Nothing Special   »   [go: up one dir, main page]

JPS61269007A - Measurement for weld part step of welded pipe - Google Patents

Measurement for weld part step of welded pipe

Info

Publication number
JPS61269007A
JPS61269007A JP11065185A JP11065185A JPS61269007A JP S61269007 A JPS61269007 A JP S61269007A JP 11065185 A JP11065185 A JP 11065185A JP 11065185 A JP11065185 A JP 11065185A JP S61269007 A JPS61269007 A JP S61269007A
Authority
JP
Japan
Prior art keywords
weld
pipe
weld part
image
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11065185A
Other languages
Japanese (ja)
Other versions
JPH0337121B2 (en
Inventor
Toshio Terunuma
照沼 俊夫
Kazuo Yamamoto
一男 山本
Mitsuo Harada
原田 充男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11065185A priority Critical patent/JPS61269007A/en
Publication of JPS61269007A publication Critical patent/JPS61269007A/en
Publication of JPH0337121B2 publication Critical patent/JPH0337121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To calculate a weld part step from the separation distance between a light cut image and a reference position, by using an image detector comprising a group of photoelectric conversion elements arrayed tow-dimensionally while the center position of the weld part as reference is determined with a separate position detector. CONSTITUTION:The weld part W of a pipe P is irradiated with a slit light source L to obtain an image of a light-cutting line C on a detector D comprising a group of fine photoelectric conversion elements and a separated weld position detector T is arranged. The horizontal axis of the section of the pipe is set as X and the vertical axis thereof as Y and coordinates at points (photoelectric conversion elements) of a light cut image Pr are determined. An equation is obtained to indicate the profile of the pipe circumferential surface on both sides of the weld part and in the butt position, the weld part step W0 can be determined from the difference between right and left Y coordinate values at the coordinate X=0. From the results of the detection of the center position of the weld part, X-Y coordinate is converted to correct deviation in the weld center due to vibration and twist of the pipe and a computation is performed. By this method, the measurement of the weld part can be done at a high speed with a high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶接管の溶接部段差を測定する方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for measuring the level difference in a welded part of a welded pipe.

(従来の技術) 溶接管の溶接部段差、即ち溶接前案管の目違いによって
生ずる溶接部段差は管の溶接部品質と大きな関係があシ
、溶接管製造工程における重要な管理項目の一つである
。この溶接段差を溶接管製造中に測定する従来の方法と
して、特開昭57−137801号公報に記載の方法が
おる。この方法は、管の溶接部およびその近傍にスリッ
ト光を照射して得られた光切断像を、走査屋光電変換受
偉装置で走査毎に得られるビデオ信号をフレームメモリ
に逐次格納し、しかるのちにこれを逐次読み出して最大
輝度が得られる点のX−Y座標を求めて逐次−次元メそ
りに記憶し、これを全ビデオ信号について繰返して得ら
れた一次元メモリのデータから溶接部両側の外周面の円
の方程式(Y、=GL←)。
(Prior art) The welded part level difference in a welded pipe, that is, the welded part level difference caused by the misalignment of the guide pipe before welding, has a large relationship with the quality of the welded part of the pipe, and is one of the important control items in the welded pipe manufacturing process. It is. As a conventional method for measuring this welding level difference during the manufacture of a welded pipe, there is a method described in Japanese Patent Application Laid-open No. 137801/1983. In this method, a photo-cutting image obtained by irradiating the welded part of the pipe and its vicinity with a slit light is sequentially stored in a frame memory as a video signal obtained each time it is scanned by a scanner photoelectric conversion receiver. Later, this is read out sequentially to determine the X-Y coordinates of the point where the maximum brightness is obtained, and sequentially stored in a dimensional mesori, and this is repeated for all video signals.From the data in the one-dimensional memory obtained, both sides of the welded part are Equation of the circle on the outer circumferential surface of (Y, =GL←).

Y2 =CH(X))を求め両者の差IY、−Y21か
ら溶接部段差を求める方法である。
This is a method of determining the step of the welded part from the difference IY, -Y21 between the two.

(発明が解決しようとする問題点) 上記従来の方法で溶接部段差を計測することは勿論可能
であるが、溶接部両側の管外周面のプロフィールの方程
式を求めるに当たシ、溶接部およびその近傍の光切断像
の各走査ビデオ信号をフレームメモリに逐次格納し、し
かるのちにこれを逐次読みだして最大輝度が得られる点
のX−Y座標を求めて逐次−次元メモリに記憶し、これ
を全ビデオ信号について繰返して得られた一次元メモリ
のデータから溶接部両側の管外周面のプロフィールの方
程式を求め両者の差から溶接部段差を求めるという極め
て複雑表信号処理を行っているために、段差値データを
一つ得るのに長時間を要し、従来の方法ではオンライン
計測には適さないという問題があった。
(Problems to be Solved by the Invention) It is of course possible to measure the weld level difference using the conventional method described above, but when calculating the equation of the profile of the outer peripheral surface of the pipe on both sides of the weld, it is difficult to measure the weld and Each scanning video signal of the optically sectioned image in the vicinity is sequentially stored in a frame memory, and then sequentially read out to determine the X-Y coordinates of the point where the maximum brightness is obtained, and sequentially stored in a -dimensional memory; This process is repeated for all video signals, and from the data in the one-dimensional memory obtained, an equation for the profile of the tube's outer peripheral surface on both sides of the weld is calculated, and the weld step is calculated from the difference between the two, resulting in extremely complex table signal processing. Another problem is that it takes a long time to obtain one piece of step value data, making the conventional method unsuitable for online measurement.

また、プロフィールの方程式を求めるに当たシ、前記光
切断像のうち溶接ビード部に該当する範囲を除外する必
要があるが、従来の方法では、前記−次元メモリのデー
タを用い、溶接ピード部の形状の特徴から溶接ビードの
最大高さの点およびビード両端の位置を演算によシ求め
る方法であるために、溶接ビード切削後では溶接部を認
識できず、溶接ビードを切削する以前の状態でしか適用
することができないという問題点がおった。
In addition, when calculating the profile equation, it is necessary to exclude the range corresponding to the weld bead part from the optically sectioned image, but in the conventional method, the data in the -dimensional memory is used to determine the weld bead part. Because this method calculates the maximum height point of the weld bead and the positions of both ends of the weld bead from the shape characteristics of The problem was that it could only be applied in

そこで本発明は、比較的簡単な装置構成で溶接部両側の
外周面のプロフィールを表す方程式を短時間で求めるこ
とができ、かつ溶接ビード切削後であっても適用可能な
溶接部段差測定方法を提供しようとするものである。
Therefore, the present invention has developed a method for measuring the step of a weld that can quickly calculate an equation representing the profile of the outer circumferential surface on both sides of the weld using a relatively simple device configuration, and that can be applied even after cutting the weld bead. This is what we are trying to provide.

(問題点を解決するための手段) 即ち、本発明は、溶接管の溶接部段差を測定するにおた
υ、被測定物の溶接部およびその近傍の外周面に管軸方
向と直行させてスリット光を照射し、被照射部の上方に
設けた二次元配置光電変換素子群からなる検出器によっ
て光切断像を検出し該光切断像各点と基準位置との離隔
距離を検出し、一方前記被照射部近傍を指向して設けた
溶接位置検出器によりて溶接部中心位置を検出し、前記
離隔距離検出値のうち溶接中心位置を含む一定範囲を除
外した両側の夫々の距離検出値の連なシから溶接部両側
の被測定物外周面のプロフィ・−ルを表す方程式を求め
、咳方程式の前記溶接部中心位置に相当する位置におけ
る解の差から溶接部の段差を求めることを特徴とする溶
接管の溶接部段差測定方法である。
(Means for Solving the Problems) That is, the present invention, when measuring the welded part level difference of a welded pipe, uses A slit light is irradiated, a photocutting image is detected by a detector consisting of a group of two-dimensionally arranged photoelectric conversion elements provided above the irradiated part, and the separation distance between each point of the photocutting image and a reference position is detected; A welding position detector installed near the irradiated part detects the welding part center position, and the respective distance detection values on both sides excluding a certain range including the welding center position from the separation distance detection values are calculated. The method is characterized in that an equation representing the profile of the outer circumferential surface of the object to be measured on both sides of the weld is determined from a series of equations, and the step of the weld is determined from the difference between the solutions of the cough equation at a position corresponding to the center position of the weld. This is a method for measuring the level difference in the welded part of a welded pipe.

(実施例と作用) 以下本発明を電縫溶接鋼管の製造工程における溶接部段
差測定に適用した実施例にもとすき詳細に説明する。
(Example and operation) The present invention will be described in detail below using an example in which the present invention is applied to measuring a welded part level difference in a manufacturing process of an electric resistance welded steel pipe.

第1図は、本発明の実施例における被測定物と検出器等
との配置関係を示す図であシ、図においてPは被測定物
である溶接管(以下単に管という)、Lは管Pの上方に
設置したスリット光源、Dは管Pの被照射部の斜め上方
に設置した二次元配置光電変換素子群からなる像検出器
、Tは被照射部の近傍を指向して設置した溶接位置検出
器である。
FIG. 1 is a diagram showing the arrangement relationship between an object to be measured and a detector, etc. in an embodiment of the present invention. In the figure, P is the object to be measured, a welded pipe (hereinafter simply referred to as a pipe), and L is a pipe. A slit light source installed above P, D an image detector consisting of a group of two-dimensionally arranged photoelectric conversion elements installed obliquely above the irradiated part of the tube P, and T a welding device oriented toward the vicinity of the irradiated part. It is a position detector.

管Pは図示省略の移送テーブル上にあって溶接部Wを真
上にして管軸方向に移送される。図中Cはスリット光に
より照出された光切断線であシ、像検出器りはこの光切
断線Cの像を検出するものである。尚、図に示し九光源
りと像検出器りとの位置関係は一例であって図示の配置
に限定されるものではない。
The pipe P is placed on a transport table (not shown) and is transported in the pipe axial direction with the weld W directly above. In the figure, C is a light section line illuminated by the slit light, and an image detector detects an image of this light section line C. Note that the positional relationship between the nine light sources and the image detector shown in the figure is an example, and the arrangement is not limited to the illustrated arrangement.

第2図(a) 、 (b)は、像検出器による光切断像
の検出方法を説明するための図であシ、第2図(、)に
おいて、CLは管Pが移送されるべき移送中心線を示し
、DI * 02 r D5 z ”’r Dn+は夫
々が、多数個(m個)の微小光電変換素子群からなるリ
ニアアレイであり、n個のりニアアレイで検出器りを構
成している。尚、検出器りは微小光電変換素子をm行n
列に多数個配置したエリアアレイであってもよいのはい
うまでも表い。スリット光によシ照出された光切断@C
は、第2図(b)に示すように検出器りの光電変換面(
mXn個の光電変換素子群)に結像されて光切断像Pr
として検出される。尚、第2図(b)の光切断像で点線
で示す部分は溶接ビード切削後に検出を行った場合のビ
ード切削部の像を示す。
FIGS. 2(a) and 2(b) are diagrams for explaining the method of detecting a photocutting image by an image detector. In FIG. Indicates the center line, DI * 02 r D5 z '''r Dn+ is a linear array consisting of a large number (m) of microscopic photoelectric conversion element groups, and the detector is composed of n linear arrays. The detector has microphotoelectric conversion elements arranged in m rows and n
Needless to say, an area array in which a large number of arrays are arranged in a row may also be used. Light cutting illuminated by slit light @C
is the photoelectric conversion surface (
m
Detected as . In addition, the part indicated by the dotted line in the optically sectioned image of FIG. 2(b) shows the image of the bead cut portion when detection is performed after cutting the weld bead.

第3図は、溶接部段差を説明する図である。この図では
、便宜的に溶接前の管状成を素管pを、第1図の管Pの
代シに示してあシ、この素管pの突き合わせ部の目違い
(図は誇張しである)が溶接後の溶接部段差となる。従
って、溶接部段差とは図中のWoで示す溶接前素管両端
部の段差をいうのである。しかし、溶接後にオンライン
において段差WOの量を直接測定することは出来ないの
で、実操業では、前記特開昭57−173801号公報
に記載のように段差WOを間接的に求める方法が用いら
れているのである。本発明も間接的な方法により段差W
Oを測定するものである。この段差Woは第3図からも
明らかなように、溶接部両側の管外周面の高さを溶接部
中心に向けて延長したときの溶接部中心位置における両
外周面の高低差であるから、段差Woは第2図(b)に
示した光切断像の各点と基準位置との離隔距離を検出し
それを処理して算出することができる。この際、溶接部
中心位置を含む一定範囲(第2図(b)に示すWrの範
囲で、溶接ピーj   ド部またはピード切削部に相当
)は管外周面とは異なる形状をしているので、検出値の
なかから除外する必要がある。そこで本発明では、第1
図に示したように溶接部中心位置を検出する為の溶接位
置検出器Tを別に設置して、前記被照射部の直近におい
て溶接部中心位置を検出する。溶接位置検出器としては
、温度分布測定方式、表面光沢比較方式、電磁的方式な
ど各種方式が考えられるが、溶接直後あるいはピード切
削直後において比較的簡単な構成でかつ精度よく溶接部
中心位置を検叶できるものとして、たとえば特開昭59
−197856号公報に記載のような温度分布測定方式
の検出器を用いるーことができる。前記除外範囲Wrは
管のサイズや溶接条件に応じて予め定めておくことがで
きるので、溶接中心位置が検出されたならば、該中心位
置から両側に予め定めた一定長さに相当する光切断像上
の一定範囲Wr部に対応する離隔距離検出値を除外し、
残る両側の離隔距離検出値から両側の管外局面グロフィ
ルを表わす方程式を算出する。
FIG. 3 is a diagram illustrating a welded portion step. In this figure, for convenience, the tubular structure before welding is shown as a blank pipe p in place of the pipe P in Figure 1. ) is the welding step after welding. Therefore, the welded part level difference refers to the level difference at both ends of the raw pipe before welding, indicated by Wo in the figure. However, since it is not possible to directly measure the amount of step WO online after welding, in actual operation, a method for indirectly determining step WO is used as described in the above-mentioned Japanese Patent Application Laid-Open No. 173801/1983. There is. The present invention also uses an indirect method to
It measures O. As is clear from Fig. 3, this level difference Wo is the difference in height between the outer peripheral surfaces of the pipe at the center of the weld when the heights of the outer peripheral surfaces of the pipe on both sides of the weld are extended toward the center of the weld. The level difference Wo can be calculated by detecting the distance between each point of the optically sectioned image shown in FIG. 2(b) and the reference position and processing the distance. At this time, since a certain range including the center position of the weld (the range of Wr shown in Fig. 2 (b), which corresponds to the welding bead part or the bead cutting part) has a shape different from the outer circumferential surface of the pipe. , it is necessary to exclude it from the detected values. Therefore, in the present invention, the first
As shown in the figure, a welding position detector T for detecting the center position of the welding part is separately installed to detect the center position of the welding part in the vicinity of the irradiated part. Various methods can be used as welding position detectors, such as temperature distribution measurement, surface gloss comparison, and electromagnetic methods. For example, Japanese Patent Application Publication No. 59
It is possible to use a temperature distribution measuring detector as described in Japanese Patent No. 197856. The exclusion range Wr can be predetermined according to the size of the pipe and welding conditions, so once the welding center position is detected, optical cutting corresponding to a predetermined length on both sides from the center position is performed. Excluding the separation distance detection value corresponding to a certain range Wr part on the image,
Equations representing the extravascular surface globules on both sides are calculated from the remaining separation distance detection values on both sides.

今、第2図(b)に示すように、光切断像Prに対して
座標軸X、Yを設定し、検出した溶接部中心位置に対応
する点をX=Oとし、像検出器の光電変換素子のある行
(たとえば1行)をY=0(基準位置)とすると、光切
断像Prの各点(光電変換素子)のx−y座標が決まる
Now, as shown in FIG. 2(b), coordinate axes X and Y are set for the optically sectioned image Pr, and the point corresponding to the detected weld center position is set as X=O, and the photoelectric conversion of the image detector When a row (for example, row 1) of an element is set to Y=0 (reference position), the xy coordinates of each point (photoelectric conversion element) of the optically sectioned image Pr are determined.

とのX−Y座標においてX軸は管断面の水平軸に相当し
、Y軸は垂直軸に相当する。従って光切断像PrのX軸
方向各点のY座標(基準位置からの距離であシ、本実施
例の場合は光電変換素子のカウント数でもある)は管外
周面の各点の基準位置からの距離に相当し、この各点の
距離の連なシが管外周面のプロフィールを示すことにな
る。これら各点のX−Y座標のうち前述の一定範囲(溶
接部中心位置から両側にたとえば5−〜1〇−程釦を除
いたそれぞれの側(L側およびR側)について各点のx
−y座標から方程式 %式%(1) を求めると、これが管Pの溶接部両側の管外周面のプロ
フィールを表す式になる。
In the X-Y coordinates, the X axis corresponds to the horizontal axis of the tube cross section, and the Y axis corresponds to the vertical axis. Therefore, the Y coordinate (distance from the reference position, and in the case of this example, also the count number of the photoelectric conversion element) of each point in the X-axis direction of the optically sectioned image Pr is from the reference position of each point on the outer peripheral surface of the tube. The series of distances between these points represents the profile of the outer circumferential surface of the tube. Of the X-Y coordinates of each of these points, the x
When the equation % (1) is obtained from the -y coordinate, this becomes an equation representing the profile of the outer circumferential surface of the pipe P on both sides of the welded part.

前述のように溶接部段差とは素管の突合わせ位置の段差
でアシ、該突合わせ位置は前記X−Y座標でX=Oであ
るから、溶接部段差W0は、W0== k 1PrLO
)  Pray) l + c  ”・<3)k+c:
定数 として求めることができる。
As mentioned above, the weld level difference is the level difference at the butt position of the raw pipes, and since the butt position is X=O in the X-Y coordinates, the weld level difference W0 is W0 == k 1PrLO
) Pray) l + c ”・<3)k+c:
It can be determined as a constant.

なお、実際の造管プロセスにおいては、管の振動や捩れ
のために溶接部中心位置が真上にない場合があるので、
溶接部中心位置の検出結果により、前記、x −y’座
標の座標変換を行ったうえで上述の演算を行うようにす
る。
In addition, in the actual pipe manufacturing process, the center of the weld may not be directly above the pipe due to vibration or twist.
Based on the detection result of the welding part center position, the above-mentioned calculation is performed after performing the coordinate transformation of the x-y' coordinates.

(発明の効果) 以上述べたごとく本発明は、溶接部およびその近傍の光
切断像を得るのに二次元配置光電変換素子群からなる像
検出器を用い、また光切断像と基準位置との離隔距離検
出値から溶接部段差を算出する際の基準となる溶接部中
心位置を別途に設けた溶接位置検出器によシ検出するよ
うにしたので、 。
(Effects of the Invention) As described above, the present invention uses an image detector consisting of a group of two-dimensionally arranged photoelectric conversion elements to obtain a photosection image of the welded part and its vicinity, and also uses an image detector consisting of a group of two-dimensionally arranged photoelectric conversion elements, and The center position of the weld, which serves as a reference for calculating the step of the weld from the distance detection value, is detected by a separately provided weld position detector.

溶接管の溶接部段差を溶接管製造工程においてオ  。Welded pipe steps are removed during the welded pipe manufacturing process.

ンライン的に測定するのに、高速で、且つ精度よ  1
゜トj く溶接部段差を測定でき、また溶接ピードの切削  :
前後を問わず、測定できるという実用的に優れた効果が
ある。
Fast and accurate for on-line measurement 1
゜It is possible to easily measure the step of the weld, and also to cut the welding pitch:
It has an excellent practical effect in that it can be measured regardless of whether it is before or after.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例における検出器等の配置関係
を示す図、第2図(&) 、 (b)は、像検出器によ
る光切断像の検出方法を説明するための図、第3図は、
溶接部段差を説明する図である。 P:溶接管、     W:溶接部、 Pr:光切断像、     Lニスリット光源、D:像
検出器、    T:溶接位置検出器、p:素管、  
     C:光切断線。 j[1図 C;尤切館臘 第2図C) 第2図 Cb)
FIG. 1 is a diagram showing the arrangement relationship of detectors, etc. in an embodiment of the present invention, and FIGS. Figure 3 shows
It is a figure explaining a welding part level difference. P: welded pipe, W: welded part, Pr: optical cutting image, L Nislit light source, D: image detector, T: welding position detector, p: raw pipe,
C: optical cutting line. j [Figure 1 C; Yokirikankan Figure 2 C) Figure 2 Cb)

Claims (1)

【特許請求の範囲】[Claims] 溶接管の溶接部段差を測定するにあたり、被測定物の溶
接部およびその近傍の外周面に管軸方向と直行させてス
リット光を照射し、被照射部の上方に設けた二次元配置
光電変換素子群からなる像検出器によって光切断像を検
出し該光切断像各点と基準位置との離隔距離を検出し、
一方前記被照射部近傍を指向して設けた溶接位置検出器
によって溶接部中心位置を検出し、前記離隔距離検出値
のうち溶接中心位置を含む一定範囲を除外した両側の夫
々の距離検出値の連なりから溶接部両側の被測定物外周
面のプロフィールを表す方程式を求め、該方程式の前記
溶接部中心位置に相当する位置における解の差から溶接
部の段差を求めることを特徴とする溶接管の溶接部段差
測定方法。
To measure the welded part level difference of a welded pipe, a slit light is irradiated perpendicular to the pipe axis direction to the welded part of the object to be measured and the outer peripheral surface of its vicinity, and a two-dimensional photoelectric conversion device is installed above the irradiated part. Detecting a light sectioned image by an image detector consisting of a group of elements, detecting the separation distance between each point of the light section image and a reference position,
On the other hand, the welding position detector installed near the irradiated part detects the welding part center position, and the respective distance detection values on both sides excluding a certain range including the welding center position from the separation distance detection values are detected. A welded pipe characterized in that an equation representing the profile of the outer circumferential surface of the object to be measured on both sides of the weld is determined from the series, and a step difference in the weld is determined from the difference between the solutions of the equation at a position corresponding to the center position of the weld. Method for measuring weld level difference.
JP11065185A 1985-05-23 1985-05-23 Measurement for weld part step of welded pipe Granted JPS61269007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11065185A JPS61269007A (en) 1985-05-23 1985-05-23 Measurement for weld part step of welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11065185A JPS61269007A (en) 1985-05-23 1985-05-23 Measurement for weld part step of welded pipe

Publications (2)

Publication Number Publication Date
JPS61269007A true JPS61269007A (en) 1986-11-28
JPH0337121B2 JPH0337121B2 (en) 1991-06-04

Family

ID=14541070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11065185A Granted JPS61269007A (en) 1985-05-23 1985-05-23 Measurement for weld part step of welded pipe

Country Status (1)

Country Link
JP (1) JPS61269007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041511A (en) * 1990-04-17 1992-01-07 Nippon Koshuha Kk Noncontact shape measuring instrument
US5245409A (en) * 1991-11-27 1993-09-14 Arvin Industries, Inc. Tube seam weld inspection device
JP5978338B1 (en) * 2015-03-16 2016-08-24 日本碍子株式会社 Method for producing product and method for measuring three-dimensional shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041511A (en) * 1990-04-17 1992-01-07 Nippon Koshuha Kk Noncontact shape measuring instrument
US5245409A (en) * 1991-11-27 1993-09-14 Arvin Industries, Inc. Tube seam weld inspection device
JP5978338B1 (en) * 2015-03-16 2016-08-24 日本碍子株式会社 Method for producing product and method for measuring three-dimensional shape
JP2016173242A (en) * 2015-03-16 2016-09-29 日本碍子株式会社 Method for producing article and method for measuring three-dimensional shape

Also Published As

Publication number Publication date
JPH0337121B2 (en) 1991-06-04

Similar Documents

Publication Publication Date Title
EP1062478B8 (en) Apparatus and method for optically measuring an object surface contour
EP0029748B1 (en) Optical measuring system
CN101315341A (en) System and method for laminography inspection
CN115841484B (en) Steel structure welding quality detection system based on three-dimensional laser scanning
EP0483362B1 (en) System for measuring length of sheet
US6204918B1 (en) Apparatus for surface inspection
JP7319083B2 (en) optical displacement meter
Hurník et al. Enhancing the accuracy of forging measurement using silhouettes in images
JPS61269007A (en) Measurement for weld part step of welded pipe
JP2004117053A (en) Method and device for detecting bead shape of seam welded pipe
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
CN113804696A (en) Method for determining size and area of defect on surface of bar
JPH02278103A (en) Method and device for three-dimensionally inspecting printed circuit substrate
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
CN114111576B (en) Aircraft skin gap surface difference detection method
CN112461138B (en) Cross scanning measurement method, measurement grating and application thereof
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
JPH05240621A (en) Instrument for measuring outer diameter and wall thickness of pipe
JPS5811804A (en) Method and device for measuring screw shape
JPH10170247A (en) Method and device for non-contact measurement of surface roughness
JPH09101113A (en) Method and device for measuring beveling position and its form
JPH085466A (en) Method and device for measuring distribution of surface temperature
JPH10339614A (en) Method and device for determining weld line center position
JPS63222247A (en) Correction of image distortion
CN117747456A (en) Method and device for detecting parameters of silicon wafer