current testing with the best signal-to-noise ratio. therefore,
It is possible to detect even the smallest defects without overlooking them, and it is possible to provide products of excellent quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は探傷ヘッドの一例を示す側面図、第2図は流体
フロート部の詳細図、第3図は探傷プローブ径をパラメ
ータとして疵深さとSN比との関係を示す線図、第4図
はリフトオフとSN比との関係を示す線図、第5図は空
気圧力と流体フロート部のリフトオフとの関係を示す線
図、第6図は試験周波数とSN比との関係を示す線図、
第7図は位相差に対すヘゲ疵とノイズとの信号の大きさ
の関係を示す線図である。 1・・・探傷ヘッド、5・・・筒軸、6・・・流体供給
ロータリージヨイント、8・・・回転駆動用ACモータ
、9・・・流体供給配管、 11・・・信号配線部、1
3・・・非接触回転トランス部、21・・・ハウジング
、22・・・周壁、23・・・導孔 24・・・小孔 
27・・・流体供給管、30・・・流体フロート部、3
1・・・ケーシング、32・・・貫通孔、33・・・流
体溜り部、42・・・探傷プローブ、S・・・熱延鋼板
Fig. 1 is a side view showing an example of a flaw detection head, Fig. 2 is a detailed view of the fluid float section, Fig. 3 is a diagram showing the relationship between flaw depth and S/N ratio using the flaw detection probe diameter as a parameter, and Fig. 4 is a diagram showing the relationship between lift-off and S/N ratio, FIG. 5 is a diagram showing the relationship between air pressure and lift-off of the fluid float section, and FIG. 6 is a diagram showing the relationship between test frequency and S/N ratio.
FIG. 7 is a diagram showing the relationship between the signal magnitudes of bald spots and noise with respect to the phase difference. DESCRIPTION OF SYMBOLS 1... Flaw detection head, 5... Cylindrical shaft, 6... Fluid supply rotary joint, 8... AC motor for rotational drive, 9... Fluid supply piping, 11... Signal wiring section, 1
3... Non-contact rotating transformer part, 21... Housing, 22... Peripheral wall, 23... Guide hole 24... Small hole
27...Fluid supply pipe, 30...Fluid float part, 3
DESCRIPTION OF SYMBOLS 1...Casing, 32...Through hole, 33...Fluid reservoir part, 42...Flaw detection probe, S...Hot rolled steel plate.

Claims (1)

【特許請求の範囲】[Claims] 相互誘導自己比較型探傷プローブを用いて鋼板を送りな
がら渦流探傷試験する方法において、探傷プローブの直
径が2.5〜6mm、試験周波数が100〜300kH
z、リフトオフが0.4〜1.2mmおよび入力信号と
出力信号との位相差が100〜160度であることを特
徴とする鋼板の渦流探傷試験方法。
In the method of eddy current flaw detection while feeding a steel plate using a mutual induction self-comparison type flaw detection probe, the diameter of the flaw detection probe is 2.5 to 6 mm and the test frequency is 100 to 300 kHz.
z, a lift-off of 0.4 to 1.2 mm, and a phase difference between an input signal and an output signal of 100 to 160 degrees.
JP60118711A 1985-06-03 1985-06-03 Eddy current flaw detection test for steel plate Pending JPS61277052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60118711A JPS61277052A (en) 1985-06-03 1985-06-03 Eddy current flaw detection test for steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118711A JPS61277052A (en) 1985-06-03 1985-06-03 Eddy current flaw detection test for steel plate

Publications (1)

Publication Number Publication Date
JPS61277052A true JPS61277052A (en) 1986-12-08

Family

ID=14743218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118711A Pending JPS61277052A (en) 1985-06-03 1985-06-03 Eddy current flaw detection test for steel plate

Country Status (1)

Country Link
JP (1) JPS61277052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123035A1 (en) * 2007-03-26 2008-10-16 Sumitomo Metal Industries, Ltd. Eddy current examination method, and eddy current examination apparatus
US20100134099A1 (en) * 2007-03-14 2010-06-03 Sumitomo Metal Industries, Ltd. Eddy Current Testing Method, Steel Pipe or Tube Tested by the Eddy Current Testing Method, and Eddy Current Testing Apparatus for Carrying out the Eddy Current Testing Method
JP2011180011A (en) * 2010-03-02 2011-09-15 Ihi Inspection & Instrumentation Co Ltd Non-destructive inspection method of metal thin plate, and non-destructive inspection device therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100134099A1 (en) * 2007-03-14 2010-06-03 Sumitomo Metal Industries, Ltd. Eddy Current Testing Method, Steel Pipe or Tube Tested by the Eddy Current Testing Method, and Eddy Current Testing Apparatus for Carrying out the Eddy Current Testing Method
US8269488B2 (en) * 2007-03-14 2012-09-18 Sumitomo Metal Industries, Ltd. Eddy current testing method, steel pipe or tube tested by the eddy current testing method, and eddy current testing apparatus for carrying out the eddy current testing method
WO2008123035A1 (en) * 2007-03-26 2008-10-16 Sumitomo Metal Industries, Ltd. Eddy current examination method, and eddy current examination apparatus
US8552717B2 (en) 2007-03-26 2013-10-08 Nippon Steel & Sumitomo Metal Corporation Eddy current testing method and eddy current testing apparatus
JP2011180011A (en) * 2010-03-02 2011-09-15 Ihi Inspection & Instrumentation Co Ltd Non-destructive inspection method of metal thin plate, and non-destructive inspection device therefor

Similar Documents

Publication Publication Date Title
US4641092A (en) Rotary probe apparatus for detecting flaws in a test object
US5866820A (en) Coil volumetric and surface defect detection system
JP4829883B2 (en) Method and apparatus for non-destructive inspection of tubes
WO2010137706A1 (en) Scanning device for nondestructive inspection and nondestructive inspection equipment
US20070222438A1 (en) Electromagnetic flaw detection apparatus for inspection of a tubular
JPS5940265B2 (en) Thermal billet eddy current flaw detection equipment
JPH02147950A (en) Ac leakage magnetic flux detector for plane flaw
JP2011002409A (en) Leak flux flaw detecting device
KR100799334B1 (en) Crack detection apparatus in press fit railway axle
CN112415088A (en) Inner-through transverse pulse eddy current detection probe and use method thereof
JP2005181134A (en) Nondestructive testing method for seamed section of electro-resistance-welded tube and probe-type eddy-current flaw detector
JP2008032681A (en) Inspection method of rolling device component, and inspection device for rolling device component
JPS61277052A (en) Eddy current flaw detection test for steel plate
EP0554958B1 (en) Apparatus and method for pipe or tube inspection
CN110006992B (en) Pass-through vortex sensor and detection method
JP2008170408A (en) Method and device for inspecting nonmetallic inclusion in component of rolling apparatus
CN114858915A (en) Movable nondestructive testing system and method for pipelines in heat-insulating layer
JPH05164743A (en) Method and device for inspecting internal surface of hollow body
CN2391203Y (en) Rotary eddy current detecting probe
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body
JP2006153856A (en) Device and method for inspecting scratch on external case for cell
WO2006046578A1 (en) Device and method for inspecting scratch on cell external case
JPH05281213A (en) Oblique-angle probe for ultrasonic flaw detection
CN217717610U (en) Pipeline nondestructive test system in portable heat preservation
JPH0241582Y2 (en)