Nothing Special   »   [go: up one dir, main page]

JPS6126508A - Removal of alminum from crystalline aluminosilicate - Google Patents

Removal of alminum from crystalline aluminosilicate

Info

Publication number
JPS6126508A
JPS6126508A JP59147619A JP14761984A JPS6126508A JP S6126508 A JPS6126508 A JP S6126508A JP 59147619 A JP59147619 A JP 59147619A JP 14761984 A JP14761984 A JP 14761984A JP S6126508 A JPS6126508 A JP S6126508A
Authority
JP
Japan
Prior art keywords
crystalline aluminosilicate
zeolite
halide
inorganic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59147619A
Other languages
Japanese (ja)
Inventor
Kyoji Wakushima
涌島 恭司
Michio Sugimoto
道雄 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP59147619A priority Critical patent/JPS6126508A/en
Publication of JPS6126508A publication Critical patent/JPS6126508A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To increase the molar ratio of SiO2/Al2O3, and to carry out the removal of aluminum from a crystalline aluminosilicate in high yield, by the two- stage reaction of a crystalline aluminosilicate with an inorganic halide or an inorganic oxyhalide. CONSTITUTION:A crystalline aluminosilicate is made to contact with an inorganic halide (e.g. SiCl4) or an inorganic oxyhalide (e.g. CrO2Cl2) under the condition to keep the halide, etc. from the reaction with zeolite, i.e. at <=100 deg.C, preferably <=50 deg.C, to effect the permeation and diffusion of the halide, etc. to the core of the zeolite. The crystalline aluminosilicate containing absorbed halide, etc. is heated at >=150 deg.C under atmospheric pressure, and maintained to the state for a definite time interval (1min-50hr) to effect the aluminum removal reaction. The product is cooled, washed with water, and dried to obtain the objective substance.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は結晶性アルミノシリケートの脱アルミニウム方
法に関し、更に詳しくは、結晶性アルミノシリケートか
らアルミニウムを脱離せしめて5i02/A4203モ
ル比の大きい結晶性アルミノシリケートを得る方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for dealuminating crystalline aluminosilicate, and more particularly, the present invention relates to a method for dealuminating crystalline aluminosilicate, and more specifically, it deals with dealumination of crystalline aluminosilicate by eliminating aluminum from crystalline aluminosilicate to produce crystalline aluminosilicate with a high 5i02/A4203 molar ratio. Concerning how to obtain silicates.

[発明の技術的背景とその問題点l 結晶性アルミノシリケートは、その結晶格子中に5i0
4−及びA見04−四面体から成る三次元空間網構造が
存在し、一定の寸法を有する中空室が形成された物質で
、吸着剤、触媒などその用途分野は広いにれは、通常、
ゼオライトと呼ばれ。
[Technical background of the invention and its problems l Crystalline aluminosilicate has 5i0 in its crystal lattice.
It is a material that has a three-dimensional spatial network structure consisting of 4- and A-4-tetrahedrons, and has hollow chambers with certain dimensions.It is used in a wide range of fields, such as adsorbents and catalysts, and is usually
called zeolite.

A型、Y型、X型、L型、 29M型などの合成ゼオラ
イト;フォージャサイト、モルデナイト、モンモリロナ
イトのような天然ゼオライトが知られている。
Synthetic zeolites such as A type, Y type, X type, L type, and 29M type; natural zeolites such as faujasite, mordenite, and montmorillonite are known.

この結晶性アルミノシリケートの性状を決定すする因子
の1つとしてその構造上の5i02/Al2O3モル比
が知られている。例えば、ゼオライトの結晶格子からア
ルミニウムを脱離して5i02/A1203モル比を高
めると、得られたゼオライトの単位格子が収縮してその
形状選択性が変化するとともに高熱負荷及び水蒸気に対
する安定性が増大する。
The structural 5i02/Al2O3 molar ratio is known as one of the factors that determines the properties of this crystalline aluminosilicate. For example, when aluminum is eliminated from the crystal lattice of zeolite to increase the 5i02/A1203 molar ratio, the unit cell of the resulting zeolite shrinks, changing its shape selectivity and increasing its stability against high heat loads and water vapor. .

そのようなことからとりわけ、ゼオライトをベースとす
る各種触媒の製造技術分野においては、この5i02/
AJL 203モル比を高める努力がさまざまな形で進
められている。
For this reason, especially in the technical field of manufacturing various catalysts based on zeolite, this 5i02/
Efforts to increase the AJL 203 molar ratio are underway in various ways.

例えば、特開昭57−170818号公報では、アルミ
ノシリケートとハロゲン、無機ハライド又は無機オキシ
ハライドを 140〜8oo℃の温度域で接触させて脱
アルミニウムする方法が開示され、また、特開昭58−
361317号公報ではフォージャサイト型ゼオライト
とガス状ハロゲンシランを 150〜450’C!の温
度域で処理してアルミニウムを脱離しその熱安定性を高
める方法が開示されている。更には、NaY型のゼオラ
イトを457〜557℃の高温度でガス状の四塩化ケイ
素と反応させる方法も提案されている(H,Bayer
、 J、 Be1enkaya; Catalysis
by Zeolites、 pp 203を参照)。
For example, JP-A-57-170818 discloses a method of dealuminating an aluminosilicate and a halogen, an inorganic halide, or an inorganic oxyhalide in a temperature range of 140 to 80°C;
No. 361317 discloses that faujasite-type zeolite and gaseous halogen silane are heated at 150 to 450'C! A method of removing aluminum and increasing its thermal stability by treating the aluminum at a temperature range of Furthermore, a method has been proposed in which NaY-type zeolite is reacted with gaseous silicon tetrachloride at a high temperature of 457 to 557°C (H, Bayer).
, J. Belenkaya; Catalysis
by Zeolites, pp 203).

しかしながら、これらの方法はいずれも、ゼオライトの
表面部分のみが選択的に脱アルミニウム化し、ゼオライ
トの内部まで含めた全体的なアルミニウムの脱離という
点では不充分であり、したがって、5i02/A文20
3モル比はそれほど高くならないというのが現状である
However, all of these methods selectively dealumate only the surface portion of the zeolite, and are insufficient in terms of removing aluminum as a whole including the interior of the zeolite.
The current situation is that the 3 molar ratio is not very high.

[発明の目的] 本発明は上記した従来の脱アルミニウム方法の欠点を解
消し、結晶性アルミノシリケートの内部にいたるまで脱
アルミニウムを進行せしめる方法の提供を目的とする。
[Object of the Invention] The object of the present invention is to eliminate the drawbacks of the conventional dealumination methods described above, and to provide a method for proceeding dealumination to the inside of crystalline aluminosilicate.

[発明の概要] 本発明者らは上記した目的を達成すべく鋭意研究を重ね
る中で、従来の方法はいずれも、ゼオライトとハライド
等を最初から直接高温下で反応させているという事実に
着目した。すなわち、従来方法においては、最初から高
温下で脱アルミニウム反応を行なわせるのでゼオライト
の表面部分のみが選択的に改質し、その結果、ハライド
等がゼオライトの内部にまで浸透、拡散しなくなり、全
体としての脱アルミニウム反応が進展しないものと推定
した。したがって、ハライド等がゼオライトと反応しな
い条件下でこれらハライド等をゼオライトの内部にまで
浸透・拡散せしめ、しかるのちに全体を反応条件下に保
持すればゼオライト全体の脱アルミニウム反応が円滑・
包括的に進行するとの2段階反応な着想し、本発明方法
を開発するに到った。
[Summary of the Invention] In the course of intensive research to achieve the above-mentioned object, the present inventors focused on the fact that in all conventional methods, zeolite and halide, etc. are directly reacted at high temperatures from the beginning. did. In other words, in the conventional method, since the dealumination reaction is carried out at high temperatures from the beginning, only the surface portion of the zeolite is selectively modified, and as a result, halides, etc. do not penetrate or diffuse into the zeolite, and the entire surface of the zeolite is modified. It was assumed that the dealumination reaction would not progress. Therefore, if these halides, etc. are allowed to penetrate and diffuse into the interior of the zeolite under conditions in which they do not react with the zeolite, and then the whole is maintained under reaction conditions, the dealumination reaction of the entire zeolite can be carried out smoothly.
The idea of a two-step reaction that proceeds comprehensively led to the development of the method of the present invention.

すなわち、本発明の結晶性アルミノシリケートノ脱アル
ミニウム方法は、結晶性アルミノシリケートと無機ハラ
イド又は無機オキシハライドとを 100℃以下の温度
で接触させ、ついで、 +50”0以上の温度に保持し
たのち、冷却、水洗することを特徴とする。
That is, in the method for dealuminating crystalline aluminosilicate of the present invention, the crystalline aluminosilicate and the inorganic halide or inorganic oxyhalide are brought into contact with each other at a temperature of 100°C or lower, and then maintained at a temperature of +50'0 or higher. It is characterized by cooling and washing with water.

まず、本発明方法を適用できる結晶性アルミノシリケー
トは、前述したような、A型、Y型。
First, the crystalline aluminosilicate to which the method of the present invention can be applied is the A-type and Y-type as described above.

X型、L型、 23M型などの合成ゼオライト;フォー
ジャサイト、モルデナイト、モンモリロナイトなどの天
然ゼオライトのいずれであってもよく格別限定されるこ
とはない。
It may be synthetic zeolite such as X type, L type, 23M type, etc. or natural zeolite such as faujasite, mordenite, montmorillonite etc., and is not particularly limited.

また、無機ハライドとしては、 5IC14,Fe0文
3pc交3.Bc又3. HgC又2.PC文5. T
i0文4などをあげることができ、f#機オキシハライ
ドとしてはCr021LQ 2.5OC5L2. N0
0文2.[0C512などをあげることができる。これ
ら化合物はそれぞれ単独で用いてもよいし、又は2種以
上を適宜に混合した状態で用いてもよい。更にこれら化
合物はガス状で用いる。
In addition, as inorganic halides, 5IC14, Fe0 3pc cross 3. Bc again 3. HgC also 2. PC sentence 5. T
i0 sentence 4 etc. can be mentioned, and f# machine oxyhalide is Cr021LQ 2.5OC5L2. N0
0 sentences 2. [0C512 etc. can be mentioned. Each of these compounds may be used alone, or two or more of them may be used in a suitably mixed state. Furthermore, these compounds are used in gaseous form.

結晶性アルミノシリケートとこれら化合物を接触させる
方法としては、化合物がガス状の場合には結晶性アルミ
ノシリケートに窒素等のキャリアガスに含有させた上記
化合物のガスを波通させればよい。
As a method for bringing the crystalline aluminosilicate into contact with these compounds, when the compound is in a gaseous state, a gas of the above-mentioned compound contained in a carrier gas such as nitrogen may be passed through the crystalline aluminosilicate.

このときの温度は 100℃以下に管理することが必要
である。好ましくは50℃以下の温度である。
It is necessary to control the temperature at this time to below 100°C. Preferably the temperature is 50°C or less.

この温度が100℃より高い場合には、結晶性アルミノ
シリケートの表面部分での脱アルミニウム反応が生起し
始めて本発明の目的達成が阻害される。
If this temperature is higher than 100° C., a dealumination reaction begins to occur at the surface portion of the crystalline aluminosilicate, which hinders the achievement of the object of the present invention.

この接触工程で無機ハライド又は無機オキシハライドは
結晶性アルミノシリケートと脱アルミニウム反応を起す
ことなく内部にまで浸透、拡散して、次なる工程にむけ
いわば待機するものと考えられる。
It is thought that in this contact step, the inorganic halide or inorganic oxyhalide penetrates and diffuses into the interior of the crystalline aluminosilicate without causing a dealumination reaction, and waits for the next step.

次に、無機ハライド又は無機オキシハライドを吸蔵して
いる結晶性アルミノシリケートを常圧下において 15
0℃以上の温度に加熱し、かつその温度で所定時間保持
する。ここではじめて、脱アルミニウム反応が進行する
ことになる。
Next, the crystalline aluminosilicate containing an inorganic halide or inorganic oxyhalide is placed under normal pressure.
It is heated to a temperature of 0° C. or higher and held at that temperature for a predetermined period of time. Only then will the dealumination reaction proceed.

温度が150℃未満の場合には反応は円滑に進まない。If the temperature is less than 150°C, the reaction will not proceed smoothly.

好ましくは200〜e o o ’cの温度範囲である
。また、保持時間は1分〜50時間、好ましくは1〜2
0時間である。
Preferably the temperature range is 200 to 200 °C. In addition, the holding time is 1 minute to 50 hours, preferably 1 to 2 hours.
It is 0 hours.

得られた生成物を冷却し、これを充分に水洗したのち乾
燥すれば、本発明方法が意図する5i02/A1120
3モル比大の結Φ性アルミノシリケートを得ることがで
きる。
If the obtained product is cooled, thoroughly washed with water, and then dried, 5i02/A1120 intended by the method of the present invention can be obtained.
A crystalline aluminosilicate having a molar ratio of 3 is obtained.

[発明の実施例1 実施例1 Si02/All 203 % )Iy比が34(7)
 H型ZSM−5ゼ、? 5 イL IOg tr−C
5cl ’a度0.00?8モ/l/ / l (7)
水溶液200m1中に投入し、 100″Cの温度下で
3時間攪拌処理した。ついで濾過し、ケーキを 120
 ”cで乾燥したのち550℃、6時間焼成して交換率
50%のCs−ZSM−5ゼオライトにした。
[Example 1 of the invention Example 1 Si02/All 203%) Iy ratio is 34 (7)
H-type ZSM-5ze? 5 IL IOg tr-C
5cl 'a degree 0.00?8mo/l//l (7)
The mixture was poured into 200ml of an aqueous solution and stirred for 3 hours at a temperature of 100''C.Then, the cake was filtered and the cake was heated to 120ml.
After drying at 550° C. for 6 hours, it was made into Cs-ZSM-5 zeolite with an exchange rate of 50%.

ついで、このCs−ZSM−5ゼオライトを常圧反応装
置の中にいれ、窒素気流中550”Oで焼成したのち、
そのままの状態で室温にまで冷却した。
Next, this Cs-ZSM-5 zeolite was placed in a normal pressure reactor and calcined at 550"O in a nitrogen stream.
The mixture was allowed to cool to room temperature.

ここに、窒素で希釈した四塩化ケイ素(分圧200To
rr)を10分間流入し、ついで5℃/分の昇温速度で
550℃まで加熱し、その温度で15時間保持した″、
この間四塩化ケイ−ガスを流入し続けた。
Here, silicon tetrachloride diluted with nitrogen (partial pressure 200To
rr) for 10 minutes, then heated to 550°C at a temperature increase rate of 5°C/min and held at that temperature for 15 hours'',
During this period, silicon tetrachloride gas was continued to flow.

処理後のCs−ZSM−5ゼオライトを800鳳見の蒸
留水で洗浄したのち、 IN塩酸200mu中に入れて
 100℃。
The treated Cs-ZSM-5 zeolite was washed with 800ml of distilled water and then placed in 200mu of IN hydrochloric acid at 100°C.

6時間処理してH型にした。生成物の脱アルミニウム率
は68%、 5i02/A文203モル比は 112で
あった。また、この生成物につき、アンモニア昇温脱離
法で酸強度を測定した。その結果を図に示した0図で実
線は本発明方法で得られたもの、点線は出発原料として
用いたZSM−5(S+02/AfL20334)の場
合である。
It was treated for 6 hours to form H type. The dealumination rate of the product was 68%, and the 5i02/A203 molar ratio was 112. Further, the acid strength of this product was measured by an ammonia temperature programmed desorption method. The results are shown in Figure 0, where the solid line is for the product obtained by the method of the present invention, and the dotted line is for ZSM-5 (S+02/AfL20334) used as the starting material.

実施例2〜6 交換金属の種類と交換率が異なること、 550℃にお
ける保持時間が異なることを除いては、実施例1と同様
の処理を施して各種のH型ZSM−5ゼオライトを製造
した。これらの脱アルミニウム率及び5i02/A11
203モル比を一括して第1表に示した。
Examples 2 to 6 Various H-type ZSM-5 zeolites were produced by performing the same treatment as in Example 1, except that the type of exchange metal and exchange rate were different, and the holding time at 550°C was different. . These dealumination rates and 5i02/A11
203 molar ratios are collectively shown in Table 1.

なお、比較のために、四塩化ケイ素ガスを通流すること
なく550℃で3時間加熱処理し、得られた結果を比較
例として第1表に併記した。
For comparison, heat treatment was performed at 550° C. for 3 hours without passing silicon tetrachloride gas, and the obtained results are also listed in Table 1 as a comparative example.

第1表 参考例 実施例1の方法で得られた本発明にかかる脱アルミニウ
ムしたZSM−5ゼオライトと溶融鉄触媒(BASF社
製、58−10RE[l)とを重量比で1=1に混合し
、混合物を反応管に充填したのち常法にしたがって還元
φ賦活処理を施した。ついで、ここに)12/COモル
比2.0の合成ガスを通流して触媒能を調べた。反応条
件は、反応圧20kg/cm2.反応温度330℃、 
W HS V  1.46hr−’であった。得られた
結果を第2表に示した。
Table 1 Reference Examples Dealuminated ZSM-5 zeolite according to the present invention obtained by the method of Example 1 and molten iron catalyst (manufactured by BASF, 58-10RE [l) were mixed in a weight ratio of 1=1. After filling the mixture into a reaction tube, reduction φ activation treatment was performed according to a conventional method. Then, synthesis gas with a 12/CO molar ratio of 2.0 was passed therethrough to examine the catalytic ability. The reaction conditions were a reaction pressure of 20 kg/cm2. Reaction temperature 330℃,
The WHS V was 1.46 hr-'. The results obtained are shown in Table 2.

なお、比較のために、脱アルミニウムしたZSM−5ゼ
オライトに代えて)IZSM−5(アルミナバインダ3
5重量%)を用いた外は、上記と同様にして触媒を調製
した。その触媒能も第2表に併記した。
For comparison, IZSM-5 (alumina binder 3) was used instead of dealuminated ZSM-5 zeolite.
A catalyst was prepared in the same manner as above except that 5% by weight) was used. Its catalytic ability is also listed in Table 2.

第2表 [発明の効果] 以上の説明で明らかなように、本発明方法によれば高い
脱アルミニウム率が可能であり、結晶性アルミノシリケ
ートの5i02/Ajj 203モル比を高めることが
でき(以上、第1表)、また、弱酸点を選択的に減少せ
しめることが可能になる(図)。
Table 2 [Effects of the Invention] As is clear from the above explanation, according to the method of the present invention, a high dealumination rate is possible, and the 5i02/Ajj 203 molar ratio of crystalline aluminosilicate can be increased ( , Table 1), and it also becomes possible to selectively reduce weak acid sites (Figure).

そして、本発明方法を適用して得られた結晶性アルミノ
シリケートは、参考例の第2表からも明らかなとおり、
触媒として使用したとき、約 150時間の長期に亘り
 C5+以上の炭化水素の収率及びC5+以上の炭化水
素中の芳香族成分の割合が減少せずその触媒寿命が長い
As is clear from Table 2 of Reference Examples, the crystalline aluminosilicate obtained by applying the method of the present invention has the following properties:
When used as a catalyst, the yield of C5+ or higher hydrocarbons and the proportion of aromatic components in C5+ or higher hydrocarbons do not decrease over a long period of about 150 hours, and the catalyst has a long life.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明方法を適用して得られたH型のCg−ZS
M−5ゼオライト(実線)とその出発原料ゼオライト(
点線)との酸強度を表わす図である。 温Ji  (’C) −
The figure shows H-type Cg-ZS obtained by applying the method of the present invention.
M-5 zeolite (solid line) and its starting material zeolite (
(Dotted line) is a diagram showing acid strength. Wen Ji ('C) −

Claims (1)

【特許請求の範囲】 結晶性アルミノシリケートと無機ハライド又は無機オキ
シハライドとを100℃以下の温度で接触させ、 ついで、150℃以上の温度に保持したのち、冷却、水
洗することを特徴とする結晶性アルミノシリケートの脱
アルミニウム方法。
[Claims] A crystal characterized in that a crystalline aluminosilicate and an inorganic halide or inorganic oxyhalide are brought into contact at a temperature of 100°C or lower, then maintained at a temperature of 150°C or higher, cooled, and washed with water. Dealumination method for aluminosilicate.
JP59147619A 1984-07-18 1984-07-18 Removal of alminum from crystalline aluminosilicate Pending JPS6126508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59147619A JPS6126508A (en) 1984-07-18 1984-07-18 Removal of alminum from crystalline aluminosilicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59147619A JPS6126508A (en) 1984-07-18 1984-07-18 Removal of alminum from crystalline aluminosilicate

Publications (1)

Publication Number Publication Date
JPS6126508A true JPS6126508A (en) 1986-02-05

Family

ID=15434417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59147619A Pending JPS6126508A (en) 1984-07-18 1984-07-18 Removal of alminum from crystalline aluminosilicate

Country Status (1)

Country Link
JP (1) JPS6126508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206996A (en) * 2008-04-18 2008-09-11 Olympus Corp Endoscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206996A (en) * 2008-04-18 2008-09-11 Olympus Corp Endoscope

Similar Documents

Publication Publication Date Title
US4487843A (en) Catalytic activity of aluminosilicate zeolites
Kianfar et al. Zeolites: properties, applications, modification and selectivity
US4496786A (en) Selective conversion of methanol to low molecular weight olefins over high silica SSZ-13 zeolite
US4654316A (en) Selective dealumination of zeolites
US4461845A (en) Reactivation of steam-deactivated catalysts
WO1997019021A1 (en) Zeolite itq-1
US5243117A (en) Catalyst and process for the selective production of para-dialkyl substituted benzenes
JP3437212B2 (en) Preparation of zeolite with reduced surface acidity.
US4252688A (en) Manufacture of bifunctional catalysts for the conversion of hydrocarbons
KR20070086050A (en) Method for the synthesis of zeolite beta with diethylentriamine
US4520118A (en) Catalytic activity of aluminosilicate zeolites
Chauvin et al. Dealumination of faujasite, mazzite, and offretite with ammonium hexafluorosilicate
US6136291A (en) Faujasite zeolitic materials
JPH0789715A (en) Production of metal silicate catalyst
JPS6126508A (en) Removal of alminum from crystalline aluminosilicate
JPH0515784A (en) Regeneration of catalyst
JPH0686935A (en) Catalyst based on modified zeolite mordenite and its use in isomerization of aromatic c8 fraction
JPH0859566A (en) Production of methylamines
US4656149A (en) Process for the activation of siliceous catalysts
JPS6077124A (en) Preparation and manufacture of acid strength of zsm-11
JPS61234945A (en) Regenerating method for catalyst
EP0400739B1 (en) Defect-rich crystalline (metallo) silicates and process for preparing such (metallo) silicates
JPH0985098A (en) Regeneration of hydrated catalyst
JPH06228017A (en) Conversion of light hydrocarbon
JPH04224526A (en) Method for using gallium containing alumino- silicate type catalyst in aromatization of light fraction containing a major amount of c2 hydro- carbon